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Multi-label learning problems are commonly found in many applications. A characteristic
shared by many multi-label learning problems is that some labels have significant correlations

between them. In this paper, we propose a novel multi-label learning method, called multi-label
relationship learning (MLRL), which extends the conventional support vector machine by ex-
plicitly learning and utilizing the relationships between labels. Specifically, we model the label
relationships using a label covariance matrix and use it to define a new regularization term for

the optimization problem. MLRL learns the model parameters and the label covariance matrix
simultaneously based on a unified convex formulation. To solve the convex optimization problem,
we use an alternating method in which each subproblem can be solved efficiently. The relation-
ship between MLRL and two widely used maximum margin methods for multi-label learning is

investigated. Moreover, we also propose a semi-supervised extension of MLRL, called SSMLRL,
to demonstrate how to make use of unlabeled data to help learn the label covariance matrix.
Through experiments conducted on some multi-label applications, we find that MLRL not only
gives higher classification accuracy but also has better interpretability as revealed by the label

covariance matrix.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning; H.2.8 [Database Management]:
Database Applications—Data mining

General Terms: Algorithms

Additional Key Words and Phrases: Multi-Label Learning, Label Relationship

1. INTRODUCTION

Different from conventional multi-class classification problems in which each input data
point is associated with one and only one class label, each data point in multi-label learning
problems can be associated with one or multiple labels. Multi-label learning problems are
commonly found in many applications. For example, in text classification, a document
may belong to several topics; in bioinformatics, a gene may perform multiple functions;
in scene classification, an image may belong to several semantic classes. An important
characteristic commonly found in many multi-label learning problems is that some labels
have significant correlations between them. For example, a news article on finance is likely
to also belong to politics, and an image is unlikely to be associated with both the ocean
and urban labels simultaneously. As such, discovering the correlation between labels is a
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crucial issue in multi-label learning.

Many multi-label learning methods have been proposed. The naı̈ve method is to treat
a multi-label problem as several separate binary classification problems. However, this
scheme completely ignores the label correlation information and hence the performance
of methods based on this scheme is often not very satisfactory. Some methods model
multi-label problems as ranking problems [Schapire and Singer 2000; Elisseeff and West-
on 2001; Fürnkranz et al. 2008] in such a way that the ranking function value of a label
to which a data point belongs is larger than that of another label to which it does not be-
long. This approach works well for many applications. However, from the optimization
perspective, modeling a classification problem as a ranking problem requires the conver-
sion of a problem with O(nm) constraints into one with O(nm2) constraints where n is
the number of training data points and m is the total number of labels. Obviously this
leads to an increase in problem complexity. Moreover, it is not easy to consider label
correlation in ranking problems. Some multi-label learning methods are variants of con-
ventional binary or multi-class classification methods. For example, Schapire and Singer
proposed a boosting method for multi-label learning [Schapire and Singer 2000]; Clare
and King extended decision trees for multi-label learning by generalizing the definition of
entropy [Clare and King 2001]; Zhang and Zhou proposed a multi-label neural network by
assuming that different labels share the same hidden representation corresponding to the
hidden layers [Zhang and Zhou 2006]; Zhang and Zhou also proposed ML-KNN as a gen-
eralization of the k-nearest neighbor algorithm for multi-label problems [Zhang and Zhou
2007]. Moreover, Ji et al. [Ji et al. 2010] assume the model parameters for different labels
share a common low-dimensional subspace and propose a regularized method to learn the
shared subspace. More recently, Zhang and Zhang [Zhang and Zhang 2010] proposed a
two-stage method called LEAD, which first learns the label dependency using a Bayesian
network and then utilizes the learned dependency to learn multiple binary classifiers for
multi-label learning. Readers are referred to [Tsoumakas and Katakis 2007; Tsoumakas
et al. 2010] for a review of multi-label learning methods in the literature.

In this paper, we extend the conventional support vector machine (SVM) for multi-label
learning by explicitly learning and utilizing the relationships between labels. Specifically,
we model the label relationships using a label covariance matrix and use it to define a new
regularization term for the objective function of the (multi-label) SVM. We call this method
multi-label relationship learning (MLRL), which learns the model parameters and the label
covariance matrix simultaneously based on a unified convex formulation. To solve the
convex optimization problem, we use an alternating method in which each subproblem can
be solved efficiently. By investigating the dual form of one subproblem which is similar
to the dual form of SVM, we propose an SMO-style algorithm for solving it. To gain
more insights into MLRL, we investigate the relationship between it and two widely used
maximum margin multi-label learning methods, namely, conventional SVM (here we call it
BSVM for multi-label learning) [Boutell et al. 2004] and RankSVM [Elisseeff and Weston
2001]. We also propose a semi-supervised extension of MLRL, called SSMLRL, which
makes use of unlabeled data to help learn the label covariance matrix when the labeled data
is scarce. Moreover, the label covariance matrix learned in MLRL allows us to explicitly
describe the relationships between labels which may be useful for some applications as to
be illustrated in our experiments. Compared with LEAD [Zhang and Zhang 2010], our
method can learn the label correlation and model parameters simultaneously based on a
ACM Transactions on Knowledge Discovery from Data, Vol. xx, No. xx, xx 20xx.
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unified and consistent framework. Moreover, learning of the label covariance matrix for
characterizing label correlation is generally more efficient and effective than learning the
structure of a Bayesian network.

Our MLRL method is discussed in the next section and its relationship with some related
works is discussed in Section 3. Section 4 introduces the semi-supervised extension of
MLRL. Section 5 reports some experimental results on several multi-label applications
and Section 6 concludes the paper.

2. MULTI-LABEL RELATIONSHIP LEARNING

Suppose we are given n training data points {(xi,yi)}ni=1 where xi ∈ Rd and its label
vector yi ∈ {−1, 1}m. The data point xi is associated with the jth label if and only if
the jth element of the vector yi, denoted as yji , is equal to 1. The predictive function for
the jth label is defined as fj(x) = wT

j ϕ(x) + bj where ϕ(·) denotes the feature mapping
corresponding to a kernel function k(·, ·) which converts x ∈ Rd to ϕ(x) ∈ Rd′

.

2.1 Objective Function

Recall that from a probabilistic viewpoint, SVM can be seen as obtaining the maximum a
posteriori (MAP) solution of the following model [Kwok 1999]:

w ∼ N (0d′ , ϵ2Id′) (1)

p(yi|xi,w) ∝ exp
(
−

[
1− yi(w

Tϕ(xi) + b)
]
+

)
, i = 1, . . . , n, (2)

where {(xi, yi)}ni=1 is the training set with xi ∈ Rd and yi ∈ {−1, 1}, 0d is the d× 1 zero
vector, Id is the d × d identity matrix, N (m,Σ) denotes the multivariate (or univariate)
normal distribution with mean m and covariance matrix (or variance) Σ, and [u]+

def
=

max(0, u). Eq. (1) defines the prior on the model parameter w and Eq. (2) defines the data
likelihood.

Similar to SVM, we propose a similar probabilistic model for multi-label learning:

W ∼ MN d′×m(W|0d′×m, Id′ ⊗Ω)

p(yi|xi,W) ∝
m∏
j=1

exp
(
−

[
1− yji (w

T
j ϕ(xi) + bj)

]
+

)
, (3)

where W = (w1, . . . ,wm), MN d×m(M,A⊗B) denotes a matrix-variate normal distri-
bution1 [Gupta and Nagar 2000] with mean M ∈ Rd×m, row covariance matrix A ∈ Rd×d

and column covariance matrix B ∈ Rm×m, and 0d×m denotes the d×m zero matrix. The
prior on W is to model the structure of W. More specifically, the row covariance matrix Id
models the relationships between features and the column covariance matrix Ω models the
relationships between different wi’s. In other words, Ω models the relationships between
labels. When Ω ∝ Im, this model will decompose into m binary SVM models. For most
applications, Ω is not known a priori and so we seek to estimate it from data automatically.

1The probability density function of a matrix-variate normal distribution is defined as p(X|M,A,B) =
exp(− 1

2
tr(A−1(X−M)B−1(X−M)T ))
(2π)md/2|A|m/2|B|d/2

.
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Then the optimization problem for the MAP solution is formulated as follows:

min
W,b,Ω≻0

1

n

n∑
i=1

m∑
j=1

L(yji ,w
T
j ϕ(xi) + bj) +

1

2n
tr(WΩ−1WT ) +

d′

2n
ln |Ω|, (4)

where tr(·) denotes the trace of a square matrix, L(·, ·) denotes the hinge loss, Ω is the
positive definite (PD) label covariance matrix, | · | denotes the determinant of a square
matrix, b = (b1, . . . , bm)T , and A ≻ 0 means that the matrix A is PD. The first term
in (4) measures the empirical loss on the training data and the second term penalizes the
complexity of W and measures the relationships between all labels based on W and Ω,
where Ω is a label covariance matrix which describes the relationships between labels.
Since the third term ln |Ω| in problem (4) is a non-convex function with respect to Ω, we
upper bound this term with a convex function tr(Ω) due to the fact that ln |Ω| ≤ tr(Ω) −
m.2 Then the optimization problem becomes

min
W,b,Ω≽0

1

n

n∑
i=1

m∑
j=1

L(yji ,w
T
j ϕ(xi) + bj) +

1

2n
tr(WΩ−1WT ) +

d′

2n
tr(Ω). (5)

Moreover, for a feature mapping ϕ(·) corresponding to a kernel, the dimensionality d′

may be infinite which makes problem (5) infeasible. So by using the method of Lagrange
multipliers, we can get a problem which is equivalent to problem (5):

min
W,b,Ω

1

n

n∑
i=1

m∑
j=1

L(yji ,w
T
j ϕ(xi) + bj) +

λ

2
tr(WΩ−1WT )

s.t. Ω ≻ 0,

tr(Ω) = 1, (6)

where λ is a regularization parameter.

2.2 Optimization Procedure

We first prove the convexity of problem (6) with respect to all variables.

THEOREM 1. Problem (6) is convex with respect to W, b and Ω.

Proof:
It is easy to see that the first term in the objective function of problem (6) is convex with
respect to all variables and the constraints in (6) are also convex. It has been proved in
[Zhang and Yeung 2010] that the second term in the objective function is a convex function
with respect to W, b and Ω. So the objective function and the constraints in problem (6)
are convex with respect to all variables and hence problem (6) is jointly convex. 2

Problem (6) is a semidefinite programming (SDP) problem due to the first constraint.
We will present below an efficient algorithm for solving it.

Even though the optimization problem (6) is convex with respect to W, b and Ω jointly,
it is not easy to optimize the objective function with respect to all the variables simulta-
neously. Here we propose an alternating method to solve the problem more efficiently.
Specifically, we first optimize the objective function with respect to W and b when Ω

2Due to the fact that lnx ≤ x − 1 for a positive scalar x, we have ln |Ω| =
∑m

i=1 ln ηi ≤
∑m

i=1(ηi − 1) =
tr(Ω)−m where ηi is the ith largest eigenvalue of Ω.

ACM Transactions on Knowledge Discovery from Data, Vol. xx, No. xx, xx 20xx.



Multi-Label Relationship Learning · 5

is fixed, and then optimize it with respect to Ω when W and b are fixed. This proce-
dure is repeated until convergence. In what follows, we will present the two subproblems
separately.

Optimizing w.r.t. W and b when Ω is fixed. When Ω is given and fixed, the opti-
mization problem for finding W and b is an unconstrained convex optimization problem
provided that the loss function is convex. The optimization problem can be stated as:

min
W,b

1

n

n∑
i=1

m∑
j=1

L(yji ,w
T
j ϕ(xi) + bj) +

λ

2
tr(WΩ−1WT ). (7)

We reformulate the optimization problem into a dual form by first expressing prob-
lem (7) as a constrained optimization problem:

min
W,b,{εji}

1

n

n∑
i=1

m∑
j=1

εji +
λ

2
tr(WΩ−1WT )

s.t. yji (w
T
j ϕ(xi) + bj) ≥ 1− εji , ε

j
i ≥ 0. (8)

The Lagrangian of problem (8) is given by

G =
1

n

n∑
i=1

m∑
j=1

εji +
λ

2
tr(WΩ−1WT ) +

n∑
i=1

m∑
j=1

αj
i

[
1− yji (w

T
j ϕ(xi) + bj)− εji

]
−

n∑
i=1

m∑
j=1

βj
i ε

j
i ,

where αj
i , β

j
i ≥ 0. We calculate the gradients of G with respect to W, bj and εji and set

them to 0 to obtain

∂G

∂W
= λWΩ−1 −

n∑
i=1

m∑
j=1

αj
iy

j
iϕ(xi)e

T
j = 0 (9)

∂G

∂bj
= −

n∑
i=1

αj
iy

j
i = 0

∂G

∂εji
=

1

n
− αj

i − βj
i = 0,

where ei is the ith column vector of Im. Plugging the above equations into the Lagrangian,
we obtain the following dual form:

min
α

1

2
αT K̃MLα−

n∑
i=1

m∑
j=1

αj
i

s.t.
n∑

i=1

αj
iy

j
i = 0,

0 ≤ αj
i ≤

1

n
, ∀i, j (10)

where α = (α1
1, . . . , α

1
n, . . . , α

m
1 , . . . , αm

n )T , y = (y11 , . . . , y
1
n, . . . , y

m
1 , . . . , ymn )T , K is
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the kernel matrix on all data points, KML = 1
λΩ⊗K, ⊗ denotes the Kronecker product,

K̃ML = (KML ⊙ yyT ), and ⊙ denotes the matrix elementwise product operator.
From the formulation of KML, we can define the multi-label kernel as

kML((xi, j), (xp, q)) =
1

λ
Ωjqk(xi,xp)

which describes the similarity betweem xi and xp based on Ωjq as the (j, q)th element of Ω
when they hold the jth and qth labels, respectively. From this formulation, we can see how
Ω plays the role in the definition of data similarity. The multi-label kernel here is different
from the conventional kernel used in previous multi-label methods. Our multi-label kernel,
which incorporates the label covariance into the definition of kernel function, describes the
similarity between two data points when they are associated with some labels. From the
definition of multi-label kernel, we can see that when two labels are more correlated, the
multi-label kernel function will have a larger value due to the larger value of Ωjq .

Note that the dual problem (10) is very similar to that of SVM except the first constraint
in problem (10). For SVM, there is only one constraint, but here there are m constraints
with one constraint for each label. Problem (10) is a quadratic programming (QP) problem
which is computationally demanding when solved directly, so we develop an SMO-style
algorithm similar to that in [Fan et al. 2005] to solve it. We defer the discussion of the
optimization method for problem (10) to Appendix A.

Optimizing w.r.t. Ω when W and b are fixed. When W and b are fixed, the opti-
mization problem for finding Ω becomes

min
Ω

tr(Ω−1WTW)

s.t. Ω ≻ 0

tr(Ω) = 1. (11)

We lower bound the objective as

tr(Ω−1A) = tr(Ω−1A)tr(Ω)

= tr
(
(Ω− 1

2A
1
2 )(A

1
2Ω− 1

2 )
)
tr(Ω

1
2Ω

1
2 )

≥ (tr(Ω− 1
2A

1
2Ω

1
2 ))2 = (tr(A

1
2 ))2,

where A = WTW. The first equality holds because of the last constraint in problem (11)
and the last inequality holds because of the Cauchy-Schwarz inequality for the Frobe-
nius norm. Moreover, tr(Ω−1A) attains its minimum value (tr(A

1
2 ))2 if and only if

Ω− 1
2A

1
2 = aΩ

1
2 for some constant a and tr(Ω) = 1. So we can get the analytical

solution Ω = (WTW)
1
2

tr((WTW)
1
2 )

. Here we compute WTW first. From Eq. (9), we can get

W =
1

λ

n∑
i=1

m∑
j=1

αj
iy

j
iϕ(xi)e

T
j Ω.

Then we can calculate WTW as

WTW =
1

λ2

∑
i,j

∑
p,q

αj
iα

q
py

j
i y

q
pk(xi,xp)Ωeje

T
q Ω.
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When the number of tasks is less than the number of feature dimensions which holds when
using kernels such as the RBF kernel, Ω is a PD matrix. Otherwise we can regularize it by
adding a scaled identity matrix to ensure that it is PD.

We set the initial value of Ω to 1
mIm which corresponds to the assumption that all

labels are unrelated initially. After learning the optimal values of W, b and Ω, we can
make prediction for any new data point. Given a test data point x⋆, the predictive output
yi⋆ for the ith label is given by yi⋆ = sign(ti⋆) where sign(·) is the sign function, and
ti⋆ =

∑n
p=1

∑m
q=1 α

q
py

q
pkML((xp, q), (x⋆, i)) + bi.

2.3 Implementation Issues

In problem (10), it appears that we need to store a large matrix of size nm×nm, but in fact
we can exploit the structure of KML to avoid this. Since KML = 1

λΩ⊗K, we only need
to store K and Ω which only cost O(n2 +m2) space. Moreover, in our SMO algorithm,
we do not need to store the entire K but can calculate the kernel function value on demand.

The Kronecker product ⊗ usually converts two small matrices into a very large matrix
which can be verified by comparing the sizes of K, Ω and KML. However, we can make
use of some properties of the Kronecker product to reduce the space requirement, as illus-
trated here. For example, if we want to calculate the objective function value of problem
(10), the first term can be simplified as

αT K̃MLα = αT (KML ⊙ yyT )α

= αTdiag(y)KMLdiag(y)α

= (α⊙ y)TKML(α⊙ y)

= vec(M⊙Y)T (Ω̃⊗K)vec(M⊙Y)

= tr
(
(M⊙Y)TK(M⊙Y)Ω̃

)
,

where Ω̃ = 1
λΩ, vec(·) denotes the operator which converts a matrix to a vector in the

columnwise order, M is an n ×m matrix such that vec(M) = α, Y is an n ×m matrix
such that vec(Y) = y, and diag(·) denotes the operator which converts a vector to a
diagonal matrix. The last equality holds due to a property of the operators vec(·) and ⊗,
namely, tr(ABCD) = vec(AT )T (DT ⊗ B)vec(C) for any A ∈ Ra×b, B ∈ Rb×c,
C ∈ Rc×d and D ∈ Rd×a.

In the beginning of our SMO algorithm, we need to calculate f i
j = αT (ki

j ⊙ y) − yij
where ki

j is a column of KML. Recognizing that ki
j = ωi⊗ k̃j where ωi is the ith column

of Ω̃ and k̃j is the jth column of K, we can get

αT (ki
j ⊙ y) = (α⊙ y)Tki

j

= (ki
j)

T (α⊙ y)

= (ωi ⊗ k̃j)
T (α⊙ y)

= (ωT
i ⊗ k̃T

j )vec(M⊙Y)

= vec(k̃T
j (M⊙Y)ωi)

= k̃T
j (M⊙Y)ωi.

Here we use the fact that vec(ABC) = (CT ⊗A)vec(B) for any matrices A, B and C
of proper sizes. Similarly, when a test data point x⋆ is given, its output can be calculated
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as

y⋆ = (Ω̃⊗ k⋆)(α⊙ y) + b

= (Ω̃⊗ k⋆)vec(M⊙Y) + b

= vec(k⋆(M⊙Y)Ω̃) + b

= Ω̃(M⊙Y)TkT
⋆ + b,

where k⋆ = (k(x⋆,x1), . . . , k(x⋆,xn)).

3. RELATIONSHIP WITH PREVIOUS METHODS

Two widely used maximum margin methods for multi-label learning are BSVM [Boutell
et al. 2004] and RankSVM [Elisseeff and Weston 2001]. BSVM decomposes a multi-label
problem into a set of binary classification problems and RankSVM formulates a multi-label
problem as a ranking problem and uses a ranking loss for optimization. In the following,
we will discuss the relationship between these methods and MLRL.

Using the notations in Section 2, the optimization problem of BSVM for the jth label
can be defined as follows:

min
wj ,bj

1

n

n∑
i=1

L(yji ,w
T
j ϕ(xi) + bj) +

λ

2
wT

j wj .

Its dual form is

min
αj

1

2λ
αT

j (K⊙ yjy
T
j )αj −

n∑
i=1

αj
i

s.t.
n∑

i=1

αj
iy

j
i = 0, 0 ≤ αj

i ≤
1

n
,

where αj = (αj
1, . . . , α

j
n)

T and yj = (yj1, . . . , y
j
n)

T . Combining the dual optimization
problems for all labels, the overall dual optimization problem is

min
α

1

2
αT (K̃⊙ yyT )α−

n∑
i=1

m∑
j=1

αj
i

s.t.
n∑

i=1

αj
iy

j
i = 0, ∀j

0 ≤ αj
i ≤

1

n
∀i, j, (12)

where K̃ = 1
λIm⊗K. We can see that the dual problem (12) of BSVM is almost identical

to that in (10) except for the difference between KML and K̃. Recall that

KML =
1

λ
Ω⊗K.

So when Ω = Im, KML degenerates to K̃. From this analysis, we can understand the role
of Ω in describing the relationships between labels.
ACM Transactions on Knowledge Discovery from Data, Vol. xx, No. xx, xx 20xx.
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For RankSVM, the optimization problem is formulated as

min
W,b

1

n

n∑
i=1

m∑
j,k=1

I(yji ̸= yki )L
(yji − yki

2

(
(wj −wk)

Tϕ(xi) + bj − bk
))

+
λ

2
tr(WWT ),

where I(z) is an indicator function which outputs 1 when z is true and 0 otherwise. Then
the dual form is given by

min
α,{βj,k

i }

1

2
αT (K̃⊙ yyT )α−

n∑
i=1

m∑
j=1

αj
i

s.t.
n∑

i=1

αj
iy

j
i = 0, αj

i =

m∑
k=1

I(yji ̸= yki )β
j,k
i

0 ≤ βj,k
i ≤ 1

n
, βj,k

i = βk,j
i . (13)

We can find the objective function for the dual form of RankSVM is the same as that of
BSVM but the labels are related according to the constraints on αj

i , but in BSVM different
labels are independent. In MLRL, the labels are related via the multi-label kernel matrix
KML. Hence MLRL and RankSVM work in different ways in exploiting the relatedness of
different labels. Moreover, since modeling a classification problem as a ranking problem
requires using O(m2) constraints (constraints on αj

i and βj,k
i for 1 ≤ j, k ≤ m) for each

data point, MLRL with only O(m) constraints (constraints on αj
i for 1 ≤ j ≤ m) for each

data point has a lower complexity than RankSVM from the optimization perspective.
Some methods for multi-label learning also capture the label correlations, e.g., [Bucak

et al. 2009] and [Zhang and Zhang 2010]. The method in [Bucak et al. 2009] formulates the
multi-label problem as a ranking problem in a way similar to RankSVM and hence the label
correlations are captured implicitly in the ranking function. The LEAD method proposed
in [Zhang and Zhang 2010] is a two-stage algorithm which first learns the label dependency
by using a Bayesian network and then performs classification. Different from the LEAD
method, our method learns the label correlations and the model parameters simultaneously.
Moreover, there are some other related works in other research areas. For example, in
[Argyriou et al. 2008; Argyriou et al. 2008], a multi-task feature learning (MTFL) method
was proposed to utilize the trace norm as a regularizer. Different from our method which
learns the label correlations, the MTFL method focuses on learning feature correlation. The
trace norm regularization is also used in maximum margin matrix factorization [Srebro
et al. 2004] for collaborative filtering. A recent study on learning an output kernel in
[Dinuzzo et al. 2011; Dinuzzo and Fukumizu 2011] has the same objective as our method.
One advantage of our method over [Dinuzzo et al. 2011; Dinuzzo and Fukumizu 2011] is
that our method is jointly convex which may bring some computational benefit.

4. SEMI-SUPERVISED EXTENSION

In many real-world applications, auxiliary sources of data are available in addition to
labeled data. For example, semi-supervised learning [Chapelle et al. 2006] is an active
research subarea which utilizes unlabeled data available to enhance the learning accura-
cy. In the context of multi-label learning, some attempts have also been made in utilizing
unlabeled data [Liu et al. 2006; Chen et al. 2008; Zha et al. 2009]. In this section, we
discuss how to extend MLRL to the semi-supervised setting.

ACM Transactions on Knowledge Discovery from Data, Vol. xx, No. xx, xx 20xx.
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Suppose we are given l labeled data points {(xi,yi)}li=1 with xi ∈ Rd and its corre-
sponding label vector yi ∈ {−1, 1}m, as well as u unlabeled data points {xi}l+u

i=1+1. So
there are n = l + u data points in the training set. The predictive function for the ith label
is defined as fi(x) = wT

i ϕ(x) + bi.

4.1 Objective Function

Unlike existing graph-based semi-supervised multi-label learning methods which capture
the geometric information contained in the unlabeled data, our method utilizes unlabeled
data to help estimate the label covariance matrix Ω. Similar to the smoothness assump-
tion commonly used in semi-supervised learning which assumes that the decision function
value varies smoothly on the data manifold, here we assume that the decision function
values for different labels are smooth with respect to the label relationships. Specifically,
if two labels are highly positively correlated, the decision function values of these two la-
bels on each data point will be similar; if two labels are highly negatively correlated, the
decision function values of these two labels on each data point will be dissimilar; for two
independent labels, the decision function values will be independent.

Based on the above assumption, we propose the following formulation for the semi-
supervised multi-label learning problem:

min
W,b,Ω,F

1

l

l∑
i=1

m∑
j=1

[1− yji (w
T
j ϕ(xi) + bj)]+ +

λ1

2
tr(WΩ−1WT ) +

λ2

2
tr(FΩ−1FT )

s.t. F = ϕ(Xu)
TW

Ω ≻ 0

tr(Ω) = 1, (14)

where λ1 and λ2 are regularization parameters, ϕ(Xu) =
(
ϕ(xl+1), . . . , ϕ(xn)

)
, and

the (i, j)th element of F, denoted by f j
i , is the function value of the ith unlabeled data

point, e.g., f j
i = wT

j ϕ(xl+i).3 The first term in (14) measures the empirical loss on the
training data, the second term measures the relationships between all labels based on W,
and the third term uses unlabeled data to help estimate Ω which reflects the rationale of
our assumption.

To the best of our knowledge, all existing semi-supervised multi-label learning meth-
ods [Liu et al. 2006; Chen et al. 2008; Zha et al. 2009] are tranductive methods and so
they can only make predictions for the data points in the training set which contains both
labeled and unlabeled data. So making predictions for unseen test data points is not easy
using the existing methods. However, our method is an inductive method which can easily
make predictions for unseen test data points.

4.2 Optimization Procedure

We first discuss the convexity of problem (14) with respect to all variables.

THEOREM 2. Problem (14) is convex with respect to W, b, Ω and F.

3Similar to the manifold regularization method in semi-supervised learning, the offsets {bj} are not included in
the regularization term.
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The proof of Theorem 2 is very similar to that of Theorem 1 and hence we omit it here
for brevity.

Here we also use an alternating method to solve problem (14) more efficiently.

Optimizing w.r.t. W, b and F when Ω is fixed. When Ω is fixed, we formulate prob-
lem (14) as

min
W,b,{εji},F

1

l

l∑
i=1

m∑
j=1

εji +
λ1

2
tr(WΩ−1WT ) +

λ2

2
tr(FΩ−1FT )

s.t. yji (w
T
j ϕ(xi) + bj) ≥ 1− εji ∀i, j

εji ≥ 0 ∀i, j
F = ϕ(Xu)

TW. (15)

The Lagrangian of problem (15) is given by

G =
1

l

l∑
i=1

m∑
j=1

εji +
λ1

2
tr(WΩ−1WT ) +

λ2

2
tr(FΩ−1FT )−

l∑
i=1

m∑
j=1

βj
i ε

j
i

+
l∑

i=1

m∑
j=1

αj
i

[
1− yji (w

T
j ϕ(xi) + bj)− εji

]
+ tr

(
ΓT

(
F− ϕ(Xu)

TW
))

, (16)

where αj
i ≥ 0, βj

i ≥ 0 and Γ ∈ Ru×m. We calculate the gradients of G with respect to
W, bj , εji and F and set them to 0 to obtain

∂G

∂W
= λ1WΩ−1 −

l∑
i=1

m∑
j=1

αj
iy

j
iϕ(xi)e

T
j −

u∑
i=1

m∑
j=1

γj
i ϕ(xl+i)e

T
j = 0 (17)

∂G

∂bj
= −

l∑
i=1

αj
iy

j
i = 0

∂G

∂εji
=

1

l
− αj

i − βj
i = 0

∂G

∂F
= λ2FΩ

−1 + Γ = 0,

where Im denotes the m×m identity matrix and γj
i is the (i, j)th element of Γ. Plugging

the above equations into the Lagrangian, we obtain the following dual form:

min
Θ,Γ

1

2λ1
tr
((

Ỹ ⊙
(
Θ
Γ

))T

K

(
Ỹ ⊙

(
Θ
Γ

))
Ω
)
+

1

2λ2
tr(ΓΩΓT )−

l∑
i=1

m∑
j=1

αj
i

s.t.
l∑

i=1

αj
iy

j
i = 0, ∀j

0 ≤ αj
i ≤

1

l
, ∀i, j, (18)
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where Θ is an l ×m matrix with αj
i as the (i, j)th element, Y is an l ×m matrix with yji

as the (i, j)th element, 1p×q denotes a p× q matrix of all one’s, Ỹ = (YT ,1m×u)
T , and

K is the kernel matrix on all data points including both labeled and unlabeled ones.
We have the following theorem on the convexity of problem (18). The proof is given in

Appendix B.

THEOREM 3. Problem (18) is a convex problem with respect to vec
((

Θ
Γ

))
.

Even though problem (18) is a convex QP problem, the computational complexity is
very high if the number of data points n is very large. In what follows, we will show how
to speed up this problem.

Instead of directly solving problem (18), we partition K as K =

(
Kll Klu

KT
lu Kuu

)
where

Kll is the kernel matrix for the labeled data, Klu is for the labeled and unlabeled data and
Kuu is for the unlabeled data. Then we can rewrite the objective function of problem (18)
as

f =
1

2λ1
tr
( [

Θ̃TKllΘ̃+ 2Θ̃TKluΓ+ ΓTKuuΓ
]
Ω
)
+

1

2λ2
tr(ΓΩΓT )−

l∑
i=1

m∑
j=1

αj
i ,

(19)

where Θ̃ = Y ⊙ Θ. Since problem (18) is an unconstrained optimization problem with
respect to Γ, we calculate the derivative of f with respect to Γ as:

∂f

∂Γ
=

1

λ2
ΓΩ+

1

λ1
KT

luΘ̃Ω+
1

λ1
KuuΓΩ.

Setting the derivative to 0, we obtain

Γ = −
(λ1

λ2
Iu +Kuu

)−1

KT
luΘ̃. (20)

We plug Eq. (20) into Eq. (19) and simplify the objective function of problem (18) as

f =
1

2λ1
tr
(
Θ̃T K̃llΘ̃Ω

)
−

l∑
i=1

m∑
j=1

αj
i

=
1

2λ1
(vec(Θ̃))T

(
Ω⊗ K̃ll

)
vec(Θ̃)−

l∑
i=1

m∑
j=1

αj
i

=
1

2λ1
(vec(Θ))Tdiag(vec(Y))

(
Ω⊗ K̃ll

)
diag(vec(Y))vec(Θ)−

l∑
i=1

m∑
j=1

αj
i ,

where K̃ll = Kll − Klu(
λ1

λ2
Iu + Kuu)

−1KT
lu. It is easy to show that K̃ll is a positive

semidefinite (PSD) matrix according to the property of the Schur complement [Boyd and
ACM Transactions on Knowledge Discovery from Data, Vol. xx, No. xx, xx 20xx.
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Vandenberghe 2004]. Then problem (18) can be reformulated as

min
α

1

2
αT K̂MLα−

l∑
i=1

m∑
j=1

αj
i

s.t.
l∑

i=1

αj
iy

j
i = 0, ∀j

0 ≤ αj
i ≤

1

l
, ∀i, j, (21)

where α = vec(Θ) and K̂ML =
(

1
λ1
Ω⊗ K̃ll

)
⊙ (yyT ). It is easy to show that K̂ML is

a PSD matrix and so problem (21) is convex. Problem (21) is very similar to problem (10)
except for the different definitions of K̂ML and K̃ML. So we still use the SMO algorithm
in the appendix to solve problem (21).

From the formulation of K̃ll, we can define a data-dependent kernel k′(·, ·) as

k′(z1, z2) = k(z1, z2)− (ku
1 )

T (
λ1

λ2
Iu +Kuu)

−1ku
2 , (22)

where ku
i = (k(zi,xl+1), . . . , k(zi,xl+u))

T for i = 1, 2. Then we can define the data-
dependent multi-label kernel as k′ML((xi, j), (xp, q)) =

Ωjq

λ1
k′(xi,xp) which describes

the similarity betweem xi and xp when they hold the jth and qth labels, respectively.

Optimizing w.r.t. Ω when W and b are fixed. When W and b are fixed, problem (14)
becomes

min
Ω

λ1tr(WΩ−1WT ) + λ2tr(FΩ−1FT )

s.t. Ω ≻ 0

tr(Ω) = 1. (23)

Then we have

tr(Ω−1A) = tr(Ω−1A)tr(Ω)

= tr((Ω− 1
2A

1
2 )(A

1
2Ω− 1

2 ))tr(Ω
1
2Ω

1
2 )

≥ (tr(Ω− 1
2A

1
2Ω

1
2 ))2 = (tr(A

1
2 ))2,

where A = λ1W
TW + λ2F

TF. As before, the first equality holds because of the last
constraint in problem (23) and the last inequality holds because of the Cauchy-Schwarz in-
equality for the Frobenius norm. Moreover, tr(Ω−1A) attains its minimum value (tr(A

1
2 ))2

if and only if Ω− 1
2A

1
2 = aΩ

1
2 for some constant a and tr(Ω) = 1. So we can get the ana-

lytical solution

Ω =

(
λ1W

TW + λ2F
TF

) 1
2

tr
(
(λ1WTW + λ2FTF)

1
2

) .
From this solution, we can see how the unlabeled data can help to estimate Ω. In problem
(21), we only calculate the optimal α (or Θ) but not W and F. We will show how to
compute W and F from α. From Eq. (17), we can get W = 1

λ1
Ω
[
ϕ(Xl)Θ̃ + ϕ(Xu)Γ

]
ACM Transactions on Knowledge Discovery from Data, Vol. xx, No. xx, xx 20xx.
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where ϕ(Xl) = [ϕ(x1), . . . , ϕ(xl)]. By using Eq. (20), we can obtain

W =
1

λ1

[
Xl −Xu

(λ1

λ2
Iu +Kuu

)−1

KT
lu

]
Θ̃Ω.

Then we can calculate WTW as

WTW

=
1

λ2
1

ΩΘ̃T
[
Kll −Klu

(λ1

λ2
Iu +Kuu

)−1
KT

lu − λ1

λ2
Klu

(λ1

λ2
Iu +Kuu

)−2
KT

lu

]
Θ̃Ω.

According to the first constraint of problem (14), we can calculate F as

F = ϕ(Xu)
TW =

1

λ1

[
KT

lu −Kuu

(λ1

λ2
Iu +Kuu

)−1

KT
lu

]
Θ̃Ω.

5. EXPERIMENTS

In this section, we compare MLRL and SSMLRL with some state-of-the-art multi-label
learning methods on several real-world applications.

5.1 Performance Measures

Since each data point has multiple labels, performance evaluation in multi-label learning
is much more complicated than that in traditional single-label learning. In this paper, five
performance measures designed for multi-label learning from [Schapire and Singer 2000;
Tsoumakas and Katakis 2007] are used, i.e. Hamming loss, one-error, coverage, ranking
loss and average precision.

Given a multi-label dataset D = {(xi, Yi)}ni=1 where Yi is the set of labels associated
with xi, the five measures are defined as follows. Here we assume that h(xi) returns the
predictions of xi, h(xi, y) returns the confidence that y is a label associated with xi, and
rankh(xi, y) returns the rank of y derived from h(xi, y).

(a) Hamming loss:

hloss(h) =
1

mn

n∑
i=1

|h(xi)△Yi| (24)

Here △ denotes the symmetric difference between two sets. The Hamming loss mea-
sures the number of times that an instance-label pair is misclassified.

(b) One-error:

one-error(h) =
1

n

n∑
i=1

I
(
[argmax

y
h(xi, y)] /∈ Yi

)
(25)

Here for predicate π, I(π) equals 1 if π holds and 0 otherwise. The one-error measures
the number of times in which the top-ranked label is not in the set of proper labels of the
data point.

(c) Coverage:

coverage(h) =
1

n

n∑
i=1

max
y∈Yi

rankh(xi, y)− 1 (26)
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The coverage measures the number of steps needed, on average, to move down the label
list in order to cover all the proper labels of the data point.

(d) Ranking loss:

rloss(h) =
1

n

n∑
i=1

|Ri|
|Yi||Ȳi|

(27)

Here Ri = {(y1, y2) | h(xi, y1) ≤ h(xi, y2), (y1, y2) ∈ Yi × Ȳi} and Ȳi denotes the
complementary set of Yi. The ranking loss measures the average fraction of label pairs
that are misordered for the data point.

(e) Average precision:

avgprec(h) =
1

n

n∑
i=1

1

|Yi|
∑
y∈Yi

|Pi(y)|
rankh(xi, y)

(28)

Here Pi(y) = {y′ | rankh(xi, y
′) ≤ rankh(xi, y), y

′ ∈ Yi}. The average precision
measures the average fraction of proper labels ranked above a particular label y ∈ Yi.

For the first four performance measures, the smaller the value the better the performance.
For the average precision, on the other hand, a larger value implies a better performance.

5.2 Data Sets

Nine multi-label data sets are used in our experiments. Their characteristics are briefly
summarized in Table I. Given a multi-label data set D, we use |D|, dim(D) and L(D)
to denote its number of data points, data dimensionality and number of all distinct labels.
Moreover, the following multi-label statistics from [Read et al. 2009] are also shown in
Table I:

—Label cardinality LCard(D) = 1
n

∑n
i=1 |Yi|, which measures the average number of

labels in D;
—Label density LDen(D) = LCard(D)

L(D) , which normalizes LCard(D) by the number of
all distinct labels;

—Number of distinct label sets DLS (D) = |{Y |(x, Y ) ∈ D}|, which represents the
number of distinct label combinations in D;

—Proportion of distinct label sets PDLS (D) = DLS(D)
|D| , which normalizes DLS (D) by

the number of data points in D.

As shown in Table I, four medium-scale data sets (emotions, image, scene, yeast) as well
as five large-scale data sets (from rcv1(subset 1) to rcv1(subset 5)) are used in our experi-
ments. Moreover, dimensionality reduction is performed on rcv1(subset 1) to rcv1(subset
5), where we retain the top 2% of features with highest document frequency as [Zhang and
Zhang 2010] did.

For the emotions, image, scene, yeast data sets, the kernel we used is the RBF ker-
nel and the linear kernel is adopted for rcv1 data sets. The width parameter used in the
RBF kernel is set to be the mean of pairwise Euclidean distances of the whole training
data, which include labeled data in supervised setting and labeled and unlabeled data in
semi-supervised setting. The candidate set for the regularization parameter λ in MLRL is
{0.01, 0.1, 1, 10, 100} and the same candidate set is used for λ1 and λ2 in SSMLRL.
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Table I. Characteristics of the data sets used in the experiments
Data Set |D| dim(D) L(D) LCard(D) LDen(D) DLS(D) PDLS(D)

emotions 593 72 6 1.869 0.311 27 0.046
image 2000 294 5 1.236 0.247 20 0.010
scene 2407 294 6 1.074 0.179 15 0.006
yeast 2417 103 14 4.237 0.303 198 0.082

rcv1(subset 1) 6000 944 101 2.880 0.029 1028 0.171
rcv1(subset 2) 6000 944 101 2.634 0.026 954 0.159
rcv1(subset 3) 6000 944 101 2.614 0.026 939 0.157
rcv1(subset 4) 6000 944 101 2.484 0.025 816 0.136
rcv1(subset 5) 6000 944 101 2.642 0.026 946 0.158

5.3 Experimental Results for the Supervised Setting

In this section, we evaluate our method under the supervised setting. The methods com-
pared are BP-ML [Zhang and Zhou 2006] which is a multi-label neural network, ML-KNN
[Zhang and Zhou 2007] which is a lazy learner for multi-label learning, two maximum mar-
gin classifiers, namely, BSVM [Boutell et al. 2004] and RankSVM [Elisseeff and Weston
2001], LEAD [Zhang and Zhang 2010] which first uses a Bayesian network to learn the
label dependency and then learns multiple binary classifiers based on the structure of the
Bayesian network. For BSVM, LibSVM4 [Chang and Lin 2001] is used. Moreover, the
hyper-parameters suggested in the respective references in the literature are used for the
compared methods: For BSVM and RankSVM, the model parameters such as the regular-
ization parameters are learned using the cross-training strategy; for ML-KNN, the number
of nearest neighbors is set to 10 and Euclidean distance is used as the distance metric; For
BP-ML, the number of hidden units is set to 20% of the dimensionality and the number of
training epochs is set to 100.

Ten-fold cross-validation is performed on each data set to evaluate the performance of
all compared methods. The results are reported from Tables II to VI. Pairwise t-tests at 5%
significance level are conducted between all the methods to statistically measure the sig-
nificance of performance difference. Whenever our method MLRL achieves significantly
better/worse performance than the compared method on any data set, a win/loss is counted
and a marker •/◦ is shown in the corresponding table; otherwise the situation is treated
as a tie and no marker is shown. The resulting win/tie/loss counts for MLRL against the
compared methods are summarized in Table VII.

As shown in Table VII, MLRL is significantly superior to the compared methods in
most cases: 86.7% (BSVM), 80.0% (RankSVM), 75.6% (ML-KNN), 86.7% (BP-ML)
and 40.0% (LEAD), and is inferior to them in much fewer cases: 0.0% (BSVM), 2.2%
(RankSVM), 0.0% (ML-KNN), 2.2% (BP-ML) and 2.2% (LEAD). These results show
that MLRL is competitive with respect to the state-of-the-art methods.

5.3.1 Analysis of Learned Label Correlation Matrices. For the emotions data, the
mean label correlation matrix over 10 trials, calculated from the label covariance matri-
ces over 10 trials, is reported in Table VIII. We can find that the correlations between
‘happy-pleased’ and all other emotions are near 0, meaning that ‘happy-pleased’ is uncor-
related with other emotions. This is easy to understand because other emotions are not

4http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/multilabel/
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Table II. Performance of each algorithm in terms of Hamming loss under the supervised setting. For each data
set, the upper row shows the mean over 10 trials for each method and the lower row shows the corresponding
standard deviation. •/◦ indicates whether MLRL is statistically superior/inferior to the compared algorithm by
pairwise t-test at 5% significance level.

Data Set MLRL BSVM RankSVM ML-KNN BP-ML LEAD

emotions 0.1880 0.2364• 0.2014• 0.2162• 0.2317• 0.2085•
0.0139 0.0407 0.0289 0.0235 0.0175 0.0215

image 0.1739 0.2835• 0.2100• 0.2476• 0.1733 0.1810
0.0102 0.0133 0.0354 0.0204 0.0077 0.0155

scene 0.1039 0.1596• 0.1337• 0.1880• 0.0889◦ 0.1260
0.0104 0.0099 0.0106 0.0262 0.0118 0.0132

yeast 0.1986 0.2423• 0.2029 0.2132• 0.2143• 0.2102•
0.0048 0.0310 0.0053 0.0053 0.0034 0.0038

rcv1(subset 1) 0.0265 0.0280 0.0295• 0.0301• 0.0332• 0.0278
0.0013 0.0025 0.0038 0.0024 0.0023 0.0017

rcv1(subset 2) 0.0210 0.0291• 0.0315• 0.0247 0.0312• 0.0246•
0.0011 0.0019 0.0021 0.0017 0.0018 0.0012

rcv1(subset 3) 0.0229 0.0287• 0.0273• 0.0257 0.0341• 0.0256
0.0015 0.0021 0.0017 0.0020 0.0029 0.0011

rcv1(subset 4) 0.0208 0.0287• 0.0308• 0.0280• 0.0321• 0.0231
0.0017 0.0016 0.0024 0.0021 0.0023 0.0015

rcv1(subset 5) 0.0231 0.0297• 0.0281• 0.0273• 0.0312• 0.0237
0.0019 0.0021 0.0020 0.0018 0.0019 0.0016

Table III. Performance of each algorithm in terms of one-error under the supervised setting. For each data set, the
upper row shows the mean over 10 trials for each method and the lower row shows the corresponding standard
deviation. •/◦ indicates whether MLRL is statistically superior/inferior to the compared algorithm by pairwise
t-test at 5% significance level.

Data Set MLRL BSVM RankSVM ML-KNN BP-ML LEAD

emotions 0.2548 0.4128• 0.3924• 0.3145 0.3913• 0.3011
0.0644 0.0360 0.0727 0.0781 0.0522 0.0631

image 0.3080 0.3565• 0.3435• 0.3370 0.3750• 0.3095
0.0265 0.0129 0.0973 0.0619 0.0248 0.0223

scene 0.2472 0.3158• 0.2922• 0.2510 0.6289• 0.2502
0.0375 0.0062 0.0428 0.0275 0.0360 0.0476

yeast 0.2267 0.2944• 0.2230 0.2292 0.2396 0.2590•
0.0164 0.0289 0.0260 0.0308 0.0191 0.0259

rcv1(subset 1) 0.4120 0.4413• 0.4632• 0.6123• 0.8139• 0.4416•
0.0153 0.0147 0.0182 0.0187 0.0213 0.0164

rcv1(subset 2) 0.3937 0.4421• 0.4210 0.5817• 0.7365• 0.4212
0.0159 0.0186 0.0179 0.0186 0.0251 0.0171

rcv1(subset 3) 0.3985 0.4315• 0.4277• 0.5366• 0.6789• 0.3995
0.0161 0.0191 0.0153 0.0153 0.0201 0.0147

rcv1(subset 4) 0.3356 0.4151• 0.4310• 0.5001• 0.6912• 0.3923•
0.0143 0.0173 0.0168 0.0191 0.0204 0.0162

rcv1(subset 5) 0.4081 0.4812• 0.4537• 0.5458• 0.6819• 0.4317
0.0178 0.0169 0.0185 0.0194 0.0228 0.0146

about ‘happiness’. The mean label correlation matrices for the image and scene datasets
are shown in Tables IX and X, respectively. For the image data, ‘desert’ has negative cor-
relations with ‘sea’ and ‘tree’ because we seldom see water and trees in a desert and we
seldom see a desert when we see water or trees. For the scene data, ‘beach’ has nearly zero
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Table IV. Performance of each algorithm in terms of coverage under the supervised setting. For each data set, the
upper row shows the mean over 10 trials for each method and the lower row shows the corresponding standard
deviation. •/◦ indicates whether MLRL is statistically superior/inferior to the compared algorithm by pairwise
t-test at 5% significance level.

Data Set MLRL BSVM RankSVM ML-KNN BP-ML LEAD

emotions 1.7686 2.0110• 1.9814• 1.9131• 2.0336• 1.9711•
0.1148 0.1592 0.1942 0.1517 0.1806 0.1623

image 0.9365 1.1340• 1.0535• 1.8385• 1.0150• 0.9928
0.0526 0.0656 0.0468 0.0570 0.0532 0.0622

scene 0.5206 0.5184 0.4974◦ 0.5481 0.8202• 0.5223
0.0849 0.0730 0.0882 0.1392 0.0807 0.0829

yeast 5.4623 6.5355• 6.3599• 6.3604• 6.3247• 5.8204•
0.2045 0.2040 0.0938 0.1108 0.1692 0.2749

rcv1(subset 1) 12.0141 21.5187• 22.1391• 20.0142• 28.1726• 14.2749•
0.6810 0.8157 0.9105 1.0310 0.8591 0.7230

rcv1(subset 2) 11.0141 22.2209• 23.4208• 21.4108• 29.2992• 12.9247•
0.7821 0.8297 0.9201 0.9184 0.9104 0.8192

rcv1(subset 3) 10.2090 22.0183• 22.1940• 22.1483• 25.4102• 11.8109
0.8109 0.9109 0.8104 0.9174 0.8197 0.9179

rcv1(subset 4) 12.8420 20.0841• 21.8420• 22.8042• 21.4280• 10.2084◦
0.7013 0.8023 0.9018 0.9723 0.9731 0.9739

rcv1(subset 5) 11.4297 22.2389• 22.2979• 23.4203• 26.0130• 12.4200
0.7912 0.8791 0.8198 0.8941 0.8012 0.8929

Table V. Performance of each algorithm in terms of ranking loss under the supervised setting. For each data set,
the upper row shows the mean over 10 trials for each method and the lower row shows the corresponding standard
deviation. •/◦ indicates whether MLRL is statistically superior/inferior to the compared algorithm by pairwise
t-test at 5% significance level.

Data Set MLRL BSVM RankSVM ML-KNN BP-ML LEAD

emotions 0.1574 0.1843 0.2011• 0.1779 0.1843 0.1620
0.0371 0.0516 0.0554 0.0227 0.0324 0.0204

image 0.1661 0.1890• 0.1960• 0.1903• 0.1854• 0.1712
0.0137 0.0139 0.0614 0.0419 0.0145 0.0103

scene 0.0862 0.0965 0.0826 0.1029• 0.2863• 0.0929
0.0146 0.0147 0.0156 0.0280 0.0144 0.0120

yeast 0.1615 0.2575• 0.1677 0.1724 0.1716 0.1719
0.0146 0.0376 0.0070 0.0083 0.0094 0.0102

rcv1(subset 1) 0.0510 0.0911• 0.1020• 0.1102• 0.1448• 0.0722•
0.0031 0.0042 0.0037 0.0042 0.0030 0.0041

rcv1(subset 2) 0.0482 0.0962• 0.1043• 0.1009• 0.1501• 0.0634•
0.0030 0.0041 0.0031 0.0047 0.0045 0.0043

rcv1(subset 3) 0.0448 0.0802• 0.1058• 0.1001• 0.1502• 0.0610•
0.0032 0.0046 0.0042 0.0045 0.0038 0.0047

rcv1(subset 4) 0.0402 0.0940• 0.1029• 0.1004• 0.1442• 0.0589•
0.0041 0.0044 0.0035 0.0042 0.0047 0.0046

rcv1(subset 5) 0.0552 0.0892• 0.1001• 0.1021• 0.1542• 0.0521◦
0.0040 0.0041 0.0031 0.0046 0.0038 0.0045

correlation with ‘sunset’ because these two scenes seldom appear together in an image. We
can see that the knowledge inferred from the label correlation matrices matches people’s
intuition and hence MLRL has higher interpretability.
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Table VI. Performance of each algorithm in terms of average precision under the supervised setting. For each
data set, the upper row shows the mean over 10 trials for each method and the lower row shows the corresponding
standard deviation. •/◦ indicates whether MLRL is statistically superior/inferior to the compared algorithm by
pairwise t-test at 5% significance level.

Data Set MLRL BSVM RankSVM ML-KNN BP-ML LEAD

emotions 0.8079 0.7873 0.6683• 0.7707 0.7149• 0.7920
0.0420 0.0332 0.0491 0.0300 0.0282 0.0358

image 0.7988 0.7365• 0.7639 0.5925• 0.7840 0.7610•
0.0154 0.0060 0.0587 0.0358 0.0149 0.0203

scene 0.8506 0.8449 0.8471 0.8391 0.8294• 0.8492
0.0221 0.0063 0.0250 0.0209 0.0224 0.0290

yeast 0.7825 0.7459• 0.7620 0.7539• 0.7590• 0.7684
0.0121 0.0151 0.0144 0.0168 0.0139 0.0148

rcv1(subset 1) 0.6202 0.5209• 0.5710• 0.4804• 0.3820• 0.5880•
0.0084 0.0093 0.0090 0.0130 0.0128 0.0092

rcv1(subset 2) 0.6431 0.5402• 0.5484• 0.4841• 0.3274• 0.6340•
0.0081 0.0098 0.0093 0.0125 0.0121 0.0085

rcv1(subset 3) 0.6342 0.5810• 0.5452• 0.5101• 0.4182• 0.6124
0.0124 0.0140 0.0185 0.0181 0.0103 0.0129

rcv1(subset 4) 0.6642 0.6010• 0.5602• 0.5901• 0.4353• 0.6552
0.0108 0.0104 0.0180 0.0187 0.0142 0.0135

rcv1(subset 5) 0.6242 0.5929• 0.5621• 0.5521• 0.3891• 0.6104•
0.0131 0.0131 0.0171 0.0162 0.0124 0.0146

Table VII. The win/tie/loss results for MLRL against the compared methods in terms of different performance
measures under the supervised setting.

Performance Measure BSVM RankSVM ML-KNN BP-ML LEAD

Hamming loss 8/1/0 8/1/0 7/2/0 7/1/1 3/6/0
one-error 9/0/0 7/2/0 5/4/0 8/1/0 3/6/0
coverage 8/1/0 8/0/1 8/1/0 9/0/0 4/5/0

ranking loss 7/2/0 7/2/0 7/2/0 7/2/0 4/4/1
average precision 7/2/0 6/3/0 7/2/0 8/1/0 4/5/0

Total 39/6/0 36/8/1 34/11/0 39/5/1 18/26/1

Table VIII. Mean label correlation matrix learned from the music emotions data. The labels are: L1: amazed-
surprised; L2: happy-pleased; L3: relaxing-calm; L4: quiet-still; L5: sad-lonely; L6: angry-aggressive.

L1 L2 L3 L4 L5 L6

L1 1.0000 0.0000 -0.7300 -0.3389 -0.2858 0.1725
L2 0.0000 1.0000 0.0000 -0.0000 -0.0000 -0.0000
L3 -0.7300 0.0000 1.0000 0.2674 0.1638 -0.7178
L4 -0.3389 -0.0000 0.2674 1.0000 0.8687 -0.2799
L5 -0.2858 -0.0000 0.1638 0.8687 1.0000 -0.1181
L6 0.1725 -0.0000 -0.7178 -0.2799 -0.1181 1.0000

5.4 Experimental Results for the Semi-Supervised Setting

In this section, we evaluate our method under the semi-supervised setting. The methods
compared are MLGRF [Chen et al. 2008; Zha et al. 2009] which generalizes the conven-
tional Gaussian random field [Zhu et al. 2003] to the multi-label setting, MLLGC [Chen
et al. 2008; Zha et al. 2009] which generalizes the conventional local and global consisten-
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Table IX. Mean label correlation matrix learned from the image data.

desert mountain sea sunset tree

desert 1.0000 -0.2417 -0.2561 -0.3104 -0.2759
mountain -0.2417 1.0000 -0.3600 -0.1351 -0.1184

sea -0.2561 -0.3600 1.0000 0.0295 -0.3230
sunset -0.3104 -0.1351 0.0295 1.0000 -0.2414

tree -0.2759 -0.1184 -0.3230 -0.2414 1.0000

Table X. Mean label correlation matrix learned from the scene data.

beach sunset foliage field hill urban

beach 1.0000 -0.0208 -0.1709 -0.2714 -0.2036 -0.2669
sunset -0.0208 1.0000 -0.4559 -0.0270 -0.2017 -0.2331

foliage -0.1709 -0.4559 1.0000 -0.2124 -0.0369 -0.0774
field -0.2714 -0.0270 -0.2124 1.0000 -0.0841 -0.1421
hill -0.2036 -0.2017 -0.0369 -0.0841 1.0000 -0.4337

urban -0.2669 -0.2331 -0.0774 -0.1421 -0.4337 1.0000

cy method [Zhou et al. 2003] to the multi-label setting, and CNMF [Liu et al. 2006] which
is formulated as a constrained nonnegative matrix factorization method. Moreover, MLRL
is used as a benchmark method in this comparison.

Since all compared methods including MLGRF, MLLGC and CNMF are transductive
methods, we conduct experiments under the transductive setting even though SSMLRL
is in fact an inductive method. We randomly choose 20% of each data set as the labeled
data and the rest as unlabeled data. We make random splits for 10 trials and report the
mean and standard deviation for each performance measure over the 10 trials. The results
are reported in Tables XI to XV with respect to different performance measures. Simi-
lar to the experimental settings in supervised learning, pairwise t-tests at 5% significance
level are conducted between all the methods and a marker •/◦ is shown in these tables
to show whether SSMLRL is significantly better/worse than the compared methods. The
win/tie/loss counts for MLRL against the compared methods on all data sets are summa-
rized in Tables XVI.

As shown in Table XVI, SSMLRL is again significantly superior to the compared meth-
ods in most cases: 91.1% (MLRL), 48.9% (MLGRF), 73.3% (MLLGC) and 95.6% (CN-
MF), and is inferior to them in much few cases: 0.0% (MLRL), 13.3% (MLGRF), 11.1%
(MLLGC) and 0.0% (CNMF). These results show that SSMLRL is competitive to the
state-of-the-art methods for the semi-supervised multi-label learning.

Moreover, to our surprise, Tables XI to XV show that MLRL, even as a supervised
method without exploiting unlabeled data, outperforms the semi-supervised learning meth-
ods in the literature.

5.5 Computational Details

We plot the change in values of the objective functions in problem (6) and (14) in Fig-
ure 1(a) and 1(b) on the emotion data. We find that the objective function value decreases
rapidly and then levels off under the two settings, showing the fast convergence of the
algorithm which takes no more than 15 iterations.

Moreover, we record the mean of the running time for solving problem (6) and (14)
ACM Transactions on Knowledge Discovery from Data, Vol. xx, No. xx, xx 20xx.
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Table XI. Performance of each algorithm in terms of Hamming loss under the semi-supervised setting. For each
data set, the upper row shows the mean over 10 trials for each method and the lower row shows the corresponding
standard deviation. •/◦ indicates whether SSMLRL is statistically superior/inferior to the compared algorithm by
pairwise t-test at 5% significance level.

Data Set SSMLRL MLRL MLGRF MLLGC CNMF

emotions 0.2449 0.2671 0.2989• 0.3860• 0.3153•
0.0110 0.0170 0.0097 0.0225 0.0031

image 0.1787 0.2345• 0.2008• 0.3417• 0.2468•
0.0061 0.0070 0.0063 0.0197 0.0012

scene 0.0983 0.1815• 0.1129• 0.1171• 0.1791•
0.0035 0.0118 0.0077 0.0065 0.0004

yeast 0.2098 0.2578• 0.2171 0.2557• 0.3026•
0.0027 0.0101 0.0068 0.0133 0.0013

rcv1(subset 1) 0.0385 0.0596 0.2673• 0.0433 0.1356•
0.0066 0.0169 0.0735 0.0095 0.0087

rcv1(subset 2) 0.0361 0.0565• 0.2376• 0.0662• 0.1069•
0.0021 0.0123 0.0782 0.0104 0.0064

rcv1(subset 3) 0.0302 0.0526• 0.2023• 0.0520 0.1143•
0.0032 0.0147 0.0812 0.0134 0.0031

rcv1(subset 4) 0.0320 0.0580• 0.2094• 0.0533• 0.1223•
0.0034 0.0131 0.0729 0.0106 0.0079

rcv1(subset 5) 0.0349 0.0543• 0.2480• 0.0724• 0.1353•
0.0032 0.0142 0.0808 0.0142 0.0098

Table XII. Performance of each algorithm in terms of one-error under the semi-supervised setting. For each data
set, the upper row shows the mean over 10 trials for each method and the lower row shows the corresponding
standard deviation. •/◦ indicates whether SSMLRL is statistically superior/inferior to the compared algorithm by
pairwise t-test at 5% significance level.

Data Set SSMLRL MLRL MLGRF MLLGC CNMF

emotions 0.3580 0.4008• 0.4559• 0.4660• 0.5800•
0.0286 0.0247 0.0261 0.0155 0.0142

image 0.3307 0.5969• 0.3636• 0.3809• 0.4491•
0.0178 0.0688 0.0112 0.0491 0.0107

scene 0.2526 0.5415• 0.2629 0.2843• 0.3367•
0.0097 0.0655 0.0108 0.0064 0.0388

yeast 0.2435 0.2616• 0.2540 0.2504 0.9006•
0.0074 0.0057 0.0052 0.0063 0.0314

rcv1(subset 1) 0.4700 0.4726 0.4724 0.5054• 0.7748•
0.0055 0.0064 0.0046 0.0059 0.0038

rcv1(subset 2) 0.4276 0.4495• 0.4283 0.5071• 0.7602•
0.0102 0.0117 0.0066 0.0065 0.0137

rcv1(subset 3) 0.4601 0.4942• 0.4818• 0.5150• 0.7620•
0.0060 0.0081 0.0039 0.0053 0.0080

rcv1(subset 4) 0.4528 0.4958• 0.4682 0.4902• 0.7773•
0.0108 0.0101 0.0080 0.0080 0.0182

rcv1(subset 5) 0.4642 0.5104• 0.4786 0.5108• 0.7802•
0.0083 0.0069 0.0068 0.0059 0.0065

after 100 trials for each dataset in Table XVII. The platform to run the experiments is
Intel i7 CPU 2.7GHz with 8GB RAM and we use Matlab 2009b for implementation and
experiments. From Table XVII, we can see that our proposed optimization method is very
efficient on all the datasets used.
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Table XIII. Performance of each algorithm in terms of coverage under the semi-supervised setting. For each data
set, the upper row shows the mean over 10 trials for each method and the lower row shows the corresponding
standard deviation. •/◦ indicates whether SSMLRL is statistically superior/inferior to the compared algorithm by
pairwise t-test at 5% significance level.

Data Set SSMLRL MLRL MLGRF MLLGC CNMF

emotions 2.1116 2.3295• 2.4749• 2.4352• 2.7709•
0.0772 0.1643 0.0785 0.0839 0.0767

image 1.0007 1.6538• 1.0702 1.1013 1.2196•
0.0517 0.2100 0.0309 0.0300 0.0351

scene 0.5679 1.3858• 0.5329 0.5624 0.6392•
0.0234 0.2681 0.0217 0.0117 0.0507

yeast 6.8385 7.3589• 6.5325◦ 6.3800◦ 11.7836
0.0673 0.1677 0.0477 0.0519 0.0759

rcv1(subset 1) 20.1861 30.0619• 42.2791• 23.4750• 31.6373•
0.4766 2.0452 2.0387 0.4616 0.3448

rcv1(subset 2) 19.2883 27.3986• 39.2849• 21.9597• 30.2385•
0.5408 1.7177 1.3993 0.4678 0.1519

rcv1(subset 3) 20.8042 27.5023• 40.4029• 20.5803 29.8201•
0.5058 2.0183 1.9804 0.8042 0.5039

rcv1(subset 4) 20.5031 28.5210• 37.0653• 18.4209◦ 28.0028•
0.6004 1.8903 1.5032 0.5087 0.8650

rcv1(subset 5) 21.0287 30.0298• 41.5820• 24.5032• 28.2058•
0.5801 1.8209 1.8294 0.4616 0.5039

Table XIV. Performance of each algorithm in terms of ranking loss under the semi-supervised setting. For each
data set, the upper row shows the mean over 10 trials for each method and the lower row shows the corresponding
standard deviation. •/◦ indicates whether SSMLRL is statistically superior/inferior to the compared algorithm by
pairwise t-test at 5% significance level.

Data Set SSMLRL MLRL MLGRF MLLGC CNMF

emotions 0.2285 0.2371 0.3138• 0.3101• 0.4019•
0.0152 0.0179 0.0171 0.0158 0.0211

image 0.1834 0.3136• 0.2003 0.2095• 0.2351•
0.0116 0.0556 0.0069 0.0070 0.0080

scene 0.0950 0.1511• 0.0894◦ 0.0955 0.1091
0.0044 0.0983 0.0041 0.0021 0.0099

yeast 0.1937 0.2215• 0.1885◦ 0.1859◦ 0.7090•
0.0025 0.0080 0.0015 0.0024 0.0103

rcv1(subset 1) 0.0960 0.1215• 0.0962 0.1555• 0.1647•
0.0024 0.0049 0.0032 0.0027 0.0018

rcv1(subset 2) 0.0985 0.1201• 0.0953 0.1525• 0.1613•
0.0031 0.0052 0.0030 0.0062 0.0020

rcv1(subset 3) 0.0853 0.1183• 0.0719◦ 0.1431• 0.1770•
0.0024 0.0037 0.0021 0.0031 0.0051

rcv1(subset 4) 0.0949 0.1105• 0.0937 0.1363• 0.1561•
0.0036 0.0048 0.0035 0.0060 0.0047

rcv1(subset 5) 0.0928 0.1081• 0.1052• 0.1461• 0.1587•
0.0039 0.0051 0.0046 0.0046 0.0068

6. CONCLUSION

In this paper, we have proposed a new maximum margin method which learns the relation-
ships between labels from data and utilizes them for multi-label learning. The optimiza-
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Table XV. Performance of each algorithm in terms of average precision under the semi-supervised setting. For
each data set, the upper row shows the mean over 10 trials for each method and the lower row shows the cor-
responding standard deviation. •/◦ indicates whether SSMLRL is statistically superior/inferior to the compared
algorithm by pairwise t-test at 5% significance level.

Data Set SSMLRL MLRL MLGRF MLLGC CNMF

emotions 0.7414 0.7029• 0.6689• 0.6694• 0.5992•
0.0160 0.0521 0.0148 0.0112 0.0097

image 0.7837 0.6001• 0.7626 0.7522• 0.7118•
0.0111 0.0571 0.0065 0.0080 0.0075

scene 0.8450 0.5638• 0.8436 0.8318• 0.8025•
0.0051 0.0585 0.0063 0.0032 0.0205

yeast 0.7435 0.7224• 0.7393• 0.7391• 0.3035•
0.0031 0.0076 0.0026 0.0030 0.0085

rcv1(subset 1) 0.4741 0.2676• 0.5306◦ 0.5134◦ 0.2525•
0.0891 0.1481 0.0047 0.0040 0.0087

rcv1(subset 2) 0.4576 0.2524• 0.5704◦ 0.5534◦ 0.2903•
0.0359 0.0855 0.0037 0.0036 0.0174

rcv1(subset 3) 0.5485 0.3402• 0.5369 0.5163• 0.2801•
0.0858 0.0895 0.0085 0.0062 0.0071

rcv1(subset 4) 0.5808 0.3287• 0.5663 0.5603• 0.3052•
0.0353 0.0780 0.0059 0.0044 0.0091

rcv1(subset 5) 0.5390 0.2959• 0.5251• 0.5158• 0.2803•
0.0768 0.0874 0.0060 0.0042 0.0089

Table XVI. The win/tie/loss results for SSMLRL against the compared methods in terms of different performance
measures under the semi-supervised setting.

Performance Measure MLRL MLGRF MLLGC CNMF

Hamming loss 7/2/0 8/1/0 7/2/0 9/0/0
one-error 8/1/0 3/6/0 8/1/0 9/0/0
coverage 9/0/0 6/2/1 4/3/2 8/1/0

ranking loss 8/1/0 2/4/3 7/1/1 8/1/0
average precision 9/0/0 3/4/2 7/0/2 9/0/0

Total 41/4/0 22/17/6 33/7/5 43/2/0
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Fig. 1. Convergence of objective function value for the music emotions data under the
supervised and semi-supervised settings.
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Table XVII. The mean of the running time (in second) for MLRL and SSMLRL after 100 trials for each dataset.
Data Set MLRL SSMLRL

emotions 3.6981 7.3062
image 6.3663 18.6122
scene 15.5381 33.2390
yeast 30.0544 39.7401

rcv1(subset 1) 1148.1750 1270.3306
rcv1(subset 2) 1101.2013 1311.1205
rcv1(subset 3) 1192.8701 1281.1087
rcv1(subset 4) 1151.2564 1219.5361
rcv1(subset 5) 1169.1250 1243.3612

tion problem is convex and it can be solved efficiently using an alternating method. Not
only does MLRL give better performance when compared with other multi-label learning
methods, but it also has better interpretability because the relationships between labels are
explicitly represented by the label covariance matrix. Moreover, we also present a semi-
supervised extension of MLRL by exploiting the useful information in the unlabeled data.

Prior knowledge about relationships between labels may exist in some applications, and
hierarchical multi-label learning methods [Cesa-Bianchi et al. 2006; Rousu et al. 2006;
Vens et al. 2008; Hariharan et al. 2010] can utilize such prior knowledge. In our future
research, we will pursue this extension for MLRL.
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Appendix A

In this section, we provide details of the SMO-style algorithm for solving the dual problem
(10).

The Lagrangian of problem (10) is given by

L =
1

2
αT K̃MLα−

m∑
i=1

n∑
j=1

αi
j −

m∑
i=1

γi

n∑
j=1

αi
jy

i
j −

m∑
i=1

n∑
j=1

µi
jα

i
j +

m∑
i=1

n∑
j=1

νij(α
i
j −

1

n
).

Let f i
j = αT (ki

j ⊙ y) − yij where ki
j is a column of KML. The KKT conditions for the

dual problem are

∂L

∂αi
j

= (f i
j − γi)y

i
j − µi

j + νij = 0, µi
j ≥ 0, µi

jα
i
j = 0, νij ≥ 0, νij(α

i
j −

1

n
) = 0.

These conditions can be simplified into the following three cases:
Case 1 (αi

j = 0):

νij = 0, µi
j ≥ 0 ⇒ (f i

j − γi)y
i
j ≥ 0

Case 2 (0 < αi
j <

1
n ):

νij = 0, µi
j = 0 ⇒ (f i

j − γi)y
i
j = 0

Case 3 (αi
j =

1
n ):

νij ≥ 0, µi
j = 0 ⇒ (f i

j − γi)y
i
j ≤ 0.

We define the following index sets at a given α:

Ii0 = {j|0 < αi
j <

1

n
}

Ii1 = {j|yij = 1, αi
j = 0}

Ii2 = {j|yij = −1, αi
j =

1

n
}

Ii3 = {j|yij = 1, αi
j =

1

n
}

Ii4 = {j|yij = −1, αi
j = 0}

Then we can get

f i
j ≥ γi ∀j ∈ Ii0 ∪ Ii1 ∪ Ii2

f i
j ≤ γi ∀j ∈ Ii0 ∪ Ii3 ∪ Ii4.
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We next define cij and dij as

cij =

{
0 if yij = 1
− 1

n if yij = −1

dij =

{
1
n if yij = 1
0 if yij = −1

.

Then we can get cij ≤ yijα
i
j ≤ dij for any i and j. Let Ai = {j|yijαi

j < dij} and Bi =

{j|yijαi
j > cij}. It is easy to verify that Ai = Ii0 ∪ Ii1 ∪ Ii2 and Bi = Ii0 ∪ Ii3 ∪ Ii4. So we

can get

f i
j ≥ γi ∀j ∈ Ai

f i
j ≤ γi ∀j ∈ Bi.

Let F i
up = min{f i

j |j ∈ Ai} and F i
low = max{f i

j |j ∈ Bi}. Then α is the optimal solution
of problem (10) if and only if F i

up ≥ F i
low for i = 1, . . . ,m.

So if at present α is not the optimal solution, then it means there exist j ∈ Ai and k ∈ Bi

such that f i
j < f i

k. Then (i, j, k) is called a ‘violating tuple’.
We use an SMO-style algorithm to optimize problem (10). The core of this algorithm is

to define the criterion to select the working set. By using the first-order information, we
can select the working set via the ‘most violating tuple’ (i, j, k): j = argmint{f i

t |t ∈ Ai}
and k = argmaxt{f i

t |t ∈ Bi} for i = 1, . . . ,m.
Here we use the second-order information to select the working set, which is shown to

be more effective than using the first-order information in standard SVM [Fan et al. 2005].
Let the current estimate be denoted as α and we want to update the parameters for the ith
task. Then we want to update α by an incremental value d which has only two nonzero
elements. Let us denote the objective function of problem (10) by h(α). Since h(α) is
quadratic,

h(α+ d)− h(α) = ∇h(α)Td+
1

2
dT∇2h(α)d

= (∇h(α)iB)
Tdi

B +
1

2
(di

B)
T∇2h(α)iBBd

i
B ,

where B denotes the indices of the nonzero elements. Problem (10) is equivalent to the
following problem by using second-order information:

min
B:|B|=2

Sub(B), (29)

where

Sub(B) ≡ min
di

B

1

2
(di

B)
T∇2h(α)iBBd

i
B + (∇h(α)iB)

Tdi
B

s.t. yi
Bd

i
B = 0

dit ≥ 0, if αi
t = 0 and t ∈ B

dit ≤ 0, if αi
t =

1

n
and t ∈ B. (30)

Note that problem (30) is to choose the working set B and so the constraint 0 ≤ αi
j +dij ≤

1
ni

does not need to be satisfied. If problem (30) is solved directly, we have to enumerate
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all possible situations which will cost O(n2) time. Here we use a greedy method instead:
1) Select j as j = argmaxt{f i

j |j ∈ Bi};
2) Consider Sub(B) defined in (29) and select

k = argmin
t
{Sub({j, t})|t ∈ Ai, f

i
t < f i

j}. (31)

This procedure costs O(n) time. It is easy to show the relationship between f i
j and ∇h(α)ij

as f i
j = yij∇h(α)ij . Next we will show how to solve problem (31).

Let (i, j, k) be a violating tuple. Define d̂ij = yijd
i
j and d̂ik = yikd

i
k. From (yi

B)
Tdi

B = 0,
we get d̂ij = −d̂ik. Then the objective function of Sub({j, k}) becomes

1

2
[dij d

i
k]

[
K̃i

jj K̃i
jk

K̃i
jk K̃i

kk

][
dij
dik

]
+ [∇h(α)ij ∇h(α)ik]

[
dij
dik

]
=

1

2
(Ki

jj +Ki
kk − 2Ki

jk)(d̂
i
k)

2 + (−f i
j + f i

k)d̂
i
k, (32)

where Ki
jk = kML((xj , i), (xk, i)). We first assume Ki

jj +Ki
kk−2Ki

jk > 0, then we can
define aijk = Ki

jj +Ki
kk − 2Ki

jk > 0 and bijk = −f i
j + f i

k < 0 because of the definition
of a violating pair. Then problem (32) obtains its minimum at

d̂ik = −d̂ij = −
bijk
aijk

> 0

and the objective function value equals − (bijk)
2

2ai
jk

. It is easy to verify that d̂ik and −d̂ij satisfy

the remaining constraints of problem (30). When k(·, ·) is a positive definite kernel, Ki
jj +

Ki
kk − 2Ki

jk > 0 holds for any i, j, k. Otherwise, problem (30) is changed to

Sub(B) ≡ min
di

B

1

2
(di

B)
T∇2h(α)iBBd

i
B + (∇h(α)iB)

Tdi
B +

τ − aijk
4

((dij)
2 + (dik)

2)

s.t. yi
Bd

i
B = 0

dit ≥ 0, if αi
t = 0 and t ∈ B

dit ≤ 0, if αi
t =

1

n
and t ∈ B, (33)

where τ is a small positive number. The optimal value of problem (33) is − (bijk)
2

2τ . So the
complete working set selection procedure is given as follows:
1) Calculate aijk and bijk, and define

âijk =

{
aijk if aijk > 0

τ otherwise.

2) Select j = argmaxt{f i
j |j ∈ Bi}.

3) Select k = argmin{− (bijt)
2

âi
jt

|t ∈ Ai, f
i
t < f i

j}.
After working set selection, we need to update the model parameters. Let us define new
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variables α̃i
j = yijα

i
j . So problem (10) will become

min
α̃

h(α̃) =
1

2
α̃TKMLα̃− yT α̃

s.t.
ni∑
j=1

α̃i
j = 0, ∀i

cij ≤ α̃i
j ≤ dij , ∀i, j. (34)

Suppose (i, j, k) defines a violation at some α̃. So we can adjust α̃i
j and αi

k to achieve an
increase in f while maintaining the equality constraints

∑
j α̃

i
j = 0 for i = 1, . . . ,m. We

define the following update:

α̃i
j(t) = α̃i

j − t;

α̃i
k(t) = α̃i

k + t;

other elements in α̃ remain fixed.

The updated α̃ is denoted by α̃(t). We define ϕ(t) = h(α̃(t)) and minimize ϕ(t) to find
the optimal t⋆. Since ϕ(t) is a quadratic function of t, ϕ(t) = ϕ(0) + tϕ′(0) + t2

2 ϕ
′′(0). It

is easy to show that

ϕ′(t) =
∂ϕ(t)

∂t

=
∂ϕ(t)

∂α̃i
j(t)

∂α̃i
j(t)

∂t
+

∂ϕ(t)

∂α̃i
k(t)

∂α̃i
k(t)

∂t

= f i
k(t)− f i

j(t)

= bijk

ϕ′′(t) =
∂ϕ′(t)

∂t

=
∂ϕ′(t)

∂α̃i
j(t)

∂α̃i
j(t)

∂t
+

∂ϕ′(t)

∂α̃i
k(t)

∂α̃i
k(t)

∂t

= kML((xj , i), (xj , i)) + kML((xk, i), (xk, i))− 2kML((xj , i), (xk, i)),

= aijk,

where f i
j(t) is the value of f i

j at α̃(t). Since α̃i
j(t) and α̃i

j(t) need to satisfy the constraints
in problem (34), t needs to satisfy

t1 ≤ t ≤ t2,

where t1 = max(cik − α̃i
k, α̃

i
j − dij) and t2 = min(dik − α̃i

k, α̃
i
j − cij). So the optimal t⋆

can be calculated as

t⋆ = max(t1,min(t2,−
bijk
aijk

)). (35)

After updating α, we can update fp
q for all p, q as:

(fp
q )

new = fp
q +kML((xj , i), (xq, p))[α̃

i
j(t

⋆)− α̃i
j ]+kML((xk, i), (xq, p))[α̃

i
k(t

⋆)− α̃i
k].

(36)
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Note that Eq. (35) only holds when aijk > 0 since the optimization problem is convex.
When aijk ≤ 0, similar to [Fan et al. 2005], the objective function we solved is changed to

h(α̃(t)) +
τ − aijk

2
t2,

where τ is the parameter in the working set selection procedure. Then the optimal t⋆ is

t⋆ = max(t1,min(t2,−
bijk
τ

)). (37)

Since it is usually not easy to achieve optimality exactly in numerical solutions, there
is a need to define approximate optimality conditions. Here we use conditions similar to
those in LIBSVM:

F i
low ≤ F i

up + ε for i = 1, . . . ,m,

where ε is a user-defined threshold.
Moreover, we can use the shrinking technique [Joachims 1998] to speed up the training

procedure.

Appendix B

In this section, we give the proof of Theorem 3.
Proof of Theorem 3:
We first present two useful equations here:

tr(ABC) = (vec(CT ))T (BT ⊗ Ia)vec(A), (38)

where ⊗ denotes the Kronecker product, A ∈ Ra×b, B ∈ Rb×c and C ∈ Rc×a, and

tr(ABCD) = vec(AT )T (DT ⊗B)vec(C), (39)

where A ∈ Ra×b, B ∈ Rb×c, C ∈ Rc×d and D ∈ Rd×a. The proofs for these two
equations can be found in [Seber 2007]. By using Eq. (39), the first term in the objective
function of problem (18) can be reformulated as

1

2λ1
tr
((

Ỹ ⊙
(
Θ
Γ

))T

K

(
Ỹ ⊙

(
Θ
Γ

))
Ω
)

=
1

2λ1
vec

(
Ỹ ⊙

(
Θ
Γ

))T

(Ω⊗K)vec
(
Ỹ ⊙

(
Θ
Γ

))
=

1

2λ1
vec

((
Θ
Γ

))T

diag(vec(Ỹ))(Ω⊗K)diag(vec(Ỹ))vec
((

Θ
Γ

))
,

which is a quadratic function with respect to vec
((

Θ
Γ

))
. Here diag(·) is an operator

that converts a vector to a diagonal matrix and the last equality holds because of the fact
that vec(A ⊙ B) = diag(vec(A))vec(B) for matrices A,B ∈ Ra×b. Since Ω and K
are PSD matrices, the first term in the objective function of problem (18) is convex with

respect to vec
((

Θ
Γ

))
due to a property of the Kronecker product that A ⊗ B is PSD

when A and B are PSD matrices.
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By using Eq. (38), the second term in the objective function of problem (18) can be
rewritten as

1

2λ2
tr(ΓΩΓT ) =

1

2λ2
(vec(Γ))T (Ω⊗ Iu)vec(Γ),

which is also a quadratic function with respect to vec
((

Θ
Γ

))
. Also due to the fact that

Ω is a PSD matrix, the second term of the objective function in problem (18) is also a

convex function with respect to vec
((

Θ
Γ

))
.

Since the third term in the objective function of problem (18) is linear and the con-

straints are all linear with respect to vec
((

Θ
Γ

))
, problem (18) is convex with respect to

vec
((

Θ
Γ

))
, e.g., a QP problem. 2
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