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Abstract. Labeled data are needed for many machine learning applications but
the amount available in some applications is scarce. Semi-supervised learning
and multi-task learning are two of the approaches that have been proposed to al-
leviate this problem. In this paper, we seek to integrate these two approaches for
regression applications. We first propose a new supervised multi-task regression
method called SMTR, which is based on Gaussian processes (GP) with the as-
sumption that the kernel parameters for all tasks share a common prior. We then
incorporate unlabeled data into SMTR by changing the kernel function of the GP
prior to a data-dependent kernel function, resulting in a semi-supervised exten-
sion of SMTR, called SSMTR. Moreover, we incorporate pairwise information
into SSMTR to further boost the learning performance for applications in which
such information is available. Experiments conducted on two commonly used
data sets for multi-task regression demonstrate the effectiveness of our methods.

1 Introduction

Many machine learning applications require that labeled data be available for model
training. Unfortunately the amount of labeled data available in some applications is
very scarce because labeling the data points manually is very tedious and costly. As a
consequence, the model thus learned is often not satisfactory in performance. To alle-
viate this problem, machine learning researchers have investigated various approaches,
with semi-supervised learningandmulti-task learningbeing two popular ones.

Semi-supervised learning [1] can be seen as an extension of the conventional super-
vised learning paradigm by augmenting the (labeled) training data set with unlabeled
data so as to exploit the useful information in the unlabeled data to boost learning per-
formance. Early semi-supervised learning methods include co-training [2], which builds
two learning models based on two different views of the data and then uses each learn-
ing model to select confident unlabeled data for the other, and transductive SVM [3, 4],
which uses both labeled and unlabeled data to maximize the margin of a support vector
machine (SVM). More recent development includes many graph-based methods [5–7],
which model the geometric relationship between all data points in the form of a graph
and then propagate the label information from the labeled data points to the unlabeled
data points throughout the graph. In order for the unlabeled data to be useful for semi-
supervised learning, some assumptions about the data have to be satisfied. Two widely
used assumptions are the cluster assumption and manifold assumption. The cluster as-
sumption simply means that if two points are in the same cluster, they are more likely to
belong to the same class. Equivalently, this means that the class decision boundary only



goes through low-density regions. Transductive SVM is one popular method based on
the cluster assumption. As for the manifold assumption, it means that the data points in
some high-dimensional space span a low-dimensional manifold. If two points are close
to each other with respect to some metric on the manifold, their outputs are likely to
be similar. As a result, if we want to preserve the manifold structure when performing
some projection, then two points that are close in the manifold should remain close af-
ter projection. The manifold assumption is the underlying model assumption of many
semi-supervised learning methods, particularly graph-based methods.

On the other hand, multi-task learning [8–10] seeks to improve the learning perfor-
mance of one task with the help of some related tasks. This approach has been inspired
by psychological observations that humans can often benefit from previous learning
experience when learning a new but related task, sometimes referred to astransfer of
learning. Many multi-task learning methods have been proposed over the past decade.
For example, multi-task feature learning [11] learns a common representation for all
tasks under the regularization framework, regularized multi-task SVM [12] extends
SVM by requiring that the SVM parameters for all tasks be close to each other, task
clustering methods [13, 14] group the tasks into multiple clusters and then learn a sim-
ilar or common representation for all tasks within a cluster, and GP-based multi-task
learning methods [15–18] utilize Gaussian processes (GP) as the base model for multi-
task learning. For multi-task learning, many existing methods assume that all the tasks
are related to each other and hence similar or identical data features or model parame-
ters are shared by all tasks or subsets of tasks, for example, all tasks in the same cluster.
Methods based on neural networks and multi-task feature learning all assume that the
data features are shared by all tasks. On the other hand, regularized multi-task SVM
and the methods in [14] assume that similar model parameters are shared by all tasks
or tasks in the same cluster. Moreover, some methods incorporate both assumptions in
their models, e.g., [13].

Since semi-supervised learning and multi-task learning share the common objec-
tive of seeking to improve the learning performance of the original supervised learn-
ing task by exploiting some auxiliary data available (unlabeled data for the current
task or labeled data for other related tasks), it makes sense to combine them in an
attempt to get the best of both worlds. Indeed, some such attempts have been made
recently. The method proposed by Ando and Zhang [19] bears some relationship with
these two learning paradigms even though its objective is mainly to improve the per-
formance of semi-supervised learning. There exists only a single task (target task) to
start with as well as some unlabeled data. The unlabeled data are then utilized to create
more tasks to help the learning of the target task. Moreover, Liu et al. [20] proposed
a semi-supervised learning method called parameterized neighborhood-based classifi-
cation (PNBC), which applies random walk to logistic regression and uses a task clus-
tering method for multi-task learning. However, these two methods only consider the
classification problem and cannot be extended readily to the regression problem. In-
deed, there exist some applications that can be modeled as the combination of semi-
supervised regression and multi-task regression, for example, personalized pose esti-
mation. In personalized pose estimation, each task corresponds to the pose estimation



for one person. In this application, there exist large amount of images with unknown
pose information for each person.

To the best of our knowledge, there does not exist any work in the literature that
integrates semi-supervised regression and multi-task regression. In this paper, we want
to fill the gap by proposing a scheme for such integration. We first propose a new su-
pervised multi-task regression method called SMTR, which is based on GP with the
assumption that the kernel parameters for all tasks share a common Gaussian prior.
We then incorporate unlabeled data into SMTR by changing the kernel function of the
GP prior to a data-dependent kernel function, resulting in a semi-supervised extension
of SMTR, called SSMTR. Moreover, as in [21], we incorporate pairwise information
into SSMTR to further boost the learning performance for applications in which such
information is available.

We first present SMTR in Section 2. SSMTR, our semi-supervised extension of
SMTR, and the incorporation of pairwise information into SSMTR are then presented
in Sections 3 and 4, respectively. Section 5 reports some experimental results to provide
empirical evaluation of our proposed methods.

2 Supervised Multi-Task Regression

Let there bem related regression tasksT1, . . . , Tm. For taskTi, the training setDi

consists ofni labeled data points{(xi
j , y

i
j)}

ni
j=1 with the jth point xi

j ∈ Rd and its
outputyi

j ∈ R.
For each task, we use a GP [22] as the base regressor. For taskTi, we define a latent

variablef i
j for each data pointxi

j . The prior off i is defined as

f i |Xi ∼ N (0ni ,Kθi), (1)

wheref i = (f i
1, . . . , f

i
ni

)T , Xi = (xi
1, . . . ,x

i
ni

), N (m,Σ) denotes a multivariate
Gaussian distribution with meanm and covariance matrixΣ, 0ni

denotes anni × 1
zero vector, andKθi

denotes the kernel matrix defined onXi where the kernel function
is parameterized byθi.

The likelihood for each taskTi is defined based on the Gaussian noise model:

yi | f i ∼ N (f i, σ2Ini), (2)

whereyi = (yi
1, . . . , y

i
ni

)T , σ2 denotes the noise level, andIni is theni × ni identity
matrix.

Since all tasks are assumed to be related, we impose a common prior on the kernel
parameters{θi}m

i=1 for all m tasks:

θi ∼ N (mθ,Σθ). (3)

The graphical model for SMTR is depicted in Figure 1.
In some formulation of GP regression, the noise levelσ2 can also be regarded as

one element of the kernel parametersθi since GP regression has an analytical form
for p(yi

j |xi
j). So the noise levels for different tasks can also share a common prior as



Fig. 1.Graphical model for Supervised Multi-Task Regression.

in Eq. (3) but they are not identical. Note that the noise level can be estimated from
the labeled data. Since the number of labeled data points in semi-supervised learning is
typically not very large, it may not be possible to obtain an accurate estimate of the noise
level if estimation is done independently for each task based on limited labeled data. For
this reason, we assume in this paper that all tasks have the same noise level. The more
general case that allows different noise levels for different tasks will be studied in the
future.

There exist some GP-based multi-task regression models [15–18]. Lawrence and
Platt [15] proposed a multi-task regression model in which the kernel parameters are
shared by all tasks. This assumption becomes unreasonable when there exist outlier
tasks. This problem also exists in the models of [16] and [17], which later motivated
the development of a robust model usingt-processes [23]. Unlike the model in [15], the
models in [16, 17] learn the kernel matrix in a nonparametric way. This makes it difficult
to perform inductive inference since there is no parametric form for the kernel function.
Bonilla et al. [18] proposed a powerful multi-task GP regressor which is especially suit-
able for multi-output regression problems. Their method directly models the similarity
between multiple tasks and is equivalent to using a matrix-variate normal distribution to
model the multiple latent function values. Due to the use of the Kronecker product, this
method incurs high storage and computational costs. However, these difficulties do not
exist in our proposed model. In our model, the kernel parameters for different tasks just
share the same prior but are not identical, making it capable of modeling outlier tasks.
Our model has a parametric form for the kernel function and hence it can be used to
make inductive inference directly. Even though our model does not directly character-
ize the relatedness between tasks, it is implicitly characterized by the kernel parameters.
Moreover, since the dimensionality ofθi is usually not very large, the storage cost is
not high. Although there exist some multi-task learning methods which also place a
common prior on the model parameters of different tasks [24, 25, 13], to the best of our
knowledge none of them is based on GP.



2.1 Learning and Inference

Since

p(yi|Xi) =
∫

p(yi|f i)p(f i|Xi)df i

= N (yi|0ni
,Kθi

+ σ2Ini
),

the log-likelihood of all tasks can be computed as

L =− 1
2

m∑
i=1

[
(yi)T (Kθi

+ σ2Ini
)−1yi + ln

∣∣Kθi
+ σ2Ini

∣∣ ]
− 1

2

m∑
i=1

[
(θi −mθ)T Σ−1

θ (θi −mθ) + ln
∣∣Σ−1

θ

∣∣ ]+ Const,

where|A| denotes the determinant of a square matrixA. We maximizeL to estimate
the optimal values ofθi, σ, mθ andΣθ. Since the number of parameters to estimate is
large, we use an alternating method to solve the problem.

In the (t+1)st iteration, givenm(t)
θ and Σ

(t)
θ as estimates ofmθ and Σθ from

the tth iteration, we apply gradient ascent to maximize the log-likelihood to estimate
θ

(t+1)
i andσ(t+1). The form of the kernel function we adopt isk(x1,x2) = θ1xT

1 x2 +
θ2 exp(−‖x1−x2‖22

2θ2
3

) where‖·‖2 denotes the 2-norm of a vector. Since each element of
θi andσ is positive, we instead treatlnθi and lnσ as variables, where each element
of lnθi is the logarithm of the corresponding element inθi. The gradients of the log-
likelihood with respect tolnθi andlnσ can be computed as:

∂L

∂ lnσ
=

∂L

∂σ2

∂σ2

∂ lnσ

= σ2
m∑

i=1

{
(yi)T (Kθi

+ σ2Ini
)−2yi − tr

[
(Kθi

+ σ2Ini
)−1
] }

∂L

∂ lnθi
=

1
2

diag(θi)
[
Tr

(
A

∂Kθi

∂θi

)
− 2(Σ(t)

θ )−1(θi −m(t)
θ )
]

,

whereA = (Kθi
+σ2Ini

)−1yi(yi)T (Kθi
+σ2Ini

)−1−(Kθi
+σ2Ini

)−1, tr(·) denotes

the trace function defined on a square matrix, Tr(A∂Kθi

∂θi
) denotes a vector whosejth

element is tr(A∂Kθi

∂θij
) whereθij is the jth element ofθi, and diag(θi) denotes the

diagonal matrix whose(j, j)th element is thejth element ofθi.
After we obtainθ

(t+1)
i and σ(t+1), we keep them fixed and maximize the log-

likelihood with respect tomθ andΣθ. With some simple algebraic calculations, we
can get

m(t+1)
θ =

1
m

m∑
i=1

θi

Σ
(t+1)
θ =

1
m

m∑
i=1

(θi −m(t+1)
θ )(θi −m(t+1)

θ )T .



These two steps are repeated until the model parameters converge.
Given a test data pointxi

? of taskTi, the predictive distributionp(yi
? |xi

?,X
i,yi) is

a Gaussian distribution with meanmi
? and variance(σi

?)
2 given by

mi
? = (ki

?)
T (Kθi

+ σ2Ini
)−1yi

(σi
?)

2 = kθi
(xi

?,x
i
?)− (ki

?)
T (Kθi

+ σ2Ini
)−1ki

?,

wherekθi
(·, ·) denotes the kernel function parameterized byθi andki

? = (kθi
(xi

?,x
i
1),

. . . , kθi
(xi

?,x
i
ni

))T .
The computational complexity of our model isO

(∑m
i=1(ni)3

)
. Since the data set

sizesni for different tasks are generally small in typical semi-supervised learning ap-
plications, our model is usually quite efficient.

2.2 Inductive Inference for New Tasks

The model presented above assumes that all tasks are given in advance for multi-task
learning to take place. This setting is sometimes referred to as symmetric multi-task
learning [14]. If a newly arrived task does not belong to any of the tasks in the training
set, our model can still deal with this situation easily without having to retrain the whole
model from scratch using an augmented training set. Instead, we can utilize the common
prior in Eq. (3) as the prior of the kernel parameters for the new task and then perform
maximum a posteriori (MAP) estimation to obtain the kernel parameters and maximum
likelihood estimation (MLE) to obtain the noise level. Therefore, we only need to store
mθ andΣθ instead of all the training data points for all tasks.

3 Semi-Supervised Multi-Task Regression

We now extend the SMTR model to the semi-supervised setting, which is called SSMTR.
For taskTi, the training setDi consists of a set of labeled data points{(xi

j , y
i
j)}

li
j=1 and

a set of unlabeled data points{xi
j}

ni

j=li+1. Typically, we haveni � li.
Like in many semi-supervised learning methods which are based on the manifold

assumption as described above, the unlabeled data in our model serve to enforce the
smoothness of the regression function. For each taskTi, we uselocal scaling[26] to
construct the similarity graphSi in which each element is defined as follows:

Si
jr =

{
exp

(
−‖x

i
j−xi

r‖
2

σi
jσi

r

)
if xi

j ∈ NK(xi
r) or xi

r ∈ NK(xi
j)

0 otherwise

whereNK(xi
j) denotes the neighborhood set of theK nearest neighbors ofxi

j in task
Ti, σi

j is the distance betweenxi
j and itsKth nearest neighbor, andσi

r is the distance
betweenxi

r and itsKth nearest neighbor.
We introduce a random variableGi to reflect the geometric structure contained in

the training set of taskTi. The prior forG is defined as

p(Gi | f i, Di) ∝ exp
[
−αi

2
(f i)T Lif i

]
, (4)



wheref i = (f i
1, . . . , f

i
ni

)T includes the latent variables for both labeled and unlabeled
data,Li is the Laplacian matrix or normalized Laplacian matrix [27] of the similarity
graphSi defined on the training setDi, andαi is a hyperparameter which needs to be
estimated. So if the probability ofGi is high, it means that the data set is more likely to
contain manifold structure according to the graph structure implied byLi.

Thus the joint prior off i conditioned onDi andGi can be computed based on

p(f i |Di, G
i) ∝ p(f i |Di)p(Gi | f i, Di)

and so
f i |Di, G

i ∼ N
(
0n, (K−1

θi
+ αiLi)−1

)
. (5)

This formulation is similar to that of [28]. However, [28] focused on semi-supervised
classification but not the regression problem. The graphical model for SMTR is depicted
in Figure 2.

Fig. 2. Graphical model for Semi-Supervised Multi-Task Regression. HereXi contains labeled
and unlabeled data in theith task.

From the joint prior defined in Eq. (5), the new kernel function for taskTi can be
defined as:

ki(x, z) = kθi
(x, z)− (ki

x)T
(
α−1

i I + LiKθi

)−1
Liki

z, (6)

whereki
x =

(
kθi

(x,xi
1), . . . , kθi

(x,xi
ni

)
)T

. The kernel function in Eq. (6) is similar
to the semi-supervised kernel function defined in [29].

The hyperparameterαi in Eq. (4) can be viewed as a measure of usefulness of the
unlabeled data. We expect to automatically learnαi from data. If the optimalαi is
very small or even 0 after learning, then the prior off i will degenerate to the Gaussian
prior. This means that the unlabeled data points have negligible effect on improving the
performance of GP regression. From the new kernel function in Eq. (6), we can view
αi as a parameter in the kernel function.



There exist some works on semi-supervised or transductive GP regression that work
in a different way, such as [30]. The assumption of [30] is that the mean and variance
of the predictive results on the unlabeled data are close to those of the labeled data. We
can show that it is easy to incorporate this more restrictive assumption into our model.

3.1 Learning and Inference

Since the likelihood is only related to the labeled data, we first marginalize the joint
prior with respect tof i

j corresponding to the unlabled data. In this section, we still use
Kθi

to denote the kernel matrix whose elements are calculated by the modified kernel
function in Eq. (6) on the labeled data of taskTi.

We still use an alternating method to maximize the log-likelihood. The update rules
for mθ, Σθ, θi andσ are the same as those in Section 2.1 with the kernel function being
the only difference. Moreover, forαi, the gradient can be calculated as

∂L

∂ lnαi
=

αi

2

{
tr

[
(Kθi + σ2Ili)

−1yi(yi)T (Kθi + σ2Ili)
−1 ∂Kθi

∂αi

]
−tr

[
(Kθi

+ σ2Ili)
−1 ∂Kθi

∂αi

]}
.

When making prediction, the formulation is the same as conventional GP. Moreover,
the way to handle new tasks is the same as that in Section 2.2.

4 Utilizing Pairwise Information

In the previous section, we showed that incorporating unlabeled data into SMTR to
give the SSMTR model only requires modifying the GP prior, but the likelihood is still
defined based solely on the labeled data.

In addition to unlabeled data, in some applications the training set also contains
some other auxiliary data in the form of pairwise constraints [21]. Let thejth pairwise
constraint for taskTi take the form(i, u(j), v(j), di

j), which means thatyi
u(j)−yi

v(j) ≥
di

j whereyi
u(j) andyi

v(j) are the true outputs of two data pointsxi
u(j) andxi

v(j) in task
Ti with at least one of them being an unlabeled point. For personalized pose estimation,
it is easy to add a constraint that the pose angle difference between a frontal face image
and a left profile face image is not less than 45 degrees.

In semi-supervised classification or clustering applications, one may also find pair-
wise constraints such as ‘must-link’ and ‘cannot-link’ constraints [31], which state
whether or not two data points should belong to the same class or cluster. Many methods
have been proposed to incorporate such pairwise constraints into their learning models.
For semi-supevised regression, however, very little has been studied on this topic. Here
we offer a preliminary study in the context of SSMTR.

The jth pairwise constraint of taskTi is denoted byξi
j . The noise-free likelihood

functionpideal(ξi
j | f i

u(j), f
i
v(j)) is defined as

pideal(ξi
j | f i

u(j), f
i
v(j)) =

{
1 if f i

u(j) − f i
v(j) ≥ di

j

0 otherwise



In real applications, however, the pairwise constraints are often noisy. To model this
more realistic setting, we introduce a random variableδ which follows some normal
distribution with zero mean and unknown varianceε2. The variance is the same for all
tasks. So the corresponding likelihood function is defined as

p(ξi
j | f i

u(j), f
i
v(j))

=
∫ ∫

pideal(ξi
j | f i

u(j) + δ1, f
i
v(j) + δ2)N (δ1 | 0, ε2)N (δ2 | 0, ε2) dδ1dδ2

= Φ

(
f i

u(j) − f i
v(j) − di

j√
2ε

)
,

whereΦ(z) =
∫ z

−∞N (a | 0, 1)da is the probit function.
The noise levelε2 in the pairwise constraints has some relationship to the noise level

σ2 in the likelihood function since they both relate the latent variablef i
j to the output

yi
j . However, it should be noted that the noise sources they represent are different. For

instance, one may have noise in the pairwise constraints but not in the likelihood, or
their noise levels may be different. For flexibility, we use two different parameters for
the two noise sources in our model.

Although it appears that the likelihood function of our model is similar to that
of [32], their differences are worth pointing out here. The model in [32] is for classifica-
tion and the constraints there refer to label preference. On the other hand, our model is
for semi-supervised regression with pairwise constraints as auxiliary data and the con-
straints specify the differences between the outputs of pairs of data points. Moreover,
the likelihood function in [32] can be seen as a special case of our likelihood function
when eachdi

j takes the value 0.

4.1 Learning and Inference

Since direct integration off i is intractable, we resort to the Laplace approximation [33]
to approximate the posterior off i. We first computef i

MAP by maximizing the posterior
of f i, which is equivalent to minimizing the following function:

g(f i) =
1
2
(f i)T K−1

θi
f i +

σ−2

2
‖ỹi − f̃ i‖22 −

ci∑
j=1

lnΦ(ωi
j) + li lnσ +

1
2

ln |Kθi
| ,

where ỹi and f̃ i denote the subsets ofyi and f i, respectively, corresponding to the
labeled data,ci is the number of pairwise constraints available in taskTi, andωi

j =
fi

u(j)−fi
v(j)−di

j√
2ε

. We want to findf i
MAP that minimizesg(f i):

f i
MAP = arg min

f i
g(f i).

It is easy to show thatg(f i) is a convex function since the Hessian matrix ofg(f i)
is ∂2g(f i)

∂f i∂(f i)T = K−1
θi

+σ−2Ili
ni

+Ωi, which is positive definite, whereIli
ni

is theni×ni



zero matrix with the firstli diagonal elements being 1, andΩi =
∂2−
Pci

j=1 ln Φ(ωi
j)

∂f i∂(f i)T is
positive semidefinite. The proof is similar to that in [32] and we omit it here. So we can
apply gradient descent to find the global optimum.

After obtainingf i
MAP, we can approximate the likelihood or evidence of taskTi

according to the analysis in [33] as

p(yi) ≈ exp{−g(f i
MAP)} (2π)ni/2

|K−1
θi

+ σ−2Ili
ni + Ωi

MAP|1/2
,

whereΩi
MAP is the value of the functionΩi taking onf i

MAP.
So the total negative log-likelihood of allm tasks can be approximated as

L =
m∑

i=1

[
1
2
(f i

MAP)T K−1
θi

f i
MAP +

σ−2

2
‖ỹi − f̃ i

MAP‖22+

1
2

ln |Kθi |+
1
2

ln |K−1
θi

+ σ−2Ili
ni

+ Ωi
MAP|

]
+

m∑
i=1

1
2

[
(θi −mθ)T Σ−1

θ (θi −mθ) + ln |Σ−1
θ

]
+

m∑
i=1

[
li lnσ −

ci∑
j=1

lnΦ(ωi
j)
]

+ Const.

We still use an alternating method to minimize the negative log-likelihood. In the
(t+1)st iteration, givenm(t)

θ andΣ
(t)
θ , the gradient ofL with respect to each variable

is given by

∂L

∂ lnσ
= σ2

m∑
i=1

{
−σ−4‖ỹi − f̃ i

MAP‖22 +
li
σ2

− σ−4tr
[
(K−1

θi
+ σ−2Ili

ni
+ Ωi

MAP)−1
]}

∂L

∂ lnθi
=

diag(θi)
2

{
Tr(B

∂K−1
θi

∂θi
) + 2(Σ(t)

θ )−1(θi −m(t)
θ )

}
∂L

∂ lnαi
=

αi

2

{
−(f i

MAP)T
∂K−1

θi

∂αi
f i
MAP − tr

(
Kθi

∂K−1
θi

∂αi

)

+tr

[
(K−1

θi
+ σ−2Ili

ni
+ Ωi

MAP)−1
∂K−1

θi

∂αi

]}

∂L

∂ ln ε
= ε

m∑
i=1

1
2

tr

[
(K−1

θi
+ σ−2Ili

ni
+ Ωi

MAP)−1 ∂Ωi
MAP

∂ε

]
+

ci∑
j=1

ωi
jN (ωi

j |0, 1)
εΦ(ωi

j)

 ,

whereB = f i
MAP(f i

MAP)T −Kθi
+
(
K−1

θi
+ σ−2Ili

ni
+ Ωi

MAP

)−1
.

The update rules formθ andΣθ are the same as those in Section 2.1.



4.2 Extension

In some applications, there exist auxiliary data given in another form asξi
j = (i, u(j),

v(j), w(j), z(j)), which means thatyi
u(j) − yi

v(j) ≥ yi
w(j) − yi

z(j). Let us take the
personalized pose estimation problem again as example. It is often easy to know that
the pose angle difference between a left profile face image and a right profile face image
is larger than that of two nearly frontal face images. The pairwise constraints considered
before may be seen as a special case ofξi

j when two of the data pointsxi
u(j),x

i
v(j),x

i
w(j)

andxi
z(j) are labeled. The special case withv(j) = w(j) is also interesting in the pose

estimation application. For example, the pose angle difference between a left profile
face image and a right profile face image is larger than that between the left profile
image and a frontal image. Similar to the pairwise constraints above, the noise-free
likelihood functionpideal(ξi

j | f i
u(j), f

i
v(j), f

i
w(j), f

i
z(j)) is defined as

pideal(ξi
j | f i

u(j), f
i
v(j), f

i
w(j), f

i
z(j)) =

{
1 if f i

u(j) − f i
v(j) ≥ f i

w(j) − f i
z(j)

0 otherwise

For more realistic situations, we again introduce a random variableδ following a normal
distribution with zero mean and unknown varianceε2. The likelihood function is thus
defined as

p(ξi
j | f i

u(j), f
i
v(j), f

i
w(j), f

i
z(j))

=
∫

pideal(ξi
j | f i

u(j) + δ1, f
i
v(j) + δ2, f

i
w(j) + δ3, f

i
z(j) + δ4)

N (δ1 | 0, ε2)N (δ2 | 0, ε2)N (δ3 | 0, ε2)N (δ4 | 0, ε2) dδ

= Φ

(
f i

u(j) − f i
v(j) − f i

w(j) + f i
z(j)

2ε

)
,

whereδ = (δ1, δ2, δ3, δ4)T . It is easy to show that the posterior distribution off i is
unimode, so we can also use the Laplace approximation to make inference.

5 Experiments

We compare a single-task regression method, SMTR, SSMTR and SSMTR with pair-
wise information in this section using two benchmark data sets, one for learning the
inverse dynamics of a robot arm and another for predicting the student performance in
terms of examination scores.

5.1 Learning Inverse Dynamics

This data set1 was used in [34]. For each instance, there are 7 joint positions, 7 joint
velocities and 7 joint accelerations forming 21 input attributes, together with 7 joint
torques for the outputs corresponding to 7 degrees of freedom. We treat each output

1 http://www.gaussianprocess.org/gpml/data/



(i.e., degree of freedom) as a separate learning task. To simulate a more general multi-
task learning setting, we randomly select 2000 data points independently for each task
so that the input data points for different tasks are different. We randomly partition the
whole data set into three subsets, with 1% as labeled data, 10% as unlabeled data and
the rest as test data. The kernel we use is the RBF kernel. Moreover, we randomly se-
lect 100 pairs of data points and generate the pairwise constraints using their labels. Ten
random splits are performed and the mean and standard derivation of the performance
measure over different splits are reported. We adopt the normalized mean squared er-
ror (nMSE), which is defined as the mean squared error divided by the variance of the
test label, as the performance measure. Table 2 shows the results. From the results, we
can see that the performance of our proposed SMTR is significantly better than that of
supervised single-task learning which uses one GP for each task. Moreover, the perfor-
mance of SSMTR and SSMTR using pairwise information is better than that of SMTR,
which shows that both the unlabeled data and the pairwise information are effective in
improving performance.

Table 1. nMSE results on learning inverse dynamics (SSTR: supervised single-task regression
which uses one GP for each task; SSMTRPI: semi-supervised multi-task regression with pairwise
information).

Method Transductive ErrorInductive Error
SSTR 1.0228±0.1318 1.0270±0.1450
SMTR 0.4149±0.1109 0.4368±0.1020
SSMTR 0.3810±0.1080 0.3905±0.1123
SSMTRPI 0.3500±0.1088 0.3486±0.1010

5.2 Predicting Student Performance

This data set2 was used in [11] for multi-task learning. The goal is to predict the student
performance in terms of examination scores. The data set consists of 15362 students
from 139 secondary schools, recording their examination scores in three years (1985–
87). We treat each school as a different task, so that there are 139 learning tasks in total.
For each instance, the input consists of the year of the examination as well as 4 school-
specific and 3 student-specific attributes. We still use nMSE as performance measure.
We randomly select 2% of the data as labeled data, 20% as unlabeled data, and the rest
as test data. The kernel we adopt is the RBF kernel. We also generate 100 pairwise
constraints just as the last experiment did. We perform 10 random splits and report the
mean and standard derivation over different splits. Table 2 shows the results. Similar to
the results on learning inverse dynamics, SSMTR with pairwise information gives the
best performance.

2 http://www.cs.ucl.ac.uk/staff/A.Argyriou/code/



Table 2.nMSE results on predicting student performance

Method Transductive ErrorInductive Error
SSTR 1.2914±0.3146 1.3240±0.3274
SMTR 1.1151±0.3025 1.1535±0.3128
SSMTR 1.0506±0.2804 1.0612±0.2813
SSMTRPI 0.9817±0.2809 0.9824±0.2832

6 Conclusion

In this paper, we have proposed an approach for integrating semi-supervised regres-
sion and multi-task regression under a common framework. We first propose a new
supervised multi-task regression method based on GP and then extend it to incorporate
unlabeled data by modifying the GP prior. In addition, if auxiliary data in the form of
pairwise constraints are available, we propose a scheme to incorporate them into our
semi-supervised multi-task regression framework by modifying the likelihood term. In
our future research, we will investigate sparse extension of our models, possibly by
using the informative vector machine [35].
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