
TrustLogin: Securing Password-Login on Commodity
Operating Systems

Fengwei Zhang
George Mason University

Fairfax, VA, USA
fzhang4@gmu.edu

Kevin Leach
University of Virginia

Charlottesville, VA, USA
kjl2y@virginia.edu

Haining Wang
University of Delaware

Newark, DE, USA
hnw@udel.edu

Angelos Stavrou
George Mason University

Fairfax, VA, USA
astavrou@gmu.edu

ABSTRACT
With the increasing prevalence of Web 2.0 and cloud com-
puting, password-based logins play an increasingly impor-
tant role on user-end systems. We use passwords to au-
thenticate ourselves to countless applications and services.
However, login credentials can be easily stolen by attack-
ers. In this paper, we present a framework, TrustLogin, to
secure password-based logins on commodity operating sys-
tems. TrustLogin leverages System Management Mode to
protect the login credentials from malware even when OS is
compromised. TrustLogin does not modify any system soft-
ware in either client or server and is transparent to users,
applications, and servers. We conduct two study cases of
the framework on legacy and secure applications, and the
experimental results demonstrate that TrustLogin is able to
protect login credentials from real-world keyloggers on Win-
dows and Linux platforms. TrustLogin is robust against
spoofing attacks. Moreover, the experimental results also
show TrustLogin introduces a low overhead with the tested
applications.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Invasive software; B.4.2 [Hardware]: Input/Output De-
vices—Channels and controllers

Keywords
Login Password; System Management Mode; Keyloggers

1. INTRODUCTION
Logging in is part of daily practice in the modern world.

We use it to authenticate ourselves to applications for re-
source accesses. Consequently, login credentials are one of
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the top targets for attackers. For example, keylogger mal-
ware found on UC Irvine health center computers in May
2014, and it is estimated that 1,813 students and 23 non-
students were impacted [7]. Additionally, it is reported that
attackers have stolen credit card information for customers
who shopped at 63 Barnes & Noble stores using keylog-
gers [3]. A case study has shown that 10,775 unique bank
account credentials were stolen by keyloggers in a seven-
month period [22]. Protecting login credentials is a critical
part of daily life.

Nowadays, operating systems are complex and rely on mil-
lions of lines of code to operate (e.g., the Linux kernel has
about 17 million lines of code [35]). The large Trusted Com-
puting Base (TCB) of these OSes inevitably creates vulner-
abilities that could be exploited by attackers. The Common
Vulnerabilities and Exposures (CVE) list shows that 240
vulnerabilities have been found for the Linux kernel [2]. An
attacker can easily leverage these vulnerabilities to create
rootkits and keyloggers.

On top of an untrusted OS, no matter how secure the
network applications are, the sensitive data used by secure
applications is at risk of leakage. For example, an attacker
can install a stealthy keylogger after compromising the OS,
so the banking login information entered in a web browser
can be obtained by the attacker without a user awareness.
Therefore, the protection of the user’s sensitive data during
network operations is crucial; we need to prevent malicious
behaviors of attackers on network applications.

In this paper, we present TrustLogin, a framework to se-
curely perform login operations on commodity operating
systems. Even if the operating system and applications
are compromised, an attacker is not able to reveal the lo-
gin password from the host. TrustLogin leverages System
Management Mode (SMM), a CPU mode that exists in x86
architecture, to transparently protect the login credentials
from keyloggers. Since we assume the attackers have ring 0
privilege, all of the software including the operating system
cannot be trusted. SMM is a separate CPU mode with iso-
lated execution memory, and it is inaccessible from the OS,
which satisfies the needs of our system.

When users enter their passwords, TrustLogin automati-
cally switches into SMM and records the keystroke. It pro-
vides a randomly generated string to the OS kernel and then
the network driver prepares the login packets. When the lo-
gin packets arrive at the network card, TrustLogin switches



into SMM again and replaces the placeholder with the real
password. Under the protection of TrustLogin , rootkits
(e.g, keyloggers) cannot steal the sensitive data even with
ring 0 privilege. To defend spoofing attacks, we implement
two novel techniques that ensure the trust path when switch-
ing to SMM. They use the LED lights on keyboard and the
PC speaker to interact with users. More importantly, Trust-
Login does not modify application- and OS-code, and it is
transparent from client and server sides.

To demonstrate the effectiveness of our approach, we con-
duct two study cases to use TrustLogin with legacy and se-
cure applications. We test TrustLogin with real-world key-
loggers on both Windows and Linux platforms, and the ex-
periment results show that TrustLogin is able to protect the
login password against them. We also measure the perfor-
mance overhead introduced by executing code in SMM. Our
results show SMM switching only takes about 8 microsec-
onds. TrustLogin takes 33 milliseconds to store and replace
a keystroke and most of the time is consumed by trusted
path indication (i.e., playing a melody and showing a LED
light sequence); it spends 30 microseconds on injecting the
password back to a login packet for the tested application.
The contributions of this paper are summarized as follows:

• We propose a framework, TrustLogin, to secure pass-
words when logging in on commodity operating sys-
tems. It leverages System Management Mode to pro-
tect the sensitive data from exposing to rootkits and
thus guarantees the security on the local host.

• TrustLogin does not modify application- and OS- code,
and it is transparent from both user-ends and servers.
TrustLogin does not rely on hypervisor or OS code,
and it introduces a minimal trusted code.

• We implement our framework on legacy and secure ap-
plications. We also demonstrate that TrustLogin can
prevent real-world keyloggers from stealing passwords
on Windows and Linux platforms.

• TrustLogin is robust against spoofing attacks by en-
suring the trusted path of SMM switching. The per-
formance experiments show that TrustLogin is light-
weight and efficient to use.

The rest of the paper is organized as follows. Section 2
explains the background of the work. We discuss the threat
model and assumptions in Section 3. Section 4 outlines the
system architecture and implementation of TrustLogin. We
propose the login case studies in Section 5. The discussion
and limitation of TrustLogin is explained in Section 6. We
present the related work in Section 7. Section 8 concludes
the paper and discusses future work.

2. BACKGROUND

2.1 Advanced Programmable Interrupt Con-
troller

The Advanced Programmable Interrupt Controller (APIC)
is used to handle the communication between CPU and pe-
ripherals. There are two components in the Intel APIC
system, the Local APIC (LAPIC) and the I/O APIC. The
LAPIC performs two primary functions for the processor:
1) It receives interrupts from an external I/O APIC and

sends these to the processor core for handling; 2) it sends
and receives Interprocessor Interrupt (IPI) messages to and
from other logical processors. The LAPIC is integrated in
the CPU and each processor core has a LAPIC. The exter-
nal I/O APIC is part of the system chipset. Its primary
function is to receive the interrupts from I/O devices and
forwards them to the LAPIC as interrupt messages. Nor-
mally each peripheral bus has an I/O APIC. In TrustLogin,
we reconfigure APIC to generate SMIs.

2.2 System Management Mode
System Management Mode (SMM) is a CPU mode avail-

able in all x86 architecture. It is similar to Real and Pro-
tected Modes. Originally, it was designed for implementing
system control functions such as power management. In
recent years, it has been used for system introspection, de-
bugging and so on. SMM is implemented by the Basic In-
put/Output System (BIOS). Before the system boots up, the
BIOS loads SMM code into System Management RAM (SM-
RAM), a special memory region that is inaccessible from any
other CPU mode. SMM is triggered by asserting the System
Management Interrupt (SMI) pin on the motherboard. Both
hardware and software are able to assert this pin, although
the specific method depends on the chipset. After assertion,
the system automatically saves its CPU states into SMRAM,
and then executes the SMI handler code. A RSM instruction
is executed at the end of the SMI hander to switch back to
Protected Mode. In TrustLogin, we use SMM as a trusted
execution environment to implement critical operations.

3. THREAT MODEL AND ASSUMPTIONS

3.1 Keylogger
Keyloggers can be classified into two types: hardware-

and software-based. Hardware-based keyloggers are small
electronic devices that are used to capture the keystrokes.
They are often built in the keyboard itself and have separate
non-volatile memory to store the keystrokes. Hardware key-
loggers do not require installation of any software or power
source for their operations. For instance, there are some
commercial hardware keyloggers available [8]. In this paper,
we do not consider this type of keylogger, and we assume
the keyboard is not malicious.

Software-based keyloggers are installed within the operat-
ing system, and most of the keyloggers in the real world are
this type. There are two kinds of software keyloggers: user-
and kernel-level. For instance, a user-level keylogger can use
the GetKeyboardState API function to capture keystrokes
in Windows. This kind of keylogger is efficient but also
easily detected. Kernel-level keyloggers are implemented at
the kernel level and require administrator privilege to in-
stall. For example, a keyboard filter driver can be used
to stealthily capture keystrokes [37]. TrustLogin considers
software-based keyloggers as the threat model, and it guar-
antees that keystrokes cannot be stolen if such a keylogger
is present.

3.2 Assumptions
TrustLogin assumes that the attackers have unlimited com-

puting resources and can exploit zero-day vulnerabilities of
the host OS and desktop applications. We only consider at-
tacks against the host machine; network attacks are out of
the scope of this paper. We do not consider phishing at-
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tacks, which trick users to send their credentials to a remote
host. We assume the hardware and firmware of the host ma-
chine are trusted, and the attacker cannot flash the BIOS
or modify the firmware. We assume SMRAM is locked and
remains intact after boot, and the attacker cannot change
the SMI handler. We assume that the attacker does not
have physical access to the machine. We do not consider
Denial-of-Service (DoS) attacks against our system. Ring 0
malware can easily disable SMI triggering and stop the login
process.

4. SYSTEM FRAMEWORK
Figure 1 shows the architecture of TrustLogin. There are

four rectangles in the figure; the green rectangles represent
trusted components, including the keyboard, Network Inter-
face Card (NIC), and System Management Mode (SMM).
The red rectangle represents the operating system in Pro-
tected Mode, which may have been compromised by attack-
ers. When a user inputs the sensitive information (e.g., pass-
word) from the keyboard, the keyboard automatically trig-
gers an SMI for every key press. The SMI handler (which
executes in SMM) records the keystrokes and inserts bo-
gus place-holders in the keyboard buffer. After resuming
Protected Mode, the OS only handles the place-holders. In
other words, the attackers with ring 0 privilege can only re-
trieve the string of place-holders. When the login packet
is about to transmit, TrustLogin triggers another SMI by
using the network card. The SMI handler replaces the bo-
gus place-holders with the original keystrokes in the network
packet. We also make sure the packet leaves the network
card within the SMI handler so that malware cannot read
the packet. Next, we explain the system step by step.

4.1 Entering Secure Input Mode
In TrustLogin, we have two modes for the system. One is

the secure input mode, and the other one is the normal in-
put mode. In the secure input mode, TrustLogin intercepts
all of the keystrokes and protect them from the keyloggers
or rootkits. When the user is about to enter the sensitive
information (e.g., password), he or she needs to switch to
the secure input mode. Past systems have used a variety of
ways to notify the system. For instance, Bumpy [34] uses
“@@” as a Secure Attention Sequence (SAS) to signal the
system that the user is about to enter sensitive inputs.

One requirement of switching into the Secure Input Mode
is that the entering method should be rarely used by de-
fault. Ideally, it should be unique (e.g., a dedicated hard-
ware switch [40]), but SAS-like “@@” sequence also works.
The other requirement is usability. In TrustLogin, we simply
use the key combination, Ctr+Alt+1, to signal our system

and enter the secure input mode. When TrustLogin reads
an Enter key in the secure input mode, it stops intercepting
keystrokes and switches to the normal input mode. Since
users often end password inputs by pressing Enter, this is
reasonable.

4.2 Intercepting Keystrokes
TrustLogin intercepts every keystroke and records them

in the SMRAM in the secure input mode. Before introduc-
ing how keystrokes are intercepted in TrustLogin, we will
explain how keystrokes are handled normally.

The input/output devices (e.g., keyboard) connect to the
Southbridge (a.k.a. I/O controller Hub). Whenever a key is
pressed or released, the keyboard notifies the I/O Advanced
Programmable Interrupt Controller (APIC) in the South-
bridge. I/O APIC looks up the I/O redirection table based
on the Interrupt Request (IRQ), and then creates the cor-
responding interrupt message. The IRQ for the keyboard
is 1, and the interrupt message includes the Delivery Mode
(DM), Fixed, and the interrupt vector, 0x93. The interrupt
message goes through the PCI and system buses, and ar-
rives at the local APIC in the CPU. Based on the DM and
interrupt vector, the local APIC looks up the Interrupt De-
scriptor Table (IDT), and then the CPU jumps to the base
address of the OS keyboard interrupt handler. The OS key-
board interrupt handler starts to execute keyboard handling
functions. Specifically, it reads the keyboard data registers
by accessing port 0x60 and may display the key value on
the display monitor. Figure 2 shows the keystroke handling
process.

Note that there are two interrupts for each keystroke: key
press and key release. When the key is pressed or released,
the keyboard sends a message known as “scan code” to the
keyboard controller output buffer that the OS handler read
later. There are two different types of scan codes: “make
codes” and “break codes.” A make code is sent when a key
is pressed, and a break code is sent when a key is released.
Every key has a unique make code and break code. There
are three different sets of scan codes. Our keyboard uses the
scan code set 1 [6]. For example, the make code of the A key
is 0x1E, and its break code is 0x9E. If a user keeps holding
the key, the keyboard would continue to send interrupts with
the make code. When the user releases the key, the break
code would be written into the output buffer of the keyboard
controller.

To record the keystrokes, TrustLogin raises an SMI dur-
ing the key press or release handling process and saves the
keystrokes in the SMRAM. Additionally, we also save the
scan code set mapping in the SMI handler to figure out
which key is pressed or released. Next, we explain two ap-
proaches that we implement to trigger an SMI during the
keystroke handling.

4.2.1 I/O Trap Approach
TrustLogin can use hardware I/O traps to generate an

SMI [12]. The I/O trap feature allows SMI trapping on
access to any I/O port using IN or OUT instruction. As
mentioned, the OS interrupt handler needs to read the key-
board data register by accessing port 0x60. If we config-
ure the SMI I/O trap, an SMI would be triggered when
the OS handler reads the keyboard data registers. In this
way, we are able to intercept all keystrokes and save them
in the SMRAM. When the OS keyboard interrupt handler
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executes IN al, 0x60 instruction, the system automatically
generates an SMI. However, this IN instruction would not be
executed again when resuming the OS in Protected Mode.
To address this problem, the SMI handler needs to read the
key value from the keyboard data register and store it in the
EAX as if no trap has been created. Additionally, we need
to disable the SMI I/O trap in the SMI handler. Otherwise,
an SMI will be buffered when accessing the I/O port. In
that case, the SMI will be immediately triggered after exit-
ing SMM and the system will halt. Note that Wecherowski
demonstrated similar triggering approach in [43].

4.2.2 I/O APIC Rerouting Approach
The other approach of triggering SMIs is to reroute key-

board interrupt by reconfiguring I/O APIC. As shown in
Figure 2, The Delivery Mode (DM) of the I/O redirection
table can be configured as“SMI”instead of“Fixed”normally.
In other words, we are able to deliver an SMI to the CPU
for every keyboard interrupt; that is, every key press causes
our code to execute in SMM. Next, we store the keystroke
to the SMRAM by reading the keyboard data register in the
SMI handler.

We read the 1-byte scan code from the keyboard data reg-
ister by reading I/O port 0x60. After extracting the scan
code, we map the scan code to the key value using the scan
code set 1 table. Next, we store the key in the SMRAM.
Since this approach reroutes the keyboard interrupt to an
SMI, the original keyboard interrupt is not handled. To ad-
dress this problem, we configure the keyboard control regis-
ter (i.e., IO port 0x64) to reissue the interrupt. We write the
command code, 0xD2, to the control register. This special
command means the next byte written to the keyboard data
register (i.e., I/O port 0x60) will be as if it came from the
keyboard [42]. We write a replaced scan code back to the
data register after writing the command code. After exiting
SMM, another interrupt is generated due to the new data in
the keyboard data register. Additionally, we need to disable

SMI triggering in I/O APIC when reissuing the interrupt
in the SMI handler. This makes sure that the reissued in-
terrupt is a normal keyboard interrupt with “fixed” as the
DM. Otherwise, an immediate SMI will be generated after
exiting SMM, which causes an infinite loop (deadlock). The
method for accessing the I/O APIC or keyboard controller
is specified in the Southbridge datasheet [42].

Embleton et al. also used a similar approach to generate
SMIs in [20]. However, we did not see that the I/O read op-
eration of the keyboard data register was destructive in the
SMI handler; we were able to read the data register multiple
times until a new value was written. Additionally, it uses
interprocessor interrupts (IPI) to reissue the interrupt by
configuring the Interrupt Command Register (ICR), while
we simultaneously write to the keyboard control register to
reissue the normal interrupt.

4.2.3 Universal Serial Bus Keyboard
Universal Serial Bus (USB) is a popular external interface

standard that enables communication between the computer
and other peripherals. There are currently three versions of
USB in use: USB 1.1, 2.0, and 3.0. A USB system has a
host controller, and it sits between the USB device and the
operating system. USB 1.1 uses Universal Host Controller
Interface (UHCI) [26]; USB 2.0 uses Enhanced Host Con-
troller Interface (EHCI) [23]; and the recent USB 3.0 uses
eXtensible Host Controller Interface (XHCI) [24]. From the
manuals of these standards, all of the them support trigger-
ing SMIs. For instance, XHCI uses a 32-bit register to enable
SMIs for every xHCI/USB event it needs to track, and we
are able to trigger an SMI for every key press required by
TrustLogin. This register is located at xHCI Extended Ca-
pabilities Pointer (XECP) + 0x04, and we can find XECP
from the base address of the XHCI + 0x10. Similar regis-
ters that enable SMIs can also be found at EHCI and UHCI.
Moreover, Schiffman and Kaplana [38] demonstrated that
USB keyboards can generate SMIs.



4.3 Generating Placeholders
To replace the original password, we generate a place-

holder for each keystroke intercepted in the SMI handler.
One of the simplest methods is to replace each keystroke
with a constant character (e.g., character ‘p’). However,
this method cannot pass the security checks that ensure the
strength of the password. For instance, most of the pass-
word policies require that passwords contain at least one
digit, one lowercase character, one uppercase character, and
one special character. Although these checks are usually per-
formed on the server side, they could be done on the client
application. To address this problem, TrustLogin replaces
a keystroke based on its type. TrustLogin substitutes the
original keystroke with a random one of the same type.

We use a linear-congruential algorithm to generate a pseudo-
random number n in the SMI handler. The parameters of
the linear-congruential algorithm we used are from Numer-
ical Recipes [44]. Next, we use n mod k, where k is the car-
dinality of the corresponding type (e.g., 26 each for lower-
or uppercase characters) to generate a random character.
In terms of the special characters, different applications or
servers may have a different set of valid special characters.
For instance, the American Express website does not allow
special characters like ‘.’ in the password, while Bank of
America and CitiBank do accept it. TrustLogin assumes
the application allows six special characters as follows: dot,
underscore, star, percent, question mark, and sharp. We
can always update the set of special characters based on the
application requirements. Next, we discuss how the network
card intercepts packets and replaces the placeholders with
the original password.

4.4 Intercepting Network Packets
TrustLogin starts to intercept the network packets when

the Enter key is received in the secure input mode. This
means the user has finished entering the password and the
OS is about to transmit the login credentials. We use a pop-
ular commercial PCI-based network card, Intel e1000 [25],
to demonstrate this in TrustLogin.

Message Signaled Interrupts (MSIs) are an optional fea-
ture incorporated into PCI devices. They essentially allow a
PCI device to generate an interrupt without having to make
use of a physical interrupt pin on the connector. Introduced
in PCI version 2.2, MSIs allow the device to send a variety
of different interrupts to the CPU via the chipset. One such
interrupt is the SMI. We can configure the MSI configura-
tion registers (offset 0xF0 to 0xFF) in the PCI configuration
space to enable SMI triggering.

When MSIs are enabled, the network card generates a
message when any of the unmasked bits in the Interrupt
Cause Read register (ICR) are set to 1 [25]. The ICR con-
tains all interrupt conditions for the network card. Each
time an interrupt occurs, the corresponding interrupt bit is
set in the register. The interrupts are enabled through In-
terrupt Mask Set/Read Register (IMS). For instance, the
first bit of IMS sets a mask for Transmit Descriptor Written
Back (TDWB). When the hardware finishes transmitting a
packet, it sets a status bit back to the transmit descriptor;
this action could be an interrupt condition. In TrustLo-
gin, we reroute this interrupt to an SMI by using MSI. This
means we can trigger an SMI for each packet when it is
transmitted. In the SMI handler, we then inspect all of the
transmit descriptors in the transmit queue and search for

Figure 3: Transmit Descriptor Format [25]

the login packet. It is possible that the first packet that
generates the SMI is the login packet. To address this edge
case, we create a transmit descriptor in the SMI handler
beforehand and make sure the first SMI from NIC is trig-
gered by this transmit descriptor. This transmit descriptor
is created when TrustLogin enables the NIC’s SMI trigger-
ing by rerouting TDWB interrupts to an SMI. Note that
the transmit queue may become empty before finding the
login packet, so we may miss the first transmit descriptor
that arrives at the empty transmit queue. Thus, we insert
a transmit descriptor whenever the transmit queue becomes
empty until identifying the login packet.

Figure 3 shows the format of the transmit descriptor struc-
ture. Buffer Address points to the data in the host memory.
The CMD (i.e., command) field specifies the RS (i.e., report
status) bit. With this bit set, the hardware writes a status
bit back to the STA (i.e., status) field in the descriptor when
a packet is transmitted. For the inserted packet, we set the
RS bit and NULL to the Buffer Address so that it transfers
no data. We also makes sure all of the inspected packets
have the RS bit set.

To replace the placeholders in the network packets, Trust-
Login can simply search the sequence of the placeholders in
the packets. We can use the Transmit Descriptor Base Ad-
dress (TDBA) and Transmit Descriptor Tail (TDT) to find
the addresses of the transmit descriptors. The transmit de-
scriptor structure contains all of the information about the
packet including the address of the payload. Note that the
addresses here are physical addresses (i.e., no paging) be-
cause the Direct Memory Access (DMA) engine of the NIC
only understands the physical addresses. One challenge of
this method is that the network packets are encrypted (e.g.,
TLS) and Section 5.3.1 discusses this further. After the SMI
handler finds and replaces the placeholders, it waits until
the packet leaves the host to avoid further sensitive data
leakage. Moreover, the attacker may use NIC’s diagnostic
registers to access transmitted packet connects. We empty
the NIC’s internal Packet Buffer Memory (PBM) by writing
16KB random data since the size of the internal buffer of
our testing NIC is 16KB [25].

4.5 Ensuring Trusted Path
One challenge of TrustLogin is the reliability of triggering

SMIs. As shown in Figure 2, The I/O redirection table in red
is not trusted. An attacker with ring 0 privilege can mod-
ify the table to intercept an SMI, and then prepare a fake
switching process so that the users think that he or she is in
the SMM. In this case, the attacker can trick the user and
get the password. This is a typical spoofing attack. There
has been some research tackling this problem [41, 34, 40,
32]. Bumpy [34] uses an external smartphone as the trusted
monitor to acknowledge the switching. SecureSwitch [40]
and Lockdown [41] use a dedicated switch to ensure the trust
path. Cloud Terminal [32] uses a UI with strawberries on
the screen as a shared secret to prevent spoofing attack. In



TrustLogin, we implement two novel methods to prevent the
spoofing attacks. One approach is to use the keyboard Light
Emitting Diode (LED) lights, and the other is to use the
PC speaker. Next, we explain the implementation details of
these two approaches.

4.5.1 Keyboard LED Lights
We use the LED lights on the keyboard to ensure the trust

path. Usually, there are three LED lights on the keyboard,
indicating Num, Caps, and Scroll locks. The users can set a
shared secret LED light sequence to indicate that the system
is in SMM. For instance, we can refer to scroll lock as 0,
number lock as 1, and caps lock as 2. {[0 on]→[0 off]→[1
on]→[1 off]→[2 on]→[2 off]} is a LED light sequence. When
the system switches into SMM, the SMI handler performs
the shared secret LED light sequence so that the user knows
the system is in SMM–not tricked by attackers.

To program the keyboard LED lights, we write a com-
mand byte, 0xED, into the keyboard data register, and then
write a LED state byte to the same I/O port. Bit 0 is for
scroll lock; bit 1 is for number lock; bit 2 is for caps lock.
Value 1 means on and 0 indicates off. Since every keystroke
generates two interrupts (i.e., key press and release), Trust-
Login only shows the LED light sequence when the key is
released. We can easily identify a key release by checking
the value of the scan code (greater than 0x80 [6]).

To help the user to identify the LED light sequence, we set
a time delay between two lights. For instance, there should
be a time delay between [0 off] and [1 on] for distinction.
In TrustLogin, each light is on for 1 ms, and we set the
same time delay when switching lights. The authors can
identify that sequence based on their observations in the
experiments. The user can adjust the time delay based on
their preference.

mov $0x30D40 , %ecx ;1 CPU cycle
DELAY:

nop ;1 CPU cycle
nop ;1 CPU cycle
nop ;1 CPU cycle
loop DELAY ;8 CPU cycles

Listing 1: Assembly Code that Introduces 1 ms Delay
on Our Testbed

Listing 1 shows the assembly code that introduces a 1 ms

delay on our testbed. This delay function loads a counter,
0x30D40 or 200,000 in decimal, into EAX, and spinlocks until
the counter is 0. The value, 200,000, is calculated from
the time it takes to execute the loop instructions on our
testbed. The testbed has an AMD Sempron LE-1250 2.2
GHz processor with AMD K8 chipset. The MOV and NOP

instructions take 1 CPU cycle and the LOOP instruction takes
8 CPU cycles [5]. We also assume it takes 7 CPU cycles for
a LOOP instruction when the contents of EAX is zero. The
equations explain the steps that calculates the counter for
performing 1 ms time delay on our testbed.

TimeDelay =
ClockCycles

ClockSpeed

1ms =
1 + N ∗ (1 + 1 + 1) + (N − 1) ∗ 8 + 7

2.2GHz
=⇒ N = 200, 000

4.5.2 PC Speaker
We also use the PC speaker to ensure the trusted path.

TrustLogin plays simple music on the PC speaker when each

key is pressed in the secure input mode. The users can
choose their favorite melodies and embed them in the SMI
handler. By recognizing their selected tone sequence, they
can ensure that an SMI is triggered for their every key press.
Thus, the selected music should be short but recognizable.
TrustLogin plays a C major scale in the SMI handler to
demonstrate this idea. Table 3 in Appendix shows the notes
and corresponding frequencies for one complete octave start-
ing from a middle C. We set the middle C as 523.25 Hz based
on a musical reference guide [1].

To play a tone, we program the Intel 8253 Programmable
Interval Timer (PIT) in the SMI handler to generate mu-
sical notes. The 8253 PIT performs timing and counting
functions, and it exists in all x86 machines. In modern ma-
chines, it is included as part of the motherboard’s south-
bridge. This timer has three counters (Counters 0, 1, and
2), and we use the third counter (Counter 2) to generate
tones via the PC Speaker. We can generate different kinds
of tones by adjusting the output frequency. The output fre-
quency is calculated by loading a divisor into the 8253 PIT.

Divisor = IF/OF,

where IF is the input frequency of the 8253 PIT. IF used
by the PIT chip is about 1.19 MHz, and OF is the output
frequency. Column 3 of Table 3 shows the calculated divisors
for the musical notes of an octave based on their output
frequencies.

Playing a note on the PC speaker takes the following
steps: 1) Configure mode/command register of the PIT chip
through port 0x43 with value 0xB6, which selects channel 2
to use and sets the mode to accept divisors; 2) load a divisor
into channel 2 through port 0x42; 3) turn on bit 0 and bit
1 of port 0x61 to enable the connection between PIT chip
and the PC speaker; 4) set a time for the note to play; 5)
turn off the PC speaker by configuring port 0x61. Similar
to the LED lights sequnce, we need to set a time delay so
that the users can easily identify the music. In TrustLogin,
each note is produced in 1 ms, and we set the same time of
the delay between every two notes.

5. CASE STUDY
We study legacy and secure applications to demonstrate

the effectiveness of TrustLogin. For the legacy applications
that we referenced, they are normally built on a client-server
architecture, and authentication occurs using a plaintext
username/password pair. We consider Remote Shell (rsh),
File Transfer Protocol (FTP), and Telent legacy applica-
tions. Note that TrustLogin is OS-agnostic for legacy appli-
cations because it does not need to reconstruct the semantics
of OS kernels and rebuilds the packet in the NIC. For the
secure applications that we noted, their network traffic se-
curely encrypted. We consider Secure Shell (SSH), Secure
File Transfer Protocol (SFTP), and Transport Layer Secu-
rity (TLS) secure protocols.

5.1 Hardware and Software Specifications
We conduct the case study on a physical machine, which

uses an ASUS M2V-MX SE motherboard with an AMD K8
Northbridge and a VIA VT8237r Southbridge. It has a 2.2
GHz AMD LE- 1250 CPU and 2GB Kingston DDR2 RAM.
We use a Dell PS/2 keyboard and PCI-based Intel 82541
Gigabit Ethernet Controller as the triggering devices. To



program SMM, we use the open-source BIOS, Coreboot [19].
We also install Microsoft Windows 7 and CentOS 5.5 on this
machine.

5.2 Case Study I: Legacy Applications
For legacy applications, we use FTP as the study exam-

ple. Next, we demonstrate the effectiveness of our system
on both Windows and Linux platforms. Figure 4 shows the
screenshots of the FTP login with and without TrustLo-
gin on Windows and Linux. We create an FTP account
on a server. The username and password for the account
is hack3r and AsiaCCS., respectively. On Windows, we in-
stall the Free Keylogger Pro version 1.0 [4] and use the FTP
client to connect to the server. We first start the keylog-
ger to log keystrokes. Next, we login to the FTP server
without TrustLogin enabled. As shown in subfigure 4(a),
we can see that the keylogger records the timestamp, ap-
plication name, username, and password in a file. The red
rectangle shows the password is AsiaCCS. as recorded by
the keylogger. Then, we enable TrustLogin and login to
the FTP server again. However, the password recorded by
the keylogger has been changed to a random string gener-
ated by TrustLogin. In other words, the keylogger cannot
steal the real password when TrustLogin is enabled. We
install Logkeys version 0.1.1a [9] on the CentOS 5.5, and
subfigure 4(b) shows the results. Similar to the experiments
on Windows, we login to the FTP server with and without
TrustLogin enabled. We can see that the keylogger logs the
random placeholders when TrustLogin enabled, and the key-
logger cannot steal the login password. Note that attackers
can easily steal the passwords from legacy applications by
sniffing out the network. However, TrustLogin is used to ad-
dress the general problem of securing keystrokes on the local
host. Here studying the legacy applications emphasizes that
TrustLogin is a framework that works with various applica-
tions to prevent keyloggers.

5.3 Case Study II: Secure Applications
TrustLogin replaces the password placeholders in a net-

work packet when the packet is about to transmit. However,
since most of the network packets are encrypted, we cannot
simply search for the placeholder sequence though the en-
crypted data. For example, Transport Layer Security (TLS)
encrypts the data of network connections in the application
layer.

Secure Shell (SSH) is one of the most popular applica-
tion protocols for access to shell accounts on Unix-based
systems. There are several client authentication methods
supported by SSH. For instance, we can use a public and
private key pair to authenticate the client. However, we only
consider the password-based authentication method in this
paper. The password-based authentication method is the
most commonly used authentication mechanisms in SSH.
The SSH server simply uses a username and password to
authenticate the client, and the password transmitted by
the client to the server is encrypted by a session symmetric
key. Unlike the legacy applications, we cannot simply search
for the login packet and replace the original password. To
address this problem, TrustLogin decrypts and re-encrypts
the login packets using the session symmetric key. Next, we
explain how we find the session states like the session key.

5.3.1 Session State Searching

As mentioned, SSH protocol uses a session symmetric key
to encrypt the traffic. To decrypt the login packet, we first
need to find the session states in the memory. Fortunately,
SMM is able to access all of the physical memory because it
has the highest privilege. TrustLogin uses signature-based
searching. Typically, software data structures inevitably cre-
ate some signatures in memory. For example, researchers
extract SSL private key in memory by validating RSA/DSA
structures on multiple applications including Apache, SSH,
and OpenVPN [18].

We use session_state structure as the signature for the
searching. The session_state structure stores the session
information for SSH communication. By analyzing the source
code of OpenSSH [11], some fields of session_state struc-
ture in the packet.c file are static before users authenticate
themselves. For instance, the max_packet_size field is set
to constant, 0x8000. Listing 2 shows part of session_state
structure, and these fields are static and continuous. Thus,
TrustLogin uses this static signature as the search string and
then finds the session states in memory. Since we assume
malware has ring 0 privilege, an advanced malware can pre-
pare a fake session key to TrustLogin. This attack breaks
the login process but cannot steal the real password. Note
that a DoS attack is out of the scope of this paper.

struct session_state {
/* default maximum packet size , 0x8000 */
u_int max_packet_size;
/* Flag indicating whether this module has been

initialized , 0x1 */
int initialized;
/* Set to true if connection is interactive , 0x0 */
int interactive_mode;
/* Set to true if we are the server side , 0x0 */
int server_side;
/* Set to true if we are authenticated , 0x0 */
int after_authentication;
/* Default before login , 0x0 */
int keep_alive_timeouts;
/* The maximum time that we will wait to send or

receive a packet , -1, 0xffffffff */
int packet_timeout_ms;

Listing 2: Static fields of Session Structure in SSH
Source Code

One naive approach for implementation would be search-
ing byte-by-byte through all of physical memory, but this
is very slow. We instead search only the SSH instance in
TrustLogin. Since only the physical memory is visible to
SMM, we must reconstruct semantics of the raw data. In
other words, we must understand the location of the SSH
process and what its content means in memory. This is
referred to as the “semantic gap problem.” Recently, re-
searchers proposed an array of approaches to address this
problem [27], including hand-crafted data structure signa-
tures [28, 47] and automated learning and bridging [30, 21].
Similar to the previous systems [28, 47], we manually recon-
struct the semantics using kernel data structure signatures.

We first use the ESP value saved in the SMRAM to calcu-
late the pointer to the current process’s task_struct. Alter-
natively, we can obtain the address of the init_task from
the System.map file. Next, we traverse the doubly linked list
of task_structs or run_lists to locate the SSH process by
comparing the comm field. Note that multiple instances of
SSH could be running at the same time in the memory. We
use the prev field for the transversal, which ensures that the
first SSH process found is the last process launched. In this



(a) FTP Login With and Without TrustLogin on Windows

(b) FTP Login With and Without TrustLogin on Linux

Figure 4: FTP Login With and Without TrustLogin on Windows and Linux
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case, we assume the user interacts with the most recently
launched SSH instance. Next, we obtain a pointer to the
mm_struct from the mm field in task_struct. The mmap field
in the mm_struct points to the head of the list of memory
regions with the type vm_area_struct. The memory region
object contains vm_start and vm_end fields, which define
the start and end addresses of the memory region. Figure 5
shows the semantic reconstruction using kernel data struc-
tures in Linux. As pointed out in [27], all of the current
solutions to the semantic gap assumes the kernel data struc-
tures are benign. Our semantic reconstruction approach also
assumes this. We search the session_state signature in the
memory regions of the SSH process, which achieves a better
performance than the linear searching approach. Section 5.4
details the overheads of these two approaches.

All pointers in these structures are virtual. However,
SMM does not use paging, meaning it addresses physical
memory directly. Thus, we must translate addresses manu-
ally from virtual to physical space. For kernel-space struc-
tures (e.g., task_struct and mm_struct), there is a constant
offset, 0xc0000000, to move from virtual to physical space.
For userspace structures (e.g., vm_start and vm_end), we
locate and employ the process’s page tables. Fortunately,
the pgd field in the mm_struct stores the cr3 value that
tells us the location of the global page directory. After we
retrieve all of the required information from memory, we de-
crypt the data and replace the placeholder sequence with
the real password in the packet. Finally, we rebuild the net-
work packet with the corresponding checksum by using the
functions from OpenSSH source code.

5.4 Performance Evaluation
In order to understand the performance overhead of our

system, we measure the runtime of each individual operation
in the SMI handler. In TrustLogin, we have two parts of the
handling code in the SMI handler; one is to handle the SMI
triggered by the keyboard (i.e., KB SMI), and the other part
is executed when the NIC triggers an SMI (i.e., NIC SMI).
The KB SMI contains 7 steps.

1. Play a melody
2. Show an LED sequence
3. Disable keyboard SMIs (prevent reissuing)
4. Read the keystroke from the keyboard data register

and save it in SMRAM
5. If Enter is pressed, break out and enable NIC SMIs
6. Generate random scan code and replace the keystroke
7. Enable keyboard SMIs for subsequent keystroke

Additionally, the NIC SMI consists of 3 operations.

1. Locate received packet in NIC memory
2. Search packets and inject original password
3. Disable NIC SMIs after password is injected

We measure the time delay for all of these operations in
the SMI handler. As mentioned in Section 2, the hardware
automatically saves and resumes the CPU context when
switching to SMM. We also measure the overhead induced
by switching to and resuming from SMM.

Table 1 shows the time breakdown of each operation. We
use the Time Stamp Counter (TSC) to measure the time
delay for each operation. We first record the TSC value at
the beginning and end of each operation. Next, we use the

Table 1: Breakdown of the SMI Handler Runtime
(Time: µs )

Operations Mean STD 95% CI

KB SMI

Play music 26,244 3,675 [25,199,27,288]
Show LED 6,317 251 [6,245,6,388]
Disable KB SMI 1.47 0.21 [1.40,1.53]
Read keystroke 2.38 0.33 [2.28,2.47]
Enable NIC SMI 8.40 0.05 [8.39,8.419]
Replace keystroke 8.94 1.27 [8.57,9.30]
Enable KB SMI 1.14 0.17 [1.09,1.19]
Total of KB SMI 32,583

NIC SMI

Read NIC registers 3.96 0.10 [3.93,3.99]
Search packets 18.27 1.18 [17.93,18.60]
Disable NIC SMI 7.44 0.05 [7.42,7.45]
Total of NIC SMI 29.67
Switch into SMM 3.29 0.08 [3.27,3.32]
Resume from SMM 4.58 0.10 [4.55,4.61]
Total of switching 7.87

Table 2: Comparison between Linear Searching and
Semantic Searching

Approaches Search Space Time
Linear Searching 2 GB 70.21 s
Semantic Searching 18 MB (1.39+227.45) ms

CPU frequency to divide the difference in the TSC regis-
ter to compute how much time this operation. We conduct
the experiment based on the FTP login for 30 trials. We
calculate the mean, standard deviation, and 95% confidence
interval for each operation. From Table 1 we can see that
the total time for KB SMIs is about 32 ms. Note that most
of the time is consumed by playing the melody and showing
the LED sequence. Each note in the melody and each part
of the LED sequence takes 1 ms (See Section 4.5 for details).
The total time of the NIC SMI code and SMM switching are
only about 30 and 8 µs, respectively.

As mentioned in Section 5.3.1, searching the SSH session
states after reconstructing the memory semantic (called se-
mantic searching) achieves a better performance than lin-
ear searching. To demonstrate this, we compare the linear
searching with the semantic searching. We conduct the ex-
periment on the Linux machine. We installed the latest
OpenSSH client version 6.6p1 on the testbed, and the test-
ing machine has 2GB physical memory. For linear searching,
we compare the signature of the session states with the 2GB
memory byte-by-byte. As for semantic searching, we first
find the SSH process in memory using kernel data struc-
tures and then only search the memory regions pointed by
mmap. After a user types ssh username@hostname in a termi-
nal, the SSH server waits for the password from the client.
At this time, we trigger an SMI and let the SMI handler
perform both searching methods. We also use the TSC to
measure the time it takes for each approach.

Table 2 shows the comparison between linear searching
and semantic searching. The linear searching has 2 GB of
searching space and takes about 70 seconds to find the ses-
sion states. The semantic searching only has about 18 MB
of searching space; it takes 1.39 ms to fill the semantic gap
and 227 ms for searching.

6. LIMITATIONS AND DISCUSSION
TrustLogin provides a framework to secure password-based

logins on commodity operating systems, and it can be ap-
plied to many network applications. We demonstrate the



effectiveness by using legacy and secure applications. To
port more secure applications working with TrustLogin, we
need to decrypt and rebuild the relevant login packet, which
requires application-specific efforts.

Additionally, an advanced keylogger may directly read the
keyboard buffer to retrieve the keystrokes using DMA. For
example, Ladakis et al. [29] proposed a GPU-based keylog-
ger that directly reads the keyboard buffer from the GPU
through DMA. In TrustLogin, the CPU has been switched
to SMM, but DMA is able to read the keyboard buffer at
the same time that SMM accesses it. In other words, there
is a race between SMM and DMA. From the experimental
results in Table 1 we can see that TrustLogin only takes
a couple of microseconds (i.e., 3.29+2.38+8.94=14.61 µs)
to switch into SMM and replace the scan code in the key-
board buffer. However, the GPU-based keylogger needs to
periodically poll and monitor the keyboard buffer for new
keystrokes, and the suggested polling interval is 90 millisec-
onds in the prototype of the GPU-based keylogger [29]. As
stated in the paper, higher frequency of polling may affect
the proper display of the graphics, and the user may notice
the abnormal event. Thus, TrustLogin is able to defend a
GPU-based keylogger as long as the polling interval does not
pass below 15 microseconds.

There have been a number of attacks against SMM [16].
Wojtczuk and Rutkowska [46] have demonstrated a cache
poisoning attack by configuring the Memory Type Range
Registers (MTRR) to execute malicious code in the cache in-
stead of SMRAM. However, this architectural bug has been
fixed by the Intel in recent chipsets by adding System Man-
agement Range Register (SMRR). Additionally, the MITRE
team discovered a buffer overflow vulnerability in SMM [17],
but this bug is specific to the code implemented in the BIOS
and is not an architectural bug. Recently, Wojtczuk and
Kallenberg [45] presented an SMM attack by manipulating
UEFI boot script. The UEFI boot script is a data struc-
ture interpreted by UEFI firmware during S3 resume. When
the boot script executes, system registers like BIOS CNTL
(SPI flash write protection) or TSEG (SMM protection from
DMA) are not set so that attackers can force an S3 sleep
to take control of SMM. Fortunately, as stated in the pa-
per [45], the BIOS update around the end of 2014 fixed this
vulnerability.

7. RELATED WORK
Recently, researchers proposed several trustworthy com-

puting environments to execute sensitive workloads. SICE [14]
leverages SMM to provide an isolated execution environment
to protect sensitive workloads in cloud servers. It does not
rely on any software component in the host environment and
supports up to 4GB of isolated memory. SecureSwitch [40] is
another isolated computing environment for executing sen-
sitive workloads. It relies on the S3 sleep mode (i.e., sus-
pend to RAM) in the BIOS to switch between trusted and
untrusted OSes. Flicker [33] uses Late Launch to enable ex-
ecution of a Piece of Application Logic (PAL). Unlike these
trustworthy computing environments, TrustLogin is light-
weight and only protects the sensitive network inputs.

One of the closest works is Bumpy [34], a Flicker-based
system for securing sensitive network input. It handles in-
puts in a special code module that is executed in an isolated
environment using the Flicker. Bumpy can protect user’s
sensitive web inputs even with a compromised OS or web

browser. However, Bumpy requires modification of the web
application and web server, while TrustLogin does not and
works transparently.

Cloud Terminal [32] is a micro-hypervisor and provides
secure access to sensitive applications from an untrusted OS.
It moves most application logic to a remote server called the
Cloud Rendering Engine and only runs a light-weight Secure
Thin Terminal on the end host, so end-users can securely
execute sensitive applications. It also uses the Flicker to
setup the micro-hypervisor. Cloud Terminal has the same
threat model as TrustLogin, while TrustLogin uses existing
hardware features without using a micro-hypervisor and has
a smaller TCB.

Borders and Prakash proposed a Trusted Input Proxy
(TIP) [15] to secure network inputs. The TIP runs as a
module in a separate VM that proxies network connections
of the primary VM. It also uses the placeholder approach
to substitute the actual sensitive data. Neither TIP nor
TrustLogin require modification of web browser and server,
and they are transparent to users. As stated in the limita-
tion section of this paper, TIP relies on a virtual machine
monitor. It also introduces a large trusted code base and
significant slowdown for I/O intensive applications. Trust-
Login is a hardware-assisted method working on bare metal,
which overcomes the shortcomings in TIP.

MP-Auth [31] uses a mobile device to encrypt the pass-
word under the public key of an intended server, and passes
the encrypted password to the host for authentication. The
host can only access a one-time password so that it can pre-
vent keyloggers and phishing attacks. oPass [39] leverages a
user’s cellphone and short message service to thwart creden-
tial stealing and password reuse attacks. Recently, Google
provided a 2-step verification for the Gmail login. The 2-
step verification requires something you know (i.e., pass-
word) and something you have (i.e., cell phone). Even if
an attacker compromises the password, she still needs the
cell phone to get into the account, so the 2-step verification
provides an extra layer of security. Compared to TrustLo-
gin, MP-Auth, oPass, and 2-step verification propose a new
protocol between the web browser and web server. That is,
they modify the network application and server to fit their
new protocols. TrustLogin is built on existing authentica-
tion protocols and is transparent to network applications
and servers.

In recent years, an array of SMM-based systems have been
implemented. On one hand, researchers use SMM to imple-
ment stealthy rookits [20, 38]. For instance, the National
Security Agency (NSA) uses SMM to build an array of root-
kits including DEITYBOUNCE for DELL and IRONCHEF
for HP Proliant servers [10]. On the other hand, researchers
leverage SMM to build security defense systems. For ex-
ample, HyperCheck [49] and Hypersentry [13] are SMM-
based systems used to check the integrity of the hypervi-
sors. Spectre [47] and IOCheck [48] are introspection frame-
works for detecting malicious malware in the live memory
and firmware, respectively. SMMDumper [36] uses SMM to
reliably acquire physical memory for forensics purposes.

8. CONCLUSIONS AND FUTURE WORKS
In this paper, we presented TrustLogin, a novel frame-

work for securing password-login via System Management
Mode. We do not trust underlying applications and OS on
the target system, and TrustLogin is able to prevent root-



kits and stealthy malware from stealing sensitive data from
the local host. Since TrustLogin does not change any soft-
ware on the client and server sides, it is transparent to users
and applied applications. We implemented our framework
on legacy and secure applications. The experiment results
show that TrustLogin is robust against keyloggers on both
Windows and Linux platforms. TrustLogin is able to de-
fend spoofing attacks and guarantees the trust path of SMM
switching. Our performance evaluation results show that
TrustLogin is light-weight and only takes 8 microseconds
for SMM switching.

As explained in the threat model, the current prototype of
TrustLogin cannot defend against phishing attacks and only
protects the login credentials on the local host, so we plan
to mitigate this attack in our future work. For instance, we
can ask users to type the destination hostame/IP address
before entering the login credentials. Similar to intercepting
the login credentials, we store the destination hostname/IP
address in SMRAM. Note that this hostname/IP address
cannot be modified by malware because we intercept the
keystrokes before the OS receives them. When TrustLogin
injects the login credentials back to the network packet, we
also check the destination IP address of that packet and
make sure it matches the one in SMRAM. If it matches,
we can guarantee that the packet would be delivered to the
user’s desired destination. Note that the malware cannot
change the IP address after the checking procedure because
the SMI handler waits until the packet physically leaves NIC.
Since humans are used to remembering hostnames instead
of IP addresses, the SMI handler may need to implement
an nslookup utility to translate the hostname to the IP ad-
dress.
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APPENDIX

Table 3: Musical Notes of an Octave

Musical Note Frequency (Hz) Divisor
C 523.25 0x08E2
D 587.33 0x07EA
E 659.26 0x070D
F 783.99 0x06A8
G 783.99 0x05EE
A 880.00 0x0548
B 987.77 0x04B5
C 1046.50 0x0471


