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Proof for Theorem 1
Proof. We prove the convexity via the first-order condition.
For any w̄ ∈ R and z̄ ≥ 0, We can easily compute ∂f(w̄,z̄)

∂w =
2w̄∏m
i=1 z̄

θi
i

and ∂f(w̄,z̄)
∂zj

= − θjw̄
2

z̄j
∏m
i=1 z̄

θi
i

. Then for any ŵ, w̄ ∈
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∂f(w̄, z̄)

∂w
−

m∑
i=1
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where the second equality holds due to the property of θ
that
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Then we can have
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ẑj
z̄j∏m

i=1 z̄
θi
i

−
∏m
i=1 ẑ
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in which we reach the conclusion. �

Proof for Theorem 2
Proof. It is obvious that the first and third terms of the objec-
tive function in problem (1) as well as the linear constraints
are convex. Moreover, based on Theorem 1, each summand
in the second term of the objective function in problem (1)
is jointly convex with respect to w and σ, making the whole
problem convex. �

Proof for Theorem 3
Proof. We first rewrite problem (1) where m = 3 as
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By plugging this equation into Eqs. (17) and (18), we can
get
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Then based on Eqs. (18), (19) and (22), since ν2 = ν3 =
ν > 0, we have
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Based on Eqs. (17), (18) and (23), since ν1 = ν2 = ν > 0,
we can get
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By plugging Eq. (24) into the first linear equality constraint
in problem (13), we can get
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Then based on Eqs. (22-25), we can get
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By plugging this equation into the objective function of
problem (13), we reach the conclusion. �

The FISTA and GIST Algorithms
The detailed procedures for the FISTA and GIST algorithms
are shown in Algorithms 1 and 2.



Algorithm 1 The FISTA Algorithm
1: Initialize r0, α > 1;
2: Set φ(0) as the initial value for variable φ;
3: ψ(1) := φ(0);
4: k := 1;
5: t1 := 1;
6: while not converged do
7: Find the smallest nonnegative integers ik such

that with r̂ = αikrk−1, F (qr̂(ψ
(k))) ≤

Qr̂(qr̂(ψ
(k)),ψ(k));

8: rk := αikrk−1;
9: φ(k) := qrk(ψ(k));

10: tk+1 :=
1+
√

1+4t2k
2 ;

11: ψ(k+1) := φ(k) +
(
tk−1
tk+1

)
(φ(k) − φ(k−1))

12: k := k + 1;
13: end while

Algorithm 2 The GIST Algorithm
1: Choose η > 1, r0, σ ∈ (0, 1);
2: Set φ(0) as the initial value for variable φ;
3: k := 0;
4: repeat
5: rk+1 := rk;
6: repeat
7: φ(k+1) := arg minφHrk+1

(φ,φ(k));
8: rk+1 := ηrk+1;
9: until F (φ(k+1)) ≤ F (φ(k)) − rk+1σ

2 ‖φ(k+1) −
φ(k)‖2F

10: k := k + 1;
11: until Some convergence criterion is satisfied

Optimization Procedure for Problem (4)
Note that the only coupling in the variables of problem (4)
comes from the equality constraint. The Lagrangian of prob-
lem (4) with respect to the equality constraint is given by

L(ρ, γ) = ‖ρ− ρ̂‖22 − 2γ(aTρ− 1).

By setting the derivative of L with respect to each ρi to 0,
we can see that the minimum is reached when ρi = ρ̂i+aiγ
where ai is the ith entry of a. Since each ρi is required to
be nonnegative and L(ρ, γ) is a quadratic function of ρ, the
optimal solution for ρi is given by

ρi = max (0, ρ̂i + aiγ) . (26)

Plugging the optimal solution of ρi into L(ρ, γ), we can ob-
tain the dual problem as

min
γ

∑
γ≥−ρ̂i/ai

(a2
i γ

2 + 2aiρ̂iγ)−
∑

γ<−ρ̂i/ai

ρ̂2
i − 2γ. (27)

Obviously, the objective function of problem (27) is a piece-
wise linear or quadratic function over regions determined
by the sequence {− ρ̂iai }. The main idea of our method is
to determine the functional form of problem (27) over each

region, then compute the local optimum over each region
which has an analytical solution, and finally obtain the glob-
al optimum by comparing all the local optima. So the main
problem is to determine the coefficients of problem (27) over
each region efficiently. Without loss of the generality, we as-
sume ρ̂1/a1 ≥ ρ̂2/a2 ≥ . . . ≥ ρ̂s/as where s is the length
of a. If this is not the case, we can sort the sequence {ρ̂i/ai}.
When γ ∈ [−ρ̂s/as,+∞), the objective function of prob-
lem (27) is c2λ2 + c1λ + c0, where c2 =

∑s
i=1 a

2
i , c1 =

2(
∑s
i=1 aiρ̂i− 1), and c0 = 0, and it has an analytical solu-
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2c2

). When γ ∈ (−∞,−ρ̂1/a1),
problem (27) has no well-defined solution since the objec-
tive function becomes −2γ −

∑s
i=1 ρ̂

2
i . So we only need

to consider the situation where γ ∈ [−ρ̂1/a1,−ρ̂s/as).
We summarize the algorithm for solving problem (27) in
Algorithm 3. This algorithm needs to scan the sequence
{−ρ̂i/ai} only once which costs O(s). So the complexity
of the whole algorithm is at most O(s ln s), which is more
efficient than existing QP solvers.

After determining the optimal γ, we can obtain the solu-
tion for ρi via Eq. (26).

Algorithm 3 Algorithm for problem (27)
1: Sort {ρ̂i/ai} if needed;
2: c0 := 0; % coefficient for constant term
3: c1 := 2(

∑s
i=1 aiρ̂i − 1); % coefficient for linear term

4: c2 :=
∑s
i=1 a

2
i ; % coefficient for quadratic term

5: γ := max(− ρ̂sas ,−
c1
2c2

);

6: f := c0 + c1γ + c2γ
2; % value of current minimum

7: for i = s to 2 do
8: % Determine the coefficients over

[−ρ̂i−1/ai−1,−ρ̂i/ai);
9: c0 := c0 − ρ̂2

i ;
10: c1 := c1 − 2aiρ̂i;
11: c2 := c2 − a2

i ;
12: γ0 := min(− ρ̂iai ,max(− ρ̂i−1

ai−1
,− c1

2c2
));

13: f0 := c0 + c1γ0 + c2γ
2
0 ;

14: if f0 < f then
15: γ := γ0;
16: f := f0;
17: end if
18: end for

Optimization Procedure for Problem (5)

Unfortunately, problem (5) is non-convex with respect to all
variables. To see this, we present a case that f(w, z,θ) =

w2∏m
i=1 z

θi
i

is not jointly convex with respect to w ∈ R, z ∈
Rm and θ, where w and {zi} are required to be positive,
and θ is required to satisfy θi ≥ 0 for i = 1, . . . ,m and∑m
i=1 θi = 1. By considering a case that d = 1 and m = 2

and defining ŵ = −48, w̄ = −74, ẑ = (60 86)T , z̄ =

(99 93)T , θ̂ = (0.0006 0.9994)T , θ̄ = (0.8286 0.1714)T ,



and α = 0.4095, we have

αf(ŵ, ẑ, θ̂) + (1− α)f(w̄, z̄, θ̄)

=0.4095× 26.7968 + (1− 0.4095)× 55.9091

<46.3551

=f(αŵ + (1− α)w̄, αẑ + (1− α)z̄, αθ̂ + (1− α)θ̄),

which implies that problem (5) is non-convex.
In order to solve problem (5), we use the GIST algo-

rithm. With the abuse of notations, we use a vector φ to
denote the concatenation of w, σ and θ. We define the
set of constraints on φ as Sφ = {φ|
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function. Instead of directly minimizing the original com-
posite objective function F (φ) = f(φ) + g(φ), the GIST
algorithm shown in Algorithm 2 of the supplementary mate-
rial minimizes a surrogate function: minφ∈Sφ Hr(φ, φ̂) =
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where r is a step size determined by the GIST algorithm,
w̃ = ŵ − 1

r 5w f(ŵ), σ̃ = σ̂ − 1
r 5σ f(σ̂), and

θ̃ = θ̂ − 1
r 5θ f(θ̂). The solution of w in problem (28)

is w = r
λ2+r w̃. It is easy to see that σ and θ in problem

(28) are independent and the subproblem with respect to σ
can be decomposed into multiple problems each of which
has the same formulation as problem (4), leading to an ef-
ficient solution. The subproblem with respect to θ based on
problem (28) is formulated as

min
θ

1

2
‖θ − θ̃‖22

s.t.

m∑
j=1

θ
(j)

Pj−1
i ,Pji

= 1 ∀i ∈ [d], θ
(j)

Pj−1
i ,Pji

≥ 0 ∀i, j. (29)

Problem (29) is a QP problem and here we devise an opti-
mization method for problem (29) to achieve the speedup.
Since different features share the same θ(j)

k,r when they have
the same ancestor in the tree, problem (29) cannot direct-
ly reduce to problem (4). By introducing ϑ(j)

i as a copy of

θ
(j)

Pj−1
i ,Pji

, we can reformulate problem (29) as

min
θ,ϑ

1

2
‖θ − θ̃‖22

s.t.

m∑
j=1

ϑ
(j)
i = 1 ∀i ∈ [d], ϑ

(j)
i ≥ 0 ∀i, j, θ(j)

Pj−1
i ,Pji

= ϑ
(j)
i ∀i, j,

(30)

where ϑ is a vector containing all ϑ(j)
i ’s. Because of the lin-

ear equality constraints in problem (30), we use the ADMM
algorithm (Boyd et al. 2011) to solve it. The augmented
Lagrangian function is defined as L(θ,ϑ) = 1

2‖θ − θ̃‖
2
2 +∑d

i=1

∑m
j=1

(
p
(j)
i (θ

(j)

Pj−1
i

,Pj
i

− ϑ(j)
i ) + ρ

2

(
θ
(j)

Pj−1
i

,Pj
i

− ϑ(j)
i

)2)
,

where {p(j)
i }mi=1 act as Lagrangian multipliers and ρ is a

penalty parameter. Then we need to solve

min
θ,ϑ
L(θ,ϑ) s.t.

m∑
j=1

ϑ
(j)
i = 1 ∀i ∈ [d], ϑ

(j)
i ≥ 0 ∀i, j. (31)

In the ADMM algorithm, problem (31) can be solved alter-
natively with respect to θ and ϑ. When θ is fixed, the prob-
lem with respect to ϑi = (ϑ

(1)
i , . . . , ϑ

(m)
i )T is formulated

as

min
ϑi

m∑
j=1

(
ϑ

(j)
i − ϑ̃

(j)
i

)2

s.t.

m∑
j=1

ϑ
(j)
i = 1 ∀i ∈ [d], ϑ

(j)
i ≥ 0 ∀i, j,

where ϑ̃
(j)
i = θ

(j)

Pj−1
i ,Pji

+
p
(j)
i

ρ . This problem takes the
same form as problem (4), which makes it have an effi-
cient solution. The subproblem with respect to θ is a QP
problem without any constraint and by setting the deriva-
tive to zero, we can obtain the analytical solution as θ(j)

k,r =

1

1+ρd
(j)
r

(
θ̃

(j)
k,r +

∑
i∈S(j)

k,r

(
ρϑ

(j)
i − p

(j)
i

))
, where S(j)

k,r =

{i|Pj−1
i = k,Pji = r} with its cardinality equal to d(j)

r .

Details in Experiments
The true feature weights for w∗ when m equals 4 and 5 are
shown in Fig. 3.
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(a) m = 4
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(b) m = 5

Figure 3: Binary trees generated in synthetic data when m equals
4 and 5.


