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Abstract—Embedded devices (eg, mobile phones, smart
watches, etc.) store a large amount of sensitive information. How-
ever, Android-based devices may leak a lot of user information if
unsafe data deletion. Therefore, research on secure data deletion
for embedded devices has become a practical and urgent issue. In
this paper, we study the logic structure, operation characteristics,
and data management mechanisms of flash memory. Then, we
propose a novel method VACUUM that uses a user-space file
system and can provide fine-grained file deletion guarantees. Our
approach encrypts files on an insecure medium with a unique
key that can later be discarded to cryptographically render the
data irrecoverable. Additionally, we use TrustZone as a secure
key vault, and a garbage collection mechanism is introduced
to purge the memory. Finally, we carried out experiments on
the Android system, and the results showed that the solution is
efficient and can meet the needs of real applications.

Index Terms—Mobile Devices, Secure Deletion, Flash Mem-
ory, User Space, Encryption

I. INTRODUCTION

W ITH the widespread use of smart homes, smart health-
care, wearable devices, etc., a large number of embed-

ded devices (eg, mobile phones, smart watches, smart TV, etc.)
collect various privacy data of users, including health data,
location information and even biological information [1], [2].
Currently, these embedded devices are mostly composed of
single or multiple sensors devices. Which is impossible to use
devices such as mechanical hard drives for data storage, so we
can only choose a flash storage device with a small size and
low power consumption [3]. When the local storage space is
insufficient, part of the data will also be stored in the cloud.
There are many researches on the secure storage and deletion
of data in the cloud [4], [5]. That still many security issues
with Flash storage [6]. At the same time, many embedded
devices use Android system. Unfortunately, Android may face
security issues such as information leakage. The main reason
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is due to the insecure data management method used by the
Android system and applications. Previous studies [7]–[9] have
discussed different aspects of failure in data security operations
that have led to revealing users’ private information. However,
there is little discussion about the threat of residual data after
deletion because Android does not explicitly state how to
process data stored on devices. With the resale, loss, or theft
of a mobile smart device, the insecure deletion of data may
reveal a large amount of user private information. Previous
work [10] has confirmed that the data stored in the Android
device (including private personal information) can still be
recovered after deletion, and the data will persist for a quite
a long time.

Many approaches have been proposed to make data deletion
more secure, such as methods based on file overwriting and
encryption. Meanwhile, it is practically significant to apply
theoretical research results to the protection of personal pri-
vacy data in real life. Previous studies [11]–[15] have analyzed
the characteristics of user data stored in mobile devices and
proposed their own data secure deletion mechanisms. How-
ever, these secure deletion mechanisms are not targeted and
are short on savings and applicability; that cannot be met the
user‘s requirements for secure deletion of private data, existing
private data secure deletion (management) solutions have
difficulty achieving full lifecycle data protection capabilities.
Data are born from data generation and extended to data
conversion, calculation, transmission, storage, and deletion.
Failures at any stage can lead to an unexpected privacy leak.
To avoid this issue, user data protection should implement
protection mechanisms throughout the whole lifecycle.

A. Our Contributions

This paper will first explain the research problems such as
user privacy data usage, secure deletion, and data unrecov-
erable in Android devices. And introduced the data storage
method of Android devices. Then, we present VACUUM, a
novel secure deletion scheme based on the user space file
system FUSE [16] framework. Additionally, we design a
secure user space encrypted file system.The problems of sin-
gle application scenarios, complicated implementations, and
difficulty in porting in the existing data security deletion
research are solved. In addition, an adversary cannot recover
and crack the residual ciphertext. At the same time, the system
effectively reduces the loss of the storage device and improves
the erasing efficiency. In this work, we study the method of
mobile device storage security deletion from the viewpoint of
storage architecture. We then design and implement a mobile
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secure deletion file system in the user space on the Android
platform. To demonstrate the effectiveness of our proposed
approach, we implement a prototype of VACUUM on a real
Android mobile device.

The main contributions of this paper are therefore fourfold
as follows.

• We initially propose an approach named VACUUM that
uses the user space file system to provide secure deletion
that guarantees file-level granularity independent of the
characteristics of the underlying file system and storage
medium. VACUUM maintains file system semantics while
having user-level development convenience.

• The approach encrypts every file on an insecure medium
with a unique key that can later be discarded to crypto-
graphically render the data irrecoverable. We use Trust-
Zone as a secure key vault to ensure the security manage-
ment of the keys. In terms of data storage, a data integrity
verification is designed to improve system security.

• Efficient Memory Purging (EMP) : a garbage collection
mechanism is introduced to purge the memory reclaiming
the discarded flash pages. It mainly focuses on improving
the security and efficiency of logical padding. At the same
time, the EMP mechanism can minimize the loss of the
Flash device and prolong its service life.

• We implement the prototype system, VACUUM, on an
Android mobile device. Experiments are conducted, and
the results indicate that VACUUM prototype ensures the
secure deletion of data in flash memory on mobile devices
with comparable overhead. In addition, the system meets
the user requirements for daily use.

The highlights of this paper are as follows: while providing
secure storage for files on mobile devices, VACUUM effectively
improves the deletion efficiency and security without destroy-
ing the original data permissions of the system, thus achieving
fine-grained deterministic deletion such that the deleted data
cannot be recovered.

B. Organization

The rest of this paper is organized as follows: Section II
introduces the background information and our threat model.
The design of VACUUM on the Android platform is described
in Section III. In Section IV, we implement VACUUM and
present performance results under different file system oper-
ations. Section V offers related research on secure deletion,
and Section VI concludes the paper.

II. PRELIMINARIES

In this section, we first give some background and then
present our adversarial model.

A. Background

1) Flash Memory: Flash memory is an electronic (solid-
state) nonvolatile computer storage medium that can be electri-
cally erased and reprogrammed. It is widely used in embedded
devices, especially mobile phones, smart bracelets and other
devices. The most prominent characteristic of flash memory

is that prewritten data can only be dynamically updated via
a time-consuming erase operation. Furthermore, every block
in flash memory has a limited program/erase cycle, which is
typically 104 to 105 times. Since the size of the file read and
written by a block file system is inconsistent with the size
of the flash page, there are multiple copies of the modified
contents such that, even if the file is deleted, the discarded
flash page still has the remaining file information. The flash
characteristic of out-of-place updates is the main reason for
the data post-removal disclosure.

2) Flash Translation Layer: To conceal the characteristics
of NAND flash, a special purpose firmware called Flash
Translation Layer (FTL) is implemented inside flash-based
devices. FTL allows external computing components (e.g.,
file systems) to access flash memory using a block-based
interface. Most flash-based devices are equipped with FTL
including USB sticks, SD cards, EMMC cards, and SSDs. In
embedded devices, FTL is a hardware implementation and is
software in the raw flash memory. In general, an FTL should at
least provide the following functionalities: address translation,
garbage collection, and wear leveling.
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Fig. 1. The address translation in FTL

Address translation is the most basic function provided by
FTL. As shown in figure1, the physical address corresponding
to the logical address is determined by the FTL mapping
algorithm. The main function of FTL is to convert the logical
address of the file system to the physical address of flash. The
management method of flash storage draws on the principles
of the log-based file system. The FTL handles the read,
write, and erase operations of the flash memory, and at the
same time, receives the read and write requests and maps the
logical address to the physical address of the memory. Since
the number of erasures (Program/Eraser, P/E) of each data
block is limited, until they wear out and become unusable.
When an overwrite operation is issued, FTL redirects the
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physical address to the available space, thereby avoiding the
use of P/E operations. After the data is updated, FTL changes
the address mapping information. Outdated blocks can be
deleted later. In addition to basic address translation, FTL also
needs to consider performance and durability enhancement
issues. Performance enhancement refers to the possibility of
reducing the number of read, write, and erase operations.
Among these three operations, reducing the number of erase
operations is the most critical issue because the cost of erase
operations is very high compared to read and write operations.
Durability enhancement refers to erasing each physical block
as uniformly as possible without degrading performance. If a
block is higher than the program / erase cycle limit, the block
may not work properly, resulting in data loss.

3) EncFs: EncFs (Encrypted Filesystem) is a FUSE-based
cryptographic filesystem that transparently encrypts files us-
ing an arbitrary directory as storage for the encrypted files.
FUSE provides a framework for implementing the user space
file system. EncFs uses the libfuse dynamic library and the
fuse kernel module to implement a full-featured user space
file system without any kernel privileges. Two directories
are involved in mounting an EncFs filesystem: the source
directory and the mountpoint. Each file in the mountpoint has
a corresponding specific file in the source directory. The file
in the mountpoint provides the unencrypted view of the file
in the source directory. Filenames are encrypted in the source
directory. Files are encrypted using a volume key, which is
stored encrypted in the source directory. A password is used
to decrypt this key.

B. Threat Model
Attack Time. Attack time refers to the time the adversary

gains access to the device. There are two cases: (1) the attack
time is controlled by the user, and the user can delete as much
data as possible before providing the device to the adversary;
(2) The adversary obtains permission to use the device without
the user’s knowledge. In case (2), the safe deletion operation is
not dependent on the user to complete it, but is completed by
the previously performed clear operation. This paper assumes
that the time when the adversary deleted the data is unknown.

Number of Accesses. Access can be divided into single
access and multiple access. Single access scenario, such as
device loan. Multiple access scenarios, such as the target
device being deployed by malware multiple times. This article
assumes that the adversary has multiple access capabilities.

Certificate disclosure. This scenario is defined as the ad-
versary can decrypt the data without getting the key.Certificate
disclosure is divided into non-mandatory and mandatory. Non-
mandatory adversaries do not obtain user passwords and cre-
dentials used to protect data on physical media, but mandatory
adversaries can obtain this information. The adversary can
also obtain the user’s password by guessing the user’s weak
password, and the device is not locked [17]. This article
assumes that the adversary has the ability to force an attack.

Computational Constraints. Many secure deletion meth-
ods rely on encrypting data and storing only their ciphertext.
By deleting the decryption key [18]–[20], data is guaran-
teed to be unrecoverable. Therefore, encryption is used as a

compression technique to reduce the cost of secure deletion,
because only small keys need to be deleted. In this article,
the ability to impersonate an opponent is limited, and the
encrypted data cannot be violently broken, thereby ensuring
that the encryption system is not destroyed.

To prevent adversary from obtaining information in the
mobile device, this paper develops a secure deletion method
for mobile devices by maximizing the attack capability of the
adversary.

For the adversary’s ability to assess safe deletion methods,
the adversary’s goal is to recover deleted data objects. This
paper will analyze data deletion threats and characterize the
types of hostile capabilities in these situations to develop
confrontation models. The threat model defined in this paper
is as follows.

After the sensitive data are calculated, the adversary can per-
form an offline attack and read the physical storage medium.
This assumption covers many real scenarios: people with bad
intentions break into a hotel room to obtain snapshots of
the target device (e.g., a laptop’s SSD, USB, smart phone
SD card), mobile devices might be used in certain oppressed
occasions and be confiscated resulting in device intrusion, and
so on.

III. SYSTEM DESIGN

In this section, we design a secure data storage and deletion
system for Android devices ensuring that the file storage and
deletion operations are secure. We first describe our expected
goals for the scheme and then detail the system design process.

A. Goals

The proposed scheme should meet the following require-
ments and have achieved data confidentiality.

Confidentiality. Prevent unauthorized users from accessing,
protect user data only for authorized users, and resist illegal
access by competent adversaries.

Integrity. Data cannot be changed without authorization,
requiring securely stored data to resist rival spoofing, splicing,
and reply attacks to maintain the integrity of the device data.

Fine-grainedness. The files are required to be securely
stored and deleted regardless of file size. Ensure that the data
of the mobile device can be completely deleted from the device
in a fine-grained way instead of resetting, which is the method
that came with the device.

Efficiency. The data deletion operation must be efficient and
take into account the two efficiency indicators of the loss of
the flash device and the deletion delay.

Non-root authority. The implementation of the safe dele-
tion scheme cannot obtain the device root authority and pre-
vent the destruction of Android’s own sandbox data protection
mechanism.

Flexibility. The application of the solution does not depend
on the specific file system and storage media characteristics.

Stability. The safe deletion scheme should be easy to
develop without modifying the kernel code of the system, and
it cannot cause instability in the device’s native system.
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B. Architecture

In this paper, we designed a Secure Data Deletion in User
Space system, called VACUUM, based on the user space file
system.

The system uses the FUSE framework to run in the user
space of the Android system while providing file system se-
mantics and security deletion guarantees at the file granularity
level to ensure that deleted data are not recoverable. VACUUM
does not require modifications to the Android file system. It
can be developed and deployed as a standalone module that
can run on any Android distribution and any file system.

VACUUM provides users with an enhanced user-level en-
crypted file system for secure deletion. Users can create en-
crypted file systems without root permissions. The file system
can only be accessed by the user who created it. Other users
can only see the ciphertext encrypted in the directory and file,
which effectively protects data security. In performing a secure
deletion operation, we only need to discard the key and the
logically deleted encrypted file, so we achieve high execution
efficiency. Now, we present our secure deletion solution and
show how it fulfills the listed requirements.

Figure 2 shows the general system data storage architecture,
which is divided into application layer, file system layer, page
caching layer, and device driver layer.

Application

Virtual File System（VFS）

Specific file system（Ext4）

Page Cache

Block Driver

User
Space

Kernel
Space

Hardware

Fig. 2. The process of data storage

Among these layers, the file system layer is the most
suitable location for the safe deletion of files. By definition,
the file system already knows the data blocks for any file
and also has full control over the file metadata, all of which
significantly simplify the development process. However, mod-
ifying and maintaining each specific file system will be error-
prone, which is likely to lead to instability in the original
system. Moreover, the scheme for the property file system
is not scalable, and the scheme is more adaptable. Despite
the abovementioned problems, the file system layer is still
the most suitable location for file deletion. Based on the file
system under the FUSE framework, user-level development
can be well achieved. This not only ensures that the underlying
architecture of the file system is not destroyed, but also benefits
the application system development. Furthermore, the file-safe
deletion scheme developed based on the FUSE framework can

run under any file system and is compatible with any physical
block device.

Generate a random encryption key for each file, this method
can ensure the security of the data, and it is relatively easy
to implement the system. When data is written to a storage
device, it should first be encrypted; before reading the file, it
should also be decrypted. Then, the safe deletion of the file is
converted into the safe deletion of the corresponding key file.
Compared with the data file, the key file is smaller and the
operation is simpler. For adversaries with limited computing
power, data cannot be recovered without a key.

This solution uses the FUSE framework of the user space
file system, proposes a secure deletion method based on
encryption technology, designs a secure deletion and enhanced
user space encryption file system, and solves problems such
as a single application scenario, complex implementation,
and difficulty in porting the existing data security deletion.
The corresponding key file is safely deleted when the data
are deleted so that the adversary cannot decrypt the residual
ciphertext information. At the same time, by deleting the key
method, the deletion space is reduced, the security deletion
time is shortened, and the loss of the flash device is reduced.

Storage

Application

VFS

FUSE Kernel

VFS

File System

Driver

User Space

Kernel Space

Encryption
/ Decryption

Key 
Manager

Memory 
Purging

Vacuum

Fig. 3. Abstraction of VACUUM architecture

Figure 3 shows the file system architecture of VACUUM.
VACUUM uses the FUSE framework to implement a virtual
layer that is stacked on the file system and runs in the user
space. VACUUM can be encrypted for a directory in a specific
file system without having to encrypt the entire actual file
system. The system includes the following modules: user
space file system, encryption and decryption module, key
management module, data integrity verification module, and
memory cleaning module.

Next we will introduce the three main modules of VAC-
UUM: 1) FUSE-based data encryption and storage module.
The encryption scheme is implemented based on the FUSE
framework. It masks the specific file system and storage media
characteristics and is implemented in the user space; thus,

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on January 06,2022 at 06:14:07 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3119514, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

it meets the design requirements in terms of flexibility and
stability. Data are based on the granularity of the file to
perform encryption and decryption operations to meet the fine-
grained requirements. Encrypted data can prevent unautho-
rized users from accessing it, which meets the confidentiality
requirements. 2) Based on the TrustZone key management
module, the key management can meet the data confidentiality
requirements. The safe deletion of execution file granularities
meets the fine-grained requirements. Moreover, the deletion of
keys meets the efficiency requirements. 3) The efficient mem-
ory purging module based on file overwriting can thoroughly
clean the discarded ciphertext data and discarded keys in the
flash memory of the mobile device, which can make the data
irretrievable.

For non-root privilege requirements in the design goals, it
is required that VACUUM development does not require root
privilege to implement all modules and system functions of
VACUUM. Users do not need additional root authority to use
VACUUM. The FUSE-based VACUUM allows each user to
create an encrypted file system for himself or herself regardless
of whether he or she is a root user. VACUUM uses any directory
as the mount point of the file system and can be hung in the
root directory of the Android file system, thus achieving the
effect of encryption like full-disk data. The root directory of
the Android file system is designed to be read-only by the
native system. If VACUUM is mounted in the root directory, the
device must obtain root privileges. However, after obtaining
root authority, the sandbox data protection mechanism of
the Android system is destroyed, and all system resources
are exposed to the adversary, which can lead to other more
dangerous consequences. Therefore, users are allowed to select
the VACUUM mount point independently to meet the non-
root authority requirements in the design goal along the two
dimensions of development and usability.

1) FUSE-based data encryption and storage: The VAC-
UUM file system is a user-space application with file system
semantics. It provides document granularity and file encryption
functions that are transparent to users. Users can choose which
files to encrypt. Data confidentiality is ensured through data
access rights and data encryption. Data encryption is mainly
achieved through encryption algorithms and encryption mod-
ules. Access control is mainly implemented through passwords
for user authentication so that it can prevent other users from
accessing sensitive data or other overriding operations.

Data encryption process. VACUUM uses AES encryption
algorithm, CBC mode. As a symmetric encryption technology,
AES has fast encryption speed and high algorithm security. Its
CBC mode is suitable for text transmission. VACUUM encrypts
file contents and file names by absolute file paths. Figure 4 is
the data encryption process. FEKi is a file encryption key,
generated by the key management module, IV is an initializa-
tion vector which will take the message block authentication
code (MAC) value, m is the data plaintext and c is the data
ciphertext. In the encrypted file, the data is first divided into n
blocks of equal size, namely data = {m1,m2, · · · ,mn}, and
then the selected plaintext is encrypted by FEKi.

The file access process of VACUUM. Figure 5 shows the
VACUUM file system access process. The specific process of

m1Data m2 m3 … mn

m2

Block Cipher 
Algorithm

c2

…

m2

Block Cipher 
Algorithm

c1

FEKiFEKi

mn

Block Cipher 
Algorithm

cn

FEKi

…IV

Fig. 4. Data encryption process

the program file write operation is as follows: When the file
write instruction reaches the file system layer, the VACUUM
system key management module generates a file ID according
to the absolute path of the file, i.e., ID = Generate (FileAbso-
lutePath), and generates a corresponding ID according to the
ID. A FEK ( file encryption key) and IV (initialization vector),
i.e., (FEK, IV) = Generate (ID), are generated such that each
file has a unique IV stored with the keys in the FEK since
encryption is performed page by page.

In addition, the pages of the file can be read or written in any
order so that the page IV is derived from the file’s unique IV
and the file offset of the processed page. The MK (MasterKey)
is used to encrypt the FEK and IV, and the encrypted result
is stored in the MasterKeyStore to ensure the security of the
file key, that is, FEK’ = EMK(FEK,IV); then, the encryption
process shown in Figure 6 is followed.

The encryption process uses FEK to encrypt the contents of
the file, namely, c = EFEK (m), and stores it on the device
storage medium.

(1) ID = 
G(Filepath)

FEK

Key Management

ID1 k1`

ID2 k2`

… …

File

(3) Encrypt/
Decrypt files

(4) Read/
Write content 
from storage

Encrypted file MK 

(2) FEK = DMK(k’)

Flash

name

content

Access

User

Fig. 5. The access to file process of VACUUM

The specific process of implementing the file read operation
of the solution is as follows: When the file read command
reaches the file system layer, the VACUUM system key man-
agement module generates a file ID according to the absolute
path of the file, that is, ID = Generate (FileAbsolutePath),
and the key management module according to the ID in the
KeyStore finds the encrypted FEK’, that is, FEK’ = Select

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on January 06,2022 at 06:14:07 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3119514, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

(ID); then, MK is used to decrypt FEK’ and retrieve FEK,
that is, FEK = DMK (FEK’), and the encryption management
module decrypts the file ciphertext using FEK, that is, m
= DFEK(c). VACUUM then passes the decrypted plaintext
content m back to the application.

2) TrustZone-based key management: Key management
consists of the generation, storage and deletion of keys. To
encrypt and decrypt the file data on mobile devices, the VAC-
UUM’s key management module needs to generate encryption
keys for encrypting data. The secure storage of keys can
resist illegal access from adversaries. A unique encryption
key for each file is generated by VACUUM, which implements
encryption at the file granularity level, stores multiple keys in
the encrypted files and equates the security of the original file
to the protection of the key. File fine-grained encryption is the
foundation of file fine-grained security deletion. A unique key
is generated when the file is being stored. After the deletion
of files, the encryption keys will be deleted securely, which
ensures that the file cannot be restored.

Key generation. The limitations of the traditional solution
are as follows: A straightforward method of using cryptograph-
ically based erasure to guarantee file deletion is to simply
generate a random encryption key for each file, after which the
secure deletion of the file is translated into safe deletion of the
corresponding file key. As shown in Figure 6, a single FSEK
(file system encryption key) is used to encrypt all files, and
the encrypted EFs (encrypted files) are stored in the storage
medium, e.g., FDE (full disk encryption) in Android systems.

However, this method has a fatal flaw: There is no way
to ensure that the file key is safely deleted. Every time a
single file is deleted, the main key needs to be changed. Then,
the whole file system is re-encrypted, which is inefficient,
expensive, and inflexible. The file key must be saved to the
physical storage medium when the system is rebooted or the
system is down, which makes it possible for adversaries to
recover the file key and decrypt the data.

…

FSEK

EF1 EF2 EF3 EFm

Fig. 6. Single key data encryption method

Therefore, we must use another main key to encrypt the
other keys. This is a recursive procedure and leads to the
second problem: the simple two-tier model mentioned above
means that deleting a single file requires re-encrypting all the
file keys. As modern storage devices suffer from phenomena
such as flash wear, data may be permanently stored in multiple
physical locations, and such processes are completely out
of the control of the operating system. Therefore, to ensure

that the file data are not recoverable, the main key must be
replaced, and the old key must be safely deleted from the
KeyStore, which ensures that it is impossible for an adversary
to recover the cipher text from the physical storage medium by
brute force using computational methods. Since the MasterKey
must be replaced, all file keys must be re-encrypted before they
are saved to disk, which is called encryption amplification.
This is a time-consuming operation that should be avoided for
any available system.

Improved key generation strategy: To solve the above prob-
lem, the key generation process in the VACUUM encryption
mechanism is as follows, as shown in Figure 7. (a) Derive
a MK using PBE (password based encrypion). (b) Derive a
FSEK from the MK using the KDF (key derivation function).
(c) Use an ordinary key derivation function (such as PRNG)
to generate a FEK from the absolute path of the file. (d) Use
the FEK to encrypt the file content and file names, and use the
FSEK and random initialization vector IV to encrypt the FEK.
(e) Then, use the mapping mechanism and find the encrypted
file through the FEK and IV (FEK||IV → ID).

…

FSEK

EF1 EF2 EF3 EFm

FEK1 FEK2 FEK3 FEKm

MKUser Password Check

PEB

K
D
F

Storage

…

Fig. 7. Key generation process of VACUUM

Each time VACUUM is mounted, the user enters the pass-
word (Password), and the PBE generates MK, that is, MK =
PBE (Password). The MK is stored in the MasterKeyStore and
is protected by TrustZone and cannot be accessed. Then, FSEK
is derived from MK. Each time FSEK is calculated by MK,
that is, FSEK = KDF (MK), the FEK corresponding to the
FSEK encrypted file, that is, FEK’ =EFSEK (FEK), and FEK
is stored in encrypted form. In the device, the FEK encrypts
the file and stores the ciphertext in the device.

Key storage. The VACUUM key management mechanism
must rely on trusted components as the secure storage area for
the MasterKey. This MasterKey secure storage area, called the
MasterKeyStore, must satisfy the following three conditions:
The key vault must (i) be large enough to store the MasterKey;
(ii) allow the system to use the stored MasterKey and perform
encryption and decryption operations; and (iii) allow the
system to perform update operations replacing old keys with
new ones.

The VACUUM stores the MasterKey in the NVRAM of the
TrustZone chip. When the MasterKey needs to be regenerated
after the file reading process or when the user changes the
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password, the VACUUM can reliably discard the discarded key
and provide a strong defense against unauthorized retrieval of
the MasterKey.

The MasterKey is stored and managed by the KeyMaster in
the secure world. In key management, access to the MasterKey
is required to provide security assurance. When the VACUUM
acquires the MasterKey, it needs to request the KeyChain Ser-
vice from the Android Framework layer. Finally, the request
is converted into a TrustZone request through the KeyStore
and then communicated with the KeyMaster TA process of
the secure world. Masterkey reads are done in a secure world
space.

VACUUM chooses to use the TrustZone chip as the Mas-
terKeyStore. At present, the processor for Android mobile
devices provides TrustZone technology. The rapid application
of security technology has further accelerated the deployment
of TrustZone applications, such as digital rights management
and electronic payments. When modifying the hardware con-
figuration is not feasible, one can use a medium with similar
secure storage attributes, such as the use of cloud storage
features, to achieve the key and cipher text isolation storage,
increase the difficulty of acquiring the enemy to achieve
the purpose of dispersing the risk. Therefore, VACUUM’s
MasterKeyStore requirements can be easily implemented in
many cases.

Key deletion. When the delete operation is invoked, the
VFS forwards the file deletion function to the FUSE kernel
driver, the FUSE kernel routes the file deletion operation calls
to VACUUM, and the VACUUM calls the key management
module to delete the FEK corresponding to the file.

The specific flow is as follows: 1) First, VACUUM calls
the encryption module and generates a file ID based on the
absolute path of the file, i.e., ID = Generate (File Absolute
Path). 2) The key management module queries the FEK in the
key storage area according to the file ID, i.e., FEK = select
(ID). 3) The key management module first overwrites the file
key FEK with the preset mode (0x00) and then deletes the
FEK. 4) The key management module disconnects the key
access area where the FEK is located and copies the remaining
keys to the new one. The abovementioned FEK is encrypted
and stored by the MK. The security of the MK is protected
by the TrustZone security mechanism. In the above steps, the
content of the key storage area is cut off as ciphertext, and
an adversary with limited computing capability cannot crack
the file key without a key. Then, it is impossible to crack the
discarded ciphertext, and safe deletion of the file is achieved.

VACUUM can implement the encryption and decryption
operations of the file granularity such that the safe deletion
of a file requires only one erase operation. In addition to the
erase operation, the VACUUM will overwrite the deleted block.
Figure 8 shows the file deletion process. To safely delete the
encryption key, the VACUUM method follows the following
steps: Search for FEKi with deleted file i. Use 0x00 as a
mode to overwrite pages stored by the deleted FEKi. The
“1” bit stored in a specific valid page is converted to a “0”
bit. Check if there is a valid page in the block. If there is a
valid page containing FEK, the block will not be deleted, and
the deletion process will end. If there is no valid page, the
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Free page

…
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FEKn

…

Encrypted data page

Free page

…
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Flash

Fig. 8. The file key deletion process of the VACUUM

flash is forced to trigger the GC to erase the block.
3) Data integrity verification based on Merkle-Tree: The

integrity of the data is very important, so this article will add an
integrity check module to the VACUUM scheme. Merkle-Tree
[21] can verify the integrity of the spatiotemporal relationship
of memory divided into separate blocks. Each leaf node of
Merkle-Tree represents a complete identifier, such as a hash
or an identity authentication identifier, which is used to index
the specified memory block. Each internal node of Merkle-
Tree corresponds to the hash of its child nodes. Therefore, the
root hash of the Merkle-tree can represent the integrity of the
memory.

Figure 9 shows the process of encrypting a plaintext block
(PlainBlock) into a ciphertext block (CipherBlock). In the data
encryption process, first use the HMAC function to calculate
the message authentication code MAC for each file data block,
then each file data block corresponds to a MAC value, and
finally manage the generated MAC value through Merkle-Tree.

PlainBlock

PlainBlockMAC

H IV EK

PlainBlock

PlainBlockMAC

PlainBlock

PlainBlockMAC

Fig. 9. Encrypted file memory layout

Merkle-Tree is a complete binary tree, and each node
corresponds to an identity authentication data. The purpose of
our Merkle-Tree is to prevent replay attacks. Each node in the
binary tree has a corresponding hash value. The authentication
path of the leaf node refers to all sibling nodes from the leaf
node to the root node. Using Merkle-Tree directly to protect
the authentication label of each data block will cause a lot
of memory consumption. To reduce the need for memory, we
store them in management blocks. After that, the management
block will be stored in permanent storage, not in the cache.
The hash value of the root node of Merkle-Tree can represent
data integrity. VACUUM calculates its MAC value after reading
all management blocks, and reconstructs Merkle-Tree. Then
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the hash value of the Merkle-tree root node is compared with
the reference value specified by the user. If they are equal,
the VACUUM operation was successful, otherwise the data
integrity has been destroyed. Figure 10 shows the process of
building a Merkle-Tree.

root

Hash 
value

Hash 
value

Hash 
value

MAC MAC …

PlainBlockMAC PlainBlockMAC PlainBlockMAC

Merkle-Tree

Block structure

…

Fig. 10. The build process of Merkle-Tree

Every time a leaf node is inserted, the tree is updated, where
the root value represents the integrity of the entire memory in
the space-time relationship. The last data block is written to
memory.

4) Efficient memory purging algorithm based on file over-
write: The VACUUM uses any catalogs as the file system’s
mounting point and can be mounted on the Android file
system’s root catalog to accomplish similar overall data en-
cryption. The Android file system’s root directory is a na-
tive system designed for read-only operations. If mounting
VACUUM on the root directory, the device must obtain root
permissions. Subsequently, all system resources are exposed
to the enemy. Therefore, the user selects the VACUUM mount
point independently, thus reaching the design goal along the
two dimensions of development and usability. According to the
storage location of the deleted files, VACUUM deals with two
situations: (I) Files to be deleted are stored in the VACUUM file
system; and (ii) Files are stored outside VACUUM and deleted
by the Android file system logically.

For the files stored in the file system of VACUUM, per-
forming safe delete operations is relatively simple. Invoking
the FEK corresponding to the file discarded by the VACUUM
key management module can ensure that the deleted data
cannot be recovered. For files stored outside the VACUUM,
the operating system logically deletes many files but leaves
many sensitive data in memory. The conventional solution for
clearing memory units occupied by these files is invalid, and
from the user’s point of view, it is impossible to know where
the data to be erased is written. This situation happens, for
example, when an application creates a temporary file and
deletes it manually. The temporary file may be a decrypted
copy of the encrypted file saved by the encrypted file system
to allow other applications to process specific file types such
as images, documents, and spreadsheets. Whether one imports

temporary files or does not import encrypted file systems, they
must all be safely removed.

The general safe deletion solution of traditional file over-
write has the following limitations: First, it takes time pro-
portional to the free space to be cleaned and the speed of
the memory writes. Second, if one uses calls frequently, it is
possible to shorten the life of the flash memory. Therefore, to
reduce the negative impact on flash, it should minimize the
implementation of MP operations for a single file to be safely
deleted.

In view of the efficiency of the above method in terms
of implementation, this paper proposes an Efficient Memory
Purging (EMP) algorithm based on file overwriting. It focuses
on improving the security and efficiency of logical padding.
The specific implementation is as follows:

Algorithm 1 Efficient memory purging algorithm based on
file overwriting (EMP)
Require:

Files to be safely deleted (TargetFiles).
File overwrite times (threshold).

Ensure:
Remove the invalid physical page/block making the obso-
lete data unrecoverable;
Boolean IsSuccess = EMP(TargetFiles, threshold).

1: Initialize OverwriteTimes = 0. Record the current number
of overwrites.

2: Compute the available size of flash space (FreeSize).
3: Accelerate the creation of temporary file (TempFile)

through fallocate, truncate and other functions. The file
size is FreeSize, and the file content is empty.

4: while TargetFiles is exist do
5: Remove information related to TargetFiles.
6: Remove TargetFiles.
7: end while
8: while OverwriteTimes ¡ threshold do
9: Create a garbage fill file (GarbageFile). The content is

empty and the size is 0.
10: Recalculate all free space in flash memory.
11: while GarbageFile.size() ¡ FreeSize do
12: Write(GarbageFile, random data), Fill random data

in GarbageFile.
13: end while
14: Ensure that internal buffer data are synchronized to disk

files.
15: Remove GarbageFile.
16: Add one to OverwriteTime.
17: end while
18: Remove TempFile.
19: System.gc() forces flash controller to electrically erase

discarded pages.
20: Return(IsSuccess).

Variable TempFile represents a temporary file that occupies
all available space, TargetFiles are files that the user needs
to safely delete, and GarbageFile is a file that is used to
overwrite the remaining free space after the target file is
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deleted. EMP improves the efficiency of safe deletion by
reducing the available space.

The EMP method solves this problem by using a new
function for the system, fallocate(), which speeds up the
creation of garbage files (TempFile). When this function is
called, it can preallocate free space to any file. Many file
systems support this function such as ext4, btrfs, and xfs.
Because there are no data to write to this file, it is a very fast
method. EMP can quickly use all available space by calling
this function.

After all available free space is occupied by TempFile, the
system will remove the information related to the target file,
such as the file name and the file creation time. Then, the
system will remove the target file that needs to be deleted
and release the logical memory space that it occupies. For
security reasons, the EMP algorithm will circularly remove the
target file and its associated information until it is completely
removed. Next, by creating a garbage file (GarbageFile), the
EMP algorithm will overwrite the free space released by the
target file with a random number and then continue to write
random numbers to the file until the free space size is zero.
The EMP method also calls the Sync() system command to
ensure that all random numbers are written to the physical
disk instead of being written to the internal buffer. Overwriting
will force the flash controller to reclaim the space occupied by
all deleted target files, and the data retention of all possible
logical and physical target files will be permanently erased.
The number of file overwrites (Threshold) is specified by the
user. After the free space overwrite operation is completed,
the EMP algorithm will remove GarbageFile and TempFile,
release the memory, and end the safe delete process.

IV. IMPLEMENTATION AND ANALYSIS

This section mainly proves the research goals proposed in
this paper. First, conduct a security analysis on the attack hy-
pothesis proposed in this paper; then, discuss the deployment
and performance of the scheme, and draw relevant conclusions
through the analysis of the result data.

A. Security Analysis

1) Online attacks: Spoofing attack. We assume that the
adversary can pass any data as a valid data block. The
VACUUM generates a verification tag and verifies it after
performing decryption. If the adversary modifies the data block
or label, the authentication operation will fail.

Splicing attack. We assume that the adversary can replace
the current valid block with a valid block different from the
same storage medium. That is, the space of the data block
is replaced. This article adds the block index number as
the associated data to the VACUUM encryption operation to
prevent splicing attacks.

Reply attack. We assume that the adversary can success-
fully replace a previously recorded copy of a particular data
block and compare it with the latest version of the data block.
That is, the time shift of the data block. VACUUM uses Merkle-
Tree to prevent replay attacks. Merkle-Tree effectively maps
the integrity of each individual block and its spatiotemporal

relationship to the Merkle-tree root node hash value. If an
adversary has an old data block in the read operation, root
hash verification will fail.

2) Offline attacks: We assume that the adversary can read
the physical storage medium and obtain its mirror copy. Next,
we separately analyze a series of encryption operations and
deletion operations to show that VACUUM can resist offline
attacks.

In VACUUM, when an application issues a write instruction,
it generates a corresponding encryption key FEK according
to the absolute path of the file, and uses FEK to encrypt
the file. Then use MK to encrypt FEK and generate FEK’.
Finally, FEK’and ciphertext are permanently stored. Since MK
is stored in TrustZone, the security of MK can be guaranteed
through the TrustZone mechanism. Even if the adversary
obtains a copy of the ciphertext and the file key ciphertext
FEK’, it cannot obtain any information.

After the VACUUM performs the delete operation, it will
disconnect the relationship between the file and the corre-
sponding encryption key FEK, and call the file system garbage
collection module to overwrite the FEK memory page. Even
if the adversary successfully recovers the deleted data, only
the ciphertext can be obtained. Even if the user password
is disclosed, the adversary cannot successfully decrypt the
ciphertext. In addition, the EMP module will periodically clean
up the memory. After the flash controller is triggered, the
system will recover invalid data blocks, and then completely
delete the expired key and other expired files in the flash
memory.

3) Security goals: Next we will discuss how the system
achieves six design goals of ”Confidentiality”, ”Integrity”,
”Fine-granularity”, ”Non-ROOT authority”, ”Flexibility” and
”Stability”.

- ”Confidentiality”: In the design of the scheme, an
encryption-based deletion scheme is used. Each file is
encrypted with the corresponding FEK before being
stored, and decrypted when it is read. When the file
is deleted, the easy-to-operate FEK is erased. For an
adversary without a key, it is impossible to recover data
in a limited time. The key is stored in the trusted module,
which ensures the security of the key. Thereby achieving
the confidentiality of the entire system and data.

- ”Integrity” and ”Fine granularity”: In this paragraph, we
show that VACUUM can delete the sensitive data and
remove it from the medium permanently, which ensures
that the data cannot be recovered and therefore are
securely deleted.
We suppose that an adversary can read the physical
storage medium and obtain its mirrored copy. In the
following, we analyze a series of encryption and dele-
tion operations to show that VACUUM can resist offline
attacks.
In VACUUM, when an application program issues a write
instruction, it generates a corresponding encryption key
FEK based on the absolute path of the file and encrypts
the file with the FEK. Then, it generates FEK’ by
encrypting the FEK with MK. Finally, the FEK’ and the
ciphertext are persistently stored in the mobile device’s
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storage medium. Because MK is stored in the TrustZone,
the security of MK is guaranteed by the TrustZone
mechanism. Even if an adversary obtains a ciphertext
copy and the FEK’, it cannot obtain any message.
After VACUUM performs a delete operation, it discon-
nects the link between the file and the corresponding
encryption key FEK and calls the file system garbage col-
lection module to overwrite the FEK memory page. Even
if an adversary successfully recovers deleted data, only
the ciphertext is obtained. Even if the user’s password
is disclosed, an adversary cannot successfully decrypt
the ciphertext. Moreover, the EMP module periodically
cleans the memory, and the system reclaims invalid
erase blocks after triggering the flash controller and then
completely removes the expired keys and other expired
files in the flash.

- ”Flexibility”: First, the system is designed at the applica-
tion layer to ensure system portability. At the same time,
key information such as keys can be deployed not only
in the TrustZone Module, but also in Intel SGX, Trusted
Network and Trusted Cloud modules.

- ”Non-ROOT authority” and ”Stability”:The system does
not use root privileges, and the system is developed at
the application layer. The system kernel and system files
are not operated to ensure the security and stability of
the original operating system.

4) Attacks on identity authentication: Identity authentica-
tion systems exist in all mobile devices. Once an attacker
destroys the identity authentication system, it will pose a great
threat to the privacy of the device. Therefore, the MK of this
scheme is stored in TrustZone, which ensures the safety of
the MK. In the user’s file encryption and decryption system
(Vacuum), the system is deployed in the user space to provide
users with fine-grained file encryption services. Users can
choose the files they want to encrypt. First, the user needs
to set a password for encrypting or decrypting files. When a
user needs to perform an operation, he must enter a password
for verification, and the subsequent encryption and decryption
operations can only be performed after system verification. In
this process, the Vacuum and the device identity authentication
system are independent of each other. When using Vacuum,
only after passing the password verification, the user can see
the complete user space encrypted file system in this system,
and the file and file name are also decrypted and displayed
in real time. After illegal users enter the system (regardless of
whether they use their identity credentials to enter the system),
they cannot view encrypted files in the system file directory.
The file encryption key is an encrypted file, which is stored
in the system. The attacker cannot decrypt the file encryption
key file without the key. So as to ensure the security of the
data when the device receives an illegal intrusion.

However, in the process of using the system, identity authen-
tication is an essential part. In order to reduce the complexity
of user management passwords, the support of the continuous
identity authentication system is needed to better protect data
privacy and security.

B. Implementation and Experimental Analysis

This paper implements the file system VACUUM based on
EncFS . EncFS is a user-level encrypted file system [22].
Without privileged users, it can create its own encrypted file
system. This system also encrypts and stores all files under
the user directory. EncFS is a program that uses FUSE to
provide a virtual file encryption system for Linux. Wang et al.
[23] successfully ported EncFS to an Android system. As a
transparent encrypted file system, EncFS exports file system
interfaces to user mode and runs entirely in user mode. The
file encryption system is actually a program in user space and
is run and ended by the user. However, the existing EncFS
encryption process is incompatible for the design goals of
this paper. We modify EncFS’s encryption module and key
management process and add data validation and garbage
collection modules.

The software development environment used is CPU: In-
tel core i7-6700, RAM: 16GB, operating system: Windows
7, development tools: Android Studio, and the development
language is Java. The system test environment of the paper
is Android 6.0 version, CPU Snapdragon 810, RAM 3GB,
ROM 32GB, using OpenSSL encryption library to ensure
the backward compatibility of the system. In this encryption
system, the information related to the file is processed, and
only the encrypted files and folders (file types, etc. are hidden)
can be seen outside the system.

1) Performance Testing: The design and implementation
choices of this paper are all designed to build a practically
available system on a mobile device. The paper can transplant
VACUUM to an Android phone and mount VACUUM to any
directory. The test runs directly on the hardware device without
virtualization. Next, we will discuss the efficiency of the sys-
tem. First, we test the read/write performance of the VACUUM
system and compare it with the Android system FDE [24].
Second, we test the VACUUM file encryption and decryption
overhead. Finally, we verify the EMP performance of user
space garbage collection.

Read/write performance. To test how VACUUM affects the
I/O performance of the underlying storage device, we use the
dd command to test the sequential file read/write performance
of VACUUM. For all operations, we repeat the test on FDE.
We also test benchmark results that do not run VACUUM and
FDE. The results are shown in Table I. These results are the
average of five runs. The maximum relative standard deviation
of the test results is less than 2% in all cases. The operating
system cache is disabled during the test to ensure that the
measurement results are not affected by previous operations.

The results show that the throughput of the encrypted file
systems is significantly lower than that of the unencrypted
file systems. The read throughput of VACUUM and FDE files
is almost similar, with approximately 5.84% of the overhead,
which is within the user’s acceptance range. However, write
throughput of VACUUM has decreased slightly compared to
FDE, and the overhead remains at 16.27%. The result of
the overhead is expected because the VACUUM runs in user
space, and frequent switching between the user state and
the kernel state will introduce a large overhead. Once the
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TABLE I
DISK I/O AND FILE SYSTEM PERFORMANCE OF VACUUM COMPARED TO ENCFS. BENCHMARK RESULTS ON AN UNENCRYPTED DEVICE ARE ALSO

PRESENTED AS A BASELINE.

No Encryption FDE VACUUM

Overhead vs. Overhead vs.
Operation Performance Performance No Enc. Performance No Enc. FDE
Read 110720 KB/s 93536 KB/s 15.52% 88074 KB/s 20.45% 5.84%
Write 43026 KB/s 26594 KB/s 38.19% 22267 KB/s 48.25% 16.27%

VACUUM has obtained the encryption key to process the file,
the remaining task of encrypting and decrypting the file block
is not much different from the FDE execution encryption.
Table I shows that the VACUUM file system read and write
performance can meet the daily operations of users. As equip-
ment hardware is upgraded, computing power is increased,
and performance overhead is negligible. Some devices with
limited computing power can be optimized by adopting a
caching strategy, especially when the write operation rate is
slow. When the computing and storage resources of the device
are idle, Vacuum starts the user’s encryption operation, which
will not affect the user’s use of the device, but also make full
use of system resources.

Encryption and decryption overhead. Due to the different
file encoding formats, VACUUM tests its encryption and de-
cryption overhead using five common file sizes (100 KB, 500
KB, 1 MB, 5 MB, 10 MB) and eight main file types (docx,
mp3, jpg, gif, zip, txt, mp4, pdf). The experimental result is
the average of 20 tests.

Fig. 11. The encryption overhead

Figure 11 shows the file encryption performance of VAC-
UUM on an Android device. For 100 KB and 500 KB files,
the decryption time is approximately 1.84 seconds. For a 10
MB file, the decryption time is approximately 2.18 seconds.
VACUUM cryptographic file overhead consists of two parts:
key generation and ciphertext storage.

Figure 12 shows the file decryption performance of VAC-
UUM on an Android device. For 100 KB and 500 KB files,
the decryption time is approximately 0.15 seconds. For a 10
MB file, the decryption time is approximately 0.69 seconds.
When the file is small enough, VACUUM decryption overhead
is mainly due to the reading of the file encryption key, FEK.
As the size of the file increases, the decryption overhead is

Fig. 12. The decryption overhead

mainly influenced by the data decryption processing, and the
decryption overhead is within the acceptable range of the user.

Fig. 13. Comparison of encryption and decryption overhead

Figure 13 compares the VACUUM’s overhead for performing
cryptographic operations on different sizes of the same format
file. The decryption time overhead is less than the encryption
time overhead because the encryption time cost involves the
storage operation of the file encryption key (FEK) generation,
storage, and the file’s own data, and the decryption time
overhead does not involve the write operation of the file data.
For a small file, the overhead can be ignored by the user, even
if the encryption and decryption overhead of a large file is
within the acceptable range of the user.

EMP efficiency. To verify the user space garbage collection
EMP performance, we measure the time overhead of EMP and
Purging [25] based on storage usage in the following three
scenarios: (i) Storage is mostly empty, i.e., usage is between
0 and 30%; (ii) Storage is moderately used, i.e., storage usage
is 30% to 60%; and (iii) Storage has almost no free space, i.e.,
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utilization rate is 60% 90%. In each case, we test the time it
takes for EMP and Purging to delete different file sizes. Then,
we compare the time overheads of EMP and Purging with
different storage usages when deleting files of the same size.

Figure 14 shows the time overhead of erasing different
file sizes for Purging and EMP in different scenarios. In the
experiment, the storage size used is 8 GB, in which the result
of graph (a) corresponds to scenario (i). The actual test has a
storage rate of 15%, and the available space is 85%. Figure (b)
corresponds to scenario (ii). The storage rate is 50%, and the
available space is 50%. Figure (c) corresponds to scenario (iii).
In the actual test, the storage rate is 75%, and the available
space is 25%. The result shows that the time cost of EMP is
lower than for Purging. The cost of the Purging operation is
directly proportional to the size of the available storage space,
regardless of the size of the deleted file. The EMP time cost
is independent of the amount of free space available and is
proportional to the size of the deleted file.

Figure 15 shows the time overhead of Purging and EMP for
different storage usage scenarios when 1 GB files are deleted
at the same time. The results show that the time overhead of
the Purging operation is directly proportional to the storage
available space because the Purging operation first uses a
normal method to logically delete the target file and then uses a
temporary file that is filled with random data to occupy the free
space in the storage. Under different amounts of storage free
space, the time cost of deleting the same size file is basically
the same.

2) Performance Comparison: It is not difficult to find from
the TABLE I,the program combines most factors, and the
performance is relatively perfect.In the paper [23], Wang et
al. successfully port EncFS to an Android device. Although
it does not provide secure deletion, this document provides
technical feasibility for implementing VACUUM. In the paper
[25], Reardon et al. propose a method for deleting files. This
method fills the available space in the literature system with
garbage files and forces the performance of GC by flash
to implement a memory cleaning operation. However, this
method does not guarantee data confidentiality and integrity
while removing inefficiency. Compared to the paper [26],
Reardon et al. design a secure file deletion method based on
the B-Tree method. However, this method is aimed at specific
file systems and does not have good portability. The authors
use this technology for their experiment and provide a proof
of concept implementation. In contrast, one of the main goals
of VACUUM is to provide the flexibility and easy development
features of the solution that can be easily used daily in mobile
devices. Compared with SADUS [27], the proposed scheme
is optimized in the key management and garbage collection
modules. It improves the system efficiency and ensures that
the system key and ciphertext are unrecoverable, which makes
the system more secure and efficient. The specifics will be
discussed in the next section.

This paper focuses on analyzing the performance of VAC-
UUM and [24]. The performance test indicates that, with an ex-
tra encryptographic and decryptographic operation, VACUUM
and FDE have a larger performance overhead compared to the
native file system read/write performance when the system

performs read/write operations. This is a balance between
security and performance. For write operations, VACUUM’s
overhead is 16.27% more than FDE, and these overhead
results are expected because FDE encryption is running on
the driver layer. As we can see in the previous analysis,
the closer to the physical storage medium, the higher the
encryption and decryption efficiency. VACUUM operates on
the user level and maintains file system-related information
through the FUSE framework. It frequently switches between
user space and kernel space, causing performance degradation.
However, VACUUM provides a fine-grained security delete
function that is within the user’s acceptable range. Despite this
drawback, the actual number of VACUUM processes per second
is still high. However, VACUUM produces a more significant
performance impact during file creation. This effect may be
because the VACUUM needs to perform a large number of extra
I/O operations to repeatedly access its KeyStore and decrypt
the corresponding 0 nodes to obtain the key corresponding to
each newly created file.

Based on the above comparative analysis, it can be seen
that the scheme of this paper has high applicability and safety.
This is true especially in the read and write performance, the
encryption and decryption overhead, and the efficiency of the
garbage collection module. At the same time, many of the
novelties of this work are related to solving the challenges
that exist in different designs.

V. RELATED WORKS

Currently, data is mainly stored locally on the device or in
the cloud. Therefore, research on data deletion is also carried
out in two parts. There are many researches on the secure
storage and deletion of data in the cloud [5], [28]–[30]. For
example: Yu et al. proposed a new framework [4] to deal with
the problem of embedded data deletion by integrating cloud,
fog and devices. This is a reliable data deletion protocol that
implements verifiable data deletion and flexible access control
to sensitive data. The data deletion scheme for the device
has also received extensive attention and research. While the
existing secure deletion approaches vary widely, they can be
categorized into two main groups: overwrite-based methods
and encryption-based methods.

A. Overwrite-based secure deletion

Sanitizing data by overwriting is the most intuitive approach
to secure deletion given its analog in the analog world [31].

Trim [32] and TrueErase [33] enable the file system to notify
the lower level device drivers to delete the file content so that
the file can be deleted in place. For flash or solid-state storage,
the trim command requires the support of the operating system
and device driver to achieve the flash content updating in place.
At present, most mobile devices are not supported.

Joel et al. [34] use the interface to delete data securely,
but the whole scheme has certain limitations. Then, they [35]
proposed a method based on padding and overlay to delete
data safely; however, this is not a good solution. At the same
time, in [36], the author also studied a data deletion scheme

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on January 06,2022 at 06:14:07 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3119514, IEEE Internet of
Things Journal

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

(a) (b) (c)

Ti
m

e

Ti
m

e

Ti
m

e

(s
)(s
)

(s
)

(s
)

(s
)

File Size (GB) File Size (GB) File Size (GB)
0 4 5 6 7 0 4 5 6 7 0 4 5 6 7

80

430

483

530

580

0

80

430

483

530

580

0

80

430

483

530

580

0

Purging

EMP
Purging

EMP

Purging

EMP

Fig. 14. The time overhead of Purging and EMP to delete different file sizes

TABLE II
COMPARISON OF DIFFERENT FACTORS OF EACH SCHEME.

Secure Deletion Confidentiality Integrity Fine-grained Efficiency Flexibility
Google [24] ×

√ √
× n/a ×

Reardon et al. [26]
√ √ √ √ √

×
Reardon et al. [25]

√
× ×

√
×

√

Wang et al. [23] ×
√

×
√

n/a
√

Yang et al. [27]
√ √ √ √

×
√

VACUUM
√ √ √ √ √ √

Fig. 15. The time overhead of different memory usages under Purging and
EMP when deleting files with the same size

for fast file storage systems, which was constructed based on
graph theory and shown to be effective through experiments.

Wang et al. [37] have devised a solution for efficient data
deletion, which comes at the expense of limited security. Later,
in [38], a secure data deletion scheme was designed to solve
system overhead and inefficiency.

Chen et al. [39] propose a method for secure data deletion
in fast file storage devices to solve security problems such as
the data leakage caused by traditional data cleanup. At the
same time, this method does not generate excessive system
overhead.

Reardon et al. [25] propose a user-level secure removal
method. Since most embedded flash devices use the built-in
FTL algorithm, which is a black box for the upper file sys-
tem, cannot manipulate the device driver to perform garbage
collection for the discarded flash page. We can reduce the
file system available free space to encourage more frequent
garbage collection ensuring that no deleted data can remain
on the storage medium.

VACUUM deletes the file by filling the storage medium to
its capacity, which is divided into active and passive triggers.
When one encounters a strong adversary, the garbage purge is
passively triggered to purge the key storage area and perform
a forced recall flash page.

B. Encryption-based secure deletion

For encryption-based secure deletion [40], decryption keys
are usually stored in disks, and to achieve secure deletion,
these keys for the deleted data are removed [41]. Unlike
overwrite-based methods, encryption-based solutions focus on
which layers should be encrypted and how to handle the keys
[19].

The solution of using encryption to remove the data was
originally proposed by Boneh et al. [18]; they delete a small
encryption key to achieve the purpose of deleting the entire
encrypted tape.

There are many designs and implementations at the kernel
level for different popular block device file systems [42]–[44].
These schemes encrypt the file data nodes in the kernel space
by extending the underlying file system, which supports a
variety of encryption algorithms. Users can distinguish be-
tween encrypted files and ordinary files by mounting different
directories.

Reardon et al. [26] propose the UBIFSec file system to
implement data node encryption by extending the UBIFS file
system. The UBIFSec provides a key for each data node and
establishes a mapping between the data node and the key
stored in the KeyStore area.

Wang et al. [45] design a data security removal scheme.
First, establish a key tree and generate key encryption data.
Then, the data deletion operation is controlled by setting a
threshold. When the number of invalid data blocks is greater
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than the threshold, the data block is erased. When the number
of invalid data blocks is less than the threshold, the key is
deleted.

Yang et al. [27] propose the SADUS file system to assign
a single key to each file only disconnecting the file from
the corresponding key in a secure delete operation. However,
this scheme cannot adequately protect the security of the
key. Similarly, Xiong et al. [46] also proposed a secure data
deletion scheme (SDDK) for building IoT devices, which can
protect data privacy and delete invalid data blocks.

Wang et al. [23] propose an approach to optimize the EncFs
system in the Android system mainly by modifying the size
of the encrypted file block and using a Direct-IO way to read
the file according to the FUSE feature. Since EncFs encrypts
the file name and content using the key generated by the user-
entered password, once the user password is compromised, the
entire encrypted file system can be decrypted, and therefore,
all data are exposed to an adversary.

We present the VACUUM user space file system. VACUUM
creates a unique key for each file and deletes the file by
deleting the corresponding key. Since flash utilizes out-of-
place update, we encrypt each file key at the same time.
Once a strong opponent enters the user’s incorrect password,
all the file keys in the encrypted file system will be purged.
At the same time, due to the use of the EMP mechanism,
which greatly improves the efficiency of garbage removal.
The garbage collection mechanism is introduced to purge the
memory periodically, reclaiming the discarded file encryption
key and ciphertext.

VI. CONCLUSIONS

On the basis of previous related work which aiming at
the urgent problem of safely deleting user data on embed-
ded devices (such as mobile phones, smart TVs, etc.), this
paper studied the logical structure, operation characteristics
and data management mechanism of flash. We analyzed the
process of data deletion and studied the reasons for the failure
of data deletion in terms of physical storage, file system
characteristics, and implementation of Android data deletion
functions. Based on the data storage process, we have studied
the data security deletion scheme including the physical layer,
the driver layer, the file system layer, and the user layer and
their advantages and disadvantages. Further, with the FUSE
framework of the user space file system, we proposed a secure
deletion method based on encryption technology, designed a
user-space encrypted file system with enhanced deletion, and
solved the problems of a single application scenario, complex
implementation, difficulty in the existing data security dele-
tion, and difficulty in migration. In addition, we implemented
the prototype system, VACUUM, on an Android mobile device.
We proved that the file system can resist specific online and
offline attacks to ensure that the file is safely stored and that
the deleted data are irrecoverable. In future work, we will also
focus on sensitive data security backup issues. At the same
time, further improvement of system performance is also a
problem worthy of attention.
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