USENIX

THE ADVANCED COMPUTING
SYSTEMS ASSOCIATION

TETD: Trusted Execution in Trust Domains

Zhanbo Wang, Research Institute of Trustworthy Autonomous Systems,
Southern University of Science and Technology, China, and Pengcheng Laboratory,
China; Jiaxin Zhan, Research Institute of Trustworthy Autonomous Systems,
Southern University of Science and Technology, China, and Department of Computer
Science and Engineering, Southern University of Science and Technology, China;
Xuhua Ding, Singapore Management University; Fengwei Zhang, Department of
Computer Science and Engineering, Southern University of Science and Technology,
China, and Research Institute of Trustworthy Autonomous Systems, Southern
University of Science and Technology, China; Ning Hu, Pengcheng Laboratory, China

https://www.usenix.org/conference/usenixsecurity25/presentation/wang-zhanbo

This paper is included in the Proceedings of the
34th USENIX Security Symposium.

August 13-15, 2025 « Seattle, WA, USA
978-1-939133-52-6

Open access to the Proceedings of the
34th USENIX Security Symposium is sponsored by USENIX.

ARTIFACT
EVALUATED
susenix

»

AVAILABLE

TETD: Trusted Execution in Trust Domains

Zhanbo Wang'+2, Jiaxin Zhan!3, Xuhua Ding®*, Fengwei Zhang>!", Ning Hu?

I Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, China

2Pengcheng Laboratory, China

3Department of Computer Science and Engineering, Southern University of Science and Technology, China

4Singapore Management University

{12131105, zhanjx}@mail.sustech.edu.cn, xhding@smu.edu.sg

zhangfw@sustech.edu.cn, hun@pcl.ac.cn

Abstract

Intel TDX empowers cloud service providers to construct con-
fidential virtual machines called trust domains (TDs) on x86
platforms. Similar to its counterparts from AMD and Arm,
TDX’s hardware based protection over integrity and secrecy
of virtual machine memory and vCPU states inevitably hin-
ders legitimate virtual machine management such as introspec-
tion. At the presence of compromised high-privileged soft-
ware (e.g., the guest kernel), neither the cloud service provider
nor the TD owner can securely carry out a task within the TD.
To tackle this problem, we propose TETD, an in-TD trusted
execution technique without trusting any TD system software.
Our design does not pivot on in-VM privilege layering, a
popular approach used in existing VM security enhancement
schemes. Instead, we leverage the virtual machine monitor’s
existing capability of resource management to directly sepa-
rate memory and vCPU used for trusted execution from the
TD system software. We implement a TETD prototype on a
TDX server and run extensive experiments. The performance
overhead incurred by TETD to the TD depends on the work-
load. In our benchmark evaluations, the highest toll is about
6.8%. Moreover, our three applications also demonstrate that
TETD provides a TD owner a practical and secure foothold
at the presence of a compromised kernel.

1 Introduction

Intel Trust Domain Extensions (TDX) [11,31] allows con-
fidential virtual machines, called Trust Domains or TDs, to
be created in a cloud platform, with their private memory
automatically encrypted by the hardware using Total Memory
Encryption-Multiple-Key (TME-MK) [28] and their CPUs
running in the Secure Arbitration Mode (SEAM). The host
Virtual Machine Monitor (VMM) runs in the Non-SEAM
mode and therefore is denied from accessing a TD’s private
memory and vCPU contexts in plaintext.

TFengwei Zhang is the corresponding author.

As noted by Schwarz and Rossow [61], all confidential VM
(CVM) technologies, including AMD SEV and Arm CCA,
inherently conflict with existing out-of-VM introspection [15,
18, 73] as these technologies are built to thwart a VMM’s
guest memory access. Moreover, none of these techniques
is designed to cope with internal kernel compromise. Hence,
when an TD’s kernel fails to function properly, its owner
has no foothold inside or outside it to carry out responsive
tasks such as live memory acquisition. When the kernel is
compromised by an internal adversary, the owner loses the
entire security control over the TD.

Schwarz and Rossow [61] tackled this introspection chal-
lenges for AMD CVMs by leveraging Virtual Machine Priv-
ilege Levels (VMPL) [4], a hardware feature providing in-
VM privilege layering. The introspection agent is placed at
a higher privilege level than the VM kernel’s and therefore
can securely access all contents of the kernel. This approach,
termed privilege layering in this paper, has also been explored
to harden a CVM without trusting its kernel, using either
software techniques or hardware features. Examples include
enclaves inside a CVM [68], secure log services [1], and
vTPM for CVM [53].

There are several flip sides to using privilege layering. First,
it trusts the most privileged software in a CVM. Hence, this
software is a single-point of failure to CVM security. Sec-
ond, to place security functions for CVM applications and/or
kernel always bloats the size of the most privileged software,
thus weakens CVM security. Lastly, from the practicality per-
spective, not all cloud users demand a higher layer of system
software in their CVMs.

In this work, we propose a resource separation approach
to secure TD sensitive tasks, without relying on privilege
layering. Intuitively, this approach hinges on the VMM’s
resource management capability and turns a TD into a two-
or multi-body system instead of splitting it into multiple
privilege layers. Consequently, a TD owner can still retain
her security foothold for her TD even if the most privileged
software therein is compromised. As compared with the
privilege layering approach, ours can cope with full TD

USENIX Association

34th USENIX Security Symposium 1187

compromise without a single point of failure or invasive
changes to the TD’s existing system software. The approach
preserves TDX’s assurance of TD security as the VMM gains
no advantage in attacking a TD.

Our scheme, termed TETD (short for Trusted Execution in
TD), allows one or multiple subsystems to be launched and
running inside a TD, however, independent of the TD system
software which is referred to as the TD kernel for ease of
presentation. A subsystem hosts and protects a pre-installed
software termed agent with one-way memory isolation — it
can be granted access to the TD kernel and other applications’
memory but not vice versa. TETD supports exclusive mode
agents to run with all TD threads suspended. Such agents are
useful for TD services such as memory snapshot and foren-
sics. TETD also supports collaborative mode agents which
run simultaneously with TD threads, while resisting kernel-
privileged attacks. We use different protection strategies based
on their execution models. Our design makes no change to the
TDX Module which is within the TDX’s software TCB. As a
result, most (if not all) existing virtualization based isolation
techniques in the literature [10, 23, 49, 58] are infeasible to
apply.

We implement a prototype of TETD and we systematically
measure the performance of TETD and rigorously assess
the performance and security of the agents. We also develop
three applications to demonstrate its security strengths and
practicality. They involve two exclusive mode agents for TD
service: introspection and agent management, and two collab-
orative mode agents that provide hardened security for a TD
application and for the TD kernel respectively. In short, we
make the following contributions:

* We propose a resource separation approach to tackle secu-
rity challenges originating from TD system software com-
promise. Compared with the privilege layering approach,
ours can cope with full TD compromise and is non-intrusive
to TD system software.

* Following this approach, we design TETD that builds
in-TD subsystems to host agents running in exclu-
sive/collaborative mode with security and availability assur-
ances against a malicious TD kernel.

* We implement TETD and evaluate its performance with
Apache Benchmark and LMBench. The system perfor-
mance impact ranges from 0.1% to 6.8%. The prototype is
available at our FigShare permalink .

» We also develop four agents to demonstrate its practicality
in dealing with real-world security problems.

ORGANIZATION. The next section introduces TDX internals
and the constraints imposed on our design. Section 3 presents
the high-level view of TETD, followed by design details in
Section 4 and our prototype implementation in Section 5.
Section 6 evaluates TETD’s security and performance with

ITETD prototype at: https://doi.org/10.6084/m9.figshare.29
262146.v1

benchmark experiments and three applications. Related work
is in Section 7 and discussion in Section 8. Section 9 con-
cludes the paper. Additionally, the Appendix includes the
fourth application and provides APIs for implementation ref-
erence.

2 TDX Internals and Constraints

This section explains TDX internals from the angle of a TD’s
memory and vCPU management. It not only explains the
technical prerequisites for understanding our design, but also
highlights the constraints we face. A more comprehensive
description of TDX can be found in [11].

Non-SEAM mode SEAM mode
M M TD TD
[Apps | || [Apps | [Apps | | | [Apps |
TDX- TDX-
OS oS Enlightened| [Enlightened|
oS (O]
¥ vmcare § ; I mcar §
SEAMCALL TDX
VMM - b Module

Figure 1: Architectural Component Overview for TDX.

Figure 1 illustrates a TDX-based cloud environment. A
TD is a confidential virtual machine with its vCPUs running
in SEAM mode and its memory encrypted by the hardware
using a TD-specific AES key inaccessible to any software.
The TDX Module is a trusted VMM managing TDs. It resides
on the SEAM-memory—a reserved physical memory space
specified by a set of registers with its vCPU also running in
the SEAM mode. The VMM runs in the Non-SEAM mode.
Although it cannot access the SEAM-memory, it manages the
physical pages and CPUs needed by the TDX Module.

SEAMCALLSs and TDCALL are two instructions for the
VMM and the TD software to invoke the TDX Module’s
functions, respectively. Depending on the argument in use,
TDCALL may cause the TDX Module to pass the invocation
to the VMM, instead of handling it by itself. This type of
TDCALL is noted as VMCALL.

TD Measurement. Intel TDX’s TD attestation consists of
two parts of measurements. The first part is the measurement
of the TD building procedure which includes, among other,
physical pages added by the VMM to the TD. Since a TD is a
virtual machine, the second part is for the TD’s bootup, similar
to a TPM-based measured launch. TDX provides registers
and instructions so that in-guest software can instruct the
hardware to measure contents in a chosen physical memory
range and extend the register with the measurement result.
Since TD booting requires the VMM to import the so-called
TD Virtual Firmware (TDVF) which is Intel’s TD bootloader,

1188 34th USENIX Security Symposium

USENIX Association

https://doi.org/10.6084/m9.figshare.29262146.v1
https://doi.org/10.6084/m9.figshare.29262146.v1

the TD bootup measurement starts from the TDX Module’s
measurement of the TDVF when it is loaded into a TD’s
private memory. The TDVF then measures the TD kernel
to be loaded. Similarly, the kernel can further measure any
software module or memory regions of concern, provided that
the TD owner has the ground-truth for verification.

2.1 Memory Management for TDs

The guest physical address (GPA) space of a TD consists
of private pages and shared pages. The former are those
exclusively used in the TD and are encrypted by the hardware
using a TD-specific key. Their GPA-to-HPA translations are
managed via the Secure EPT (SEPT), which is set by the
TDX Module and encrypted by the hardware. A TD’s shared
pages are for the TD to exchange data with another VM or the
host, e.g., for I/O operations. Their GPA-to-HPA translations
are solely controlled by the VMM without involving the TDX
Module.

Each TD has exactly one SEPT. While the SEPT is set
by the TDX Module, all physical pages in the TD, including
the SEPT pages, are supplied by the VMM. To dynamically
add a private page to a TD from scratch, the VMM provides
the SEPT page to the TDX Module. Then, it adds a physical
page to be mapped at the specified GPA position. Finally, an
acceptance TDCALL from inside the TD finalizes the page
allocation, allowing guest access.

GPA Blocking. Among all leaf functions of SEAMCALLS,
the blocking-related ones are the cornerstone of TETD, as
it provides the GPA blocking functionality which is meant
to resolve the potential race condition between the TD and
the VMM with respect to physical pages in transition. To
block a GPA range, the VMM uses TDH.MEM. RANGE . BLOCK
to request the TDX Module to mark the corresponding parent
SEPT entry. As a result, the MMU aborts SEPT walking
whenever translating any GPA within that range. Another
function, TDH.MEM. RANGE . UNBLOCK is for unblocking.

TLB Tracking. TDX introduces the TLB tracking mecha-
nism for the VMM to invalidate stale TLB entries. The TLB
tracking begins with a GPA blocking, followed by invoking
the TDH.MEM. TRACK in which the TDX Module increments
the epoch counter of the TD. The VMM sends IPIs to all
TD vCPUs. When they re-enter TD after being trapped to
the TDX Module, the new epoch counter takes effect and the
TLB entries with the lower epoch numbers are not used by
the MMU for translation.

CONSTRAINTS. The VMM can only create a GPA-to-HPA
mapping with a new physical page added to the TD, remove
an existing one or relocate HPA of a page. It can neither remap
an existing GPA nor set permission bits. There is no SEAM-
CALL to instruct the TDX Module to create two SEPTs for a
TD. Since the runtime EPT pages passed by the VMM to the
TDX Module are zeroed, the VMM also cannot preset a page

for the TD to use.

2.2 vCPU Scheduling for TDs

TDX
VMM Module R

Vi

SEAM .
2 tr
Enters vCPU LL M
States

b

Interrupt
SEAM /—\ M
Exits vCPU Lp RET Save Edit (\cpy
Non- SEAM- SEAM-
SEAM Root Nonroot

Figure 2: TD vCPU Enter/Exit.

TDX imposes more restricted vCPU management than
VMX to reduce the risk of information leakage to the VMM.
Each thread in VMM is called a Logical Processor (LP).
By issuing a TDH.VP leaf function, the VMM associates
a vCPU with an LP; it can later disassociate them using
TDH.VP.FLUSH.

vCPU Enter and Exit. As shown in Figure 2, the VMM calls
TDH.VP.ENTER to enter a TD vCPU execution. In response,
the TDX Module prepares the vCPU state and then starts the
vCPU on the current LP. To induce TD-Exit on a running
vCPU, the VMM injects an IPI via the x2APIC interface.
The interrupt causes the vCPU to trap to the TDX Module,
which returns the control of the LP to the VMM. Note that
the vCPU-LP association is not affected.

CONSTRAINTS. The VMM only schedules a TD vCPU’s
launch and execution time. It has no access to a vCPU context
or control structures. No SEAMCALL allows the VMM to
modify any vCPU register.

3 Overview

This section presents the high-level view of TETD, including
the security model, challenges, and our approach. To avoid
verbosity, we refer to the TDX Module as “the Module" and
a TD’s kernel as a “kernel”. To simplify the description and
understanding, the rest of the paper assumes the kernel has
the highest privilege in the TD. The security goal of TETD is
to protect a TD agent’s execution integrity, data secrecy and
integrity against the adversary in the TD kernel.

3.1 Security Model for TETD

TETD trusts all components within the TCB of Intel TDX,
including the TDX Module and the underlying hardware. We
assume the launch-time integrity of the TD kernel and the
agents since it is verifiable through remote attestation. We

USENIX Association

34th USENIX Security Symposium 1189

consider an in-TD adversary which compromises the TD ker-
nel at runtime by exploiting its vulnerabilities. After gaining
the highest privilege in the TD, it can execute arbitrary code
and may attempt to attack the agent’s confidentiality, integrity,
or availability, e.g., by injecting malicious code or obstructing
introspection tasks. Note that TETD does not address vulner-
abilities or implementation flaws within the agent itself, such
as memory corruption or unintended data leakage through the
agent’s interfaces.

The VMM is trusted to execute TETD correctly and
does not collude with the in-TD adversary. This assumption
is necessary as the attacks above are outside of TDX’s
threat model. Existing privilege-layering schemes [61] also
introduce additional trust. They do so by relying on VMPLO
software (or LIVMM in TDX [32])—components that
reside within the CVM and can be attested at launch time for
integrity, without runtime guarantee. When the assumption
on the VMM fails, an agent loses TETD’s protection against
the adversary even though TDX still shields the TD’s entire
private memory against accesses from the outside. Hence,
TETD users must remain cautious and recognize that TETD
security depends on whether the VMM behaves as expected.

While side-channel attacks [21,41,43,52,54,72] are or-
thogonal to this study, we discuss their impacts and potential
mitigation approaches when assessing TETD security in Sec-
tion 6.1.2.

3.2 Challenges and Design Considerations

We face several TDX-related challenges. TDX blocks all
unsolicited read or write accesses to the TD and the TDX
Module’s memory and vCPU context from the outside, i.e.,
from CPU running in Non-SEAM mode. Although the TDX
Module does have the capability of accessing TD internals,
we refrain from making any change to it because it is solely
provisioned and maintained by Intel as the software TCB of
TDX. It is thus infeasible to realize the agent’s functionality
(e.g., to list kernel objects) outside of the target TD. More-
over, there lacks hardware support for secure in-TD execution
against TD compromise. While processors supporting TDX
also support SGX, enclaves cannot be created within a TD
according to the specification [31]. To uphold TD security
provided by TDX, we cannot expose the agent’s runtime data
to the VMM.

3.3 Our Approach
3.3.1 The Idea

The idea underpinning TETD is to set up an in-TD au-
tonomous subsystem via resource separation. With all its
computing resources (i.e., VCPU and memory) securely sepa-
rated from the TD system software, the subsystem securely
hosts the agent’s execution. The idea is embodied by using

the VMM'’s resource management of a TD’s vCPU and mem-
ory. Specifically, when the subsystem is at rest, its memory is
blocked from access by using the GPA blocking mechanism
(as described in Section 2.1); when it is active and its memory
has to be unblocked, we use vCPU scheduling to suspend all
TD threads’ executions.

To reduce the performance impact and enrich functionality,
we further propose to replace GPA blocking with location
hiding so that TD threads and the agent can run simultane-
ously. We tap into the vast 52-bit GPA space and allocate
a random and secret GPA location for agent execution. As
the kernel adversary is forced to make online guess attacks
against the secret GPA, its success probability is negligible.
In short, TETD allows for a TD to be equipped with one or
multiple subsystems with different agents executing in one of
the two modes:

¢ exclusive mode. The agent runs with all TD threads paused.
This mode is suitable for TD services, such as TD introspec-
tion. The frozen TD is conducive to maintaining consistency
among fetched TD data.

collaborative mode. The agent executes with other TD
threads running and may interact with them through data
exchanges. This mode is for security-sensitive tasks, e.g.,
data signing using a long-term secret key.

3.3.2 Agent Subsystem and TETD Components

Figure 3 illustrates the architectural view of a TETD-enabled
cloud system. It consists of the VMM with TETD’s host com-
ponent (named TETD-H); the unmodified TDX Module; and
a TD where two agent subsystems are installed and isolated
from the TD kernel servicing various applications.

SEAM mode
' i
[0
I
ETD-G || TETD-G|:| Kernel
Non-SEAM mode I VMCALL
VMM | TETD-H | [SEAMCALL TDX Module ‘

Figure 3: Illustration of two TETD agents in a TD with one-
way isolation against a malicious kernel. TETD comprises
TETD-G and TETD-H.

Agent. An agent is a self-contained executable a TD owner
needs to execute without trusting the TD kernel. Its func-
tionality and the privilege of accessing the TD kernel and/or
applications are pre-selected and pre-determined by the TD
owner before deployment. The agent is compiled and linked
with TETD-G, i.e., TETD’s guest component. All agents are
built into the TD image together with the TD kernel. From the
system point of view, the agent has its exclusive subsystem
consisting of a dedicated vCPU referred to as the agent vCPU
and a pool of private physical pages mapped to a GPA range.

1190 34th USENIX Security Symposium

USENIX Association

Its vCPU and GPA pages are not shared with other agents
unless they are explicitly designed so. During TD bootup, it
is initialized and put into the sleep state in which the vCPU is
dissociated with the LP. Upon receiving a job request, it is ac-
tivated to enter the running state and completes the stipulated
workload before hibernation. While the agent’s workload
may involve data accesses to the kernel or an application,
the agent’s control flow is self-contained. Namely, the agent
vCPU does not run instructions outside of its assigned GPA
region.

CAVEAT. We stress that while TETD protects an agent, it
neither promotes nor demotes the agent’s privilege which is
chosen at the user’s discretion.

TETD Architecture. TETD comprises only two components:
TETD-H and TETD-G. TETD-H manages vCPU and memory
resources upon requests from TETD-G. It makes use of the
following VMM capabilities described in Section 2:

* GPA blocking/unblocking. It closes or opens access the
GPA regions allocated to the agent subsystem.

* vCPU management. It schedules the TD’s and the agent’s
vCPUs onto or off from logical processors.

Running in Ring 0, TETD-G provides two services to the
agent. One is to request TETD-H operation on behalf of the
agent, such as to put the subsystem into sleep; and the other
is to provide mission-critical system services such as prepar-
ing the agent’s paging hierarchy and ensuring graceful abort
upon exceptions. Although with Ring-0 privilege, TETD-G is
far from a full-fledged kernel. For instance, it offers no sys-
tem call services except TETD related invocations. Note that
TETD-G provides no services to TD applications, hence not
replacing the TD kernel. Also note that each agent subsystem
has its own TETD-G instance with independent code and data
isolated from all others in the TD.

3.4 Resource Separation versus Privilege Lay-
ering

Figure 4 illustrates two approaches to trusted execution in
CVM: resource separation used in TETD and privilege layer-
ing used in the literature (for AMD SEV). Their architectural
differences manifest in security strength, deployment, func-
tionality, and performance.

VMPL3

O :3202(}303301:;E

(a) Resource separation

(b) Privilege layering

Figure 4: Two approaches to trusted execution within a TD or
a confidential VM in general.

Security. Table | below compares security of two approaches.
Resource separation’s reliance on the VMM to realize pro-
tection is a limitation, and also a strength. In the event of
malicious VMM, this approach fails to safeguard the agent
against in-TD threats. However, note that TD security against
a malicious VMM is still upheld by TDX, which potentially
dampens the cloud provider’s incentive not to fulfill its duties.

VMM-based resource separation requires no control flow
or CPU context switches from the untrusted execution to pro-
tected agents, thus making it easier to ensure availability and
security of protected agents against the most-privileged adver-
sary inside the TD. In contrast, security offered by privilege-
layering hinges on access controls enforced by the most priv-
ileged software upon less-privileged ones. In the event of a
full-stack TD compromise (e.g., the adversary in the TD ker-
nel in regular TDs or in L1VMM with TDs using partitioning)
the TD owner loses all security in her TD, including those
supposedly protected agents.

Moreover, resource separation strictly complies to the lest-
privilege-principle, as it neither promotes the protected agent
to a higher privilege nor modifies existing privileged soft-
ware. However, privilege-layering does not, as it fundamen-
tally taxes a high-privilege layer to resolve a low privilege
layer’s internal security problems. Hence, schemes following
this approach [2,61, 68] refrain from adding complex applica-
tion logic to VMPLO, in order to restrain VMPLO code size
bloating. A side-effect is that they are unscalable in terms of
supporting multiple or complex agents.

Table 1: Security Model Comparison.

Compromised Priv. Layering | Res. Separation
VMM o ¢ O ¢
VMPLO/L1VMM H ¢)
User-mode Agent H ¢ O ¢
Kernel-mode Agent H ¢ H ¢

(1/M: secured/broken TD; {/4: secured/broken agent

Deployment. Our approach is relatively easier to deploy as
it makes no changes to a TD’s system software. The privilege
layering approach implies that the (normal) VM kernel is
dislodged from the highest privilege level. The relocation
becomes onerous if the VM privilege level is not transparent to
the kernel. However, our approach requires the cloud support,
which impedes its practicality.

Functionality. Privilege layering empowers the agent to
control the target software by accessing its CPU context [68].
Unfortunately, resource separation restricts an agent to use
the pre-assigned vCPU. Hence, it is difficult for an agent
protected by resource separation to control others’ executions
or access their CPU contexts.

Performance. While the two approaches have similar speed
to read the TD memory, they have different types of perfor-
mance tolls. The primary cost in resource separation is due

USENIX Association

34th USENIX Security Symposium 1191

to resource provisioning changes. Privilege layering incurs
persistent overhead due to the additional tasks in the VMPLO
layer. The cost is much more considerable if the rich OS ker-
nel is relocated. Moreover, schemes with complex logic suffer
from the costs due to decoupling bulky functions from the
essential ones.

In short, it is imprudent to claim that one approach is gener-
ally superior to the other. Resource separation offers stronger
security, easier deployment and better scalability with mini-
mal system changes. The privilege layering approach, while
more complex and invasive, is suitable for security tasks de-
manding close interactions with untrusted executions. In fact,
these two approaches do not conflict with each other and a
hybrid approach can better harden in-TD executions.

4 Design Details

We elaborate TETD’s design details for exclusive mode and
collaborative mode agents.

4.1 Exclusive Mode Execution

An exclusive mode agent appears as a parallel subsystem to
the TD kernel. At any point of time, either the agent subsystem
or the TD is active.

4.1.1 Agent Bootup

Agent bootup proceeds in two phases. During the kernel load-
ing stage of TD creation, the agent subsystem image (includ-
ing its TETD-G and the agent binary) is loaded into the TD
private memory as a kernel module. Next, the loaded TETD-
G initializes the runtime of the subsystem with the VMM’s
assistance.

Attestation. Agent bootup does not disrupt existing TD at-
testation. Instead, it can be easily included into attestation,
thanks to TDX’s flexible support for measured TD launch
similar to TPM-based authenticated boot. As explained in
Section 2, TDX allows loaded software during TD creation to
build the chain of measurements starting from the TD virtual
firmware to the TD kernel. Since the measurements are in-
voked by software, the chain can be further extended to kernel
modules including the agent subsystem image by having the
kernel make further measurement. The measurement results
are stored in the so-called Runtime Measurement Registers
and used for remote attestation. Note that the measurement
only reports the integrity of the loaded agent image.

System Environment Initialization. To enable the agent to
execute independently without relying on services from the
TD kernel, TETD-G sets up the needed environment using re-
sources not shared with the kernel. Besides the memory pages
used by the agent and TETD-G, the environment also com-
prises a paging hierarchy and a suite of system data structures
e.g., IDT and GDT.

Mappings. The VMM chooses the GPA region within the
TD’s GPA range for the agent subsystem. Specifics of the
region which is dubbed as the agent’s worksite is passed to
TETD-G so that it prepares a four-level guest paging hierarchy
to map the agent and TETD-G’s code (including interrupt and
exception handlers), data and stack to the assigned GPAs.

Depending on the agent’s functionality, the hierarchy may
optionally include VA-to-GPA mappings used by the TD ker-
nel. However, the kernel virtual memory pages are mapped
as non-executable for the sake of security. Since TETD-G
runs in Ring 0, it can update the guest page tables to satisfy
the agent’s runtime needs for reading/writing targets in the
TD. Once the new paging hierarchy is constructed, TETD-G
switches CR3 to effect it immediately.

As explained in Section 2.1, the TD kernel and applications
share the same SEPT as the agent subsystem since the TDX
Module assigns one SEPT per TD only, as illustrated by Fig-
ure 5. Thus, GPA blocking makes the same impact to both
the TD and the agent subsystem at the same time.

m kernel & apps Virtual memory
GPT GPTs
[] | | GPA space
homeb.
o homebase SEPT 2GB
v

(T T] [T [] physical page frames

Figure 5: One Secure EPT serves for the agent and other TD
software which have separated GPTs.

Interrupt and Exception Handling. TETD-G masks ex-
ternal interrupts. It also has dedicated handlers to handle
interrupt and exceptions, without relying on the TD kernel.
TETD-G prepares the handlers by configuring dedicated IDT
and GDT pages. For convenience, these structures use the
same virtual addresses as their counterparts in the kernel.

4.1.2 Agent Sleep & Activation

After initializing the system environment, TETD-G puts the
agent to sleep. Specifically, it issues a VMCALL to the VMM.
In response, TETD-H activates the GPA blocking based on the
received arguments and runs TLB tracking to shoot down TLB
entries holding previously used GPA mappings. (Note that
the register context of the paused agent vCPU is saved by the
TDX Module, not by the VMM.) As a result, the agent enters
sleep with its memory regions and vCPU context securely
isolated from any other TD thread’s access.

When an activation request is delivered to the VMM,
TETD-H wakes up the agent in sleep so that it runs with
all other TD threads being paused, as illustrated in Figure 6.
The agent state transition is controlled by TETD-H with the
following steps.

Step 1. Pause TD. TETD-H schedules off all running vCPUs

1192 34th USENIX Security Symposium

USENIX Association

paused threads in TD

All GPA pages supported by
hardware

[0 agent pages (unblocked)

[regular pages used in TD

[J unmapped pages

Figure 6: Illustration of exclusive mode execution.

assigned to the TD from their hosting LPs by sending out IPIs
(as described in Section 2.2). Following the resulting TD-Exit,
the TDX Module passes the control of these LPs to TETD-H.
Step 2. Unblock Agent. TETD-H notifies the TDX Module
to unblock the agent worksite. As a result, the agent GPAs are
allowed to be translated to physical addresses.

Step 3. Resume Agent vCPU. TETD-H issues a SEAM-
CALL for TD-Enter so that the TDX Module reschedules the
agent vCPU to the target LP. Once the vCPU is scheduled on,
it resumes TETD-G’s execution following the VMCALL that
puts the agent to sleep, i.e., to fetch the instruction next to the
VMCALL invocation. TETD-G activates the agent execution
environment and passes the control to the agent.

Step 4. Re-entering Sleep. After completing its workload,
the agent requests for sleep. TETD-G uses another VMCALL
to re-enter into sleep as described in Section 4.1.2. TETD-H
schedules all TD vCPUs back to their LPs. Due to the TLB
tracking in Step 2, the resumed vCPUs do not use the stale
TLBs which may contain unblocked mapping to the agent
worksite.

To summarize, the full-cycle of an exclusive execution
session comprises TETD’s one IPI broadcast to the TD,
three SEAMCALLs (GPA unblocking, TLB tracking, and
TD-enter) to activate the agent, followed by three SEAM-
CALLs (GPA blocking, TLB tracking, and TD-enter) to put it
back to sleep and resume other vCPUs. Note that an exclusive
mode agent runs and sleeps at a fixed worksite assigned dur-
ing bootup. Next, we show that a collaborative mode agent
behaves differently.

4.2 Collaborative Mode Execution

Recall that the agent in the collaborative mode runs simulta-
neously with untrusted TD threads. Since GPA blocking takes
effect on all vCPU cores in the TD including the agent’s, it
cannot be used to protect the running agent. Our approach is
to have the agent run in a secret worksite, shown in Figure 7.
The TD adversary is forced to correctly guess GPAs before
making any access. Given the vast GPA space, the success
probability is practically negligible. More importantly, any
incorrect access immediately triggers a TD-Exit and is caught
by the VMM. In other words, the adversary can only make on-
line guess attacks. To proactively protect the agent, the GPA
region is re-randomized after detecting an EPT violation out-

side the GPA range assigned to the TD or on a periodical basis
(See Section 6 for detailed analysis). Hence, a collaborative
mode agent does not follow the fixed cycle of an exclusive
agent. Instead, it behaves like a normal daemon thread.

4.2.1 Agent Bootup, Sleep & Activation

The bootup procedure of a collaborative agent is the same
as an exclusive agent, except the following aspects. During
bootup, TETD-H randomly selects a GPA from the 51-bit
private GPA space and outside of the range (e.g., 0 to 2GB)
assigned to the TD. This GPA is set at the starting address as
the agent’s worksite. Similar to loading an exclusive agent,
TETD-H augments the page to the Module to update the TD’s
SEPT. Then the newly added pages are explicitly accepted by
TETD-G, so that the GPA mapped take effect. Note that cor-
responding SEPT pages are added whenever needed. Another
difference from the exclusive agent bootup is about inter-
rupt/exception handling. Since the agent co-executes with TD
threads, it is desirable to safeguard the agent vCPU against
threads on the TD vCPUs. Hence, TETD-G masks all external
interrupts and its interrupt handlers ensure that non-maskable
IPIs from TD cores are discarded without further processing.

TR

active threads in TD

All GPA pages supported by
hardware

O agent pages (unblocked)

[regular pages used in TD

[J unmapped pages

Figure 7: Illustration of collaborative mode execution.

After bootup, TETD-G issues a VMCALL to enter sleep.
Similarly to the exclusive agent scenario, its vCPU is sched-
uled off and the context is saved by the TDX Module. Note
that TETD-H does not apply GPA blocking in this scenario.

The activation request for a collaborative agent comes from
within the TD. The requesting TD thread on an LP issues a
VMCALL which notifies TETD-H to wake up the sleeping
agent. TETD-H, on the calling LP, returns to the requesting
thread immediately and wakes up the agent on another LP.

4.2.2 Worksite Relocation

A worksite is relocated to a new GPA region by the VMM
either periodically as a precaution or after detecting an attack.
To detect attacks on the agent, TETD-H hooks the VMM’s
EPT violation handler. If the offensive GPA is not within the
TD’s assigned GPA range, TETD-H treats the exception as an
attempted attack upon the agent and immediately kicks start
the incident response steps as follows.

Step 1. New Worksite Creation. TETD-H pauses the TD
vCPUs as in Section 4.1.2. Similar to the bootup, TETD-H

USENIX Association

34th USENIX Security Symposium 1193

chooses a fresh random GPA region as the new worksite and
requests the Module to update the SEPT.

Step 2. Agent Notification. We consider two scenarios ac-
cording to the agent state. For an agent in sleep, TETD-H
wakes it up as in Section 6.5 and passes the new worksite
location as the return value of the prior VMCALL. For an
agent paused in Step 1, TETD-H issues an IPI to the agent
vCPU. TETD-G’s IPI handler recognizes the IPI as an alert
for relocation and issues a VMCALL to retrieve the worksite
location from TETD-H.

Step 3. Agent Copying. TETD-G accepts the new worksite
with TDCALL so that the new GPA pages take effect. It
then copies all agent code and data pages from its current
worksite to the new one. Next, it constructs a new paging
hierarchy to clone its virtual address space to the worksite.
Finally, it switches to the new hierarchy by loading CR3 with
the new root and issues a VMCALL to inform TETD-H that
relocation is completed. Note that the new worksite agent uses
the same virtual address layout as the current worksite, only
changing the GPA underlying. This design easily supports
use of pointers on virtual addresses.

Step 4. Expired Worksite Disposal. TETD-H issues SEAM-
CALLs to remove GPA mappings of the previous worksite
and perform TLB tracking.

5 Implementation

We implement a prototype of TETD and evaluate it on a server
with Intel Xeon Silver 4510 processor (24 physical cores) and
512 GB of 16-channel RAM. The host OS is Ubuntu 24.04
LTS. The guest TD is configured with 16 vCPUs and 2 GB
RAM and installed with Ubuntu 24.04 LTS. The host OS
uses 46-bit physical addresses and 57-bit virtual addresses,
while the guest uses 52-bit GPAs and 48-bit VAs. TETD-H
and TETD-G consist of 823 lines and 1,637 lines of C code,
respectively. TETD-H resides in the host KVM codespace
and manages an expandable 16 MB memory pool for agents,
while TETD-G with a minimal stub agent occupies 0.2 MB.

TETD-H and TDX TCB jointly form the TCB of TETD.
However, as explained in Section 3.1, its compromise does
not affect TD security assurances provided by TDX. In other
words, TDX TCB is not modified. Similar to code inserted
to an SGX enclave by Intel’s SDK, TETD-G provides the
necessary functionalities an agent needs to benefit from TETD
protection. Strictly speaking, it is not part of the TCB for
the agent or TETD, because it is subject to the TD owner’s
vetting and modification. A malicious TETD-G in one agent
subsystem does not affect others.

5.1 TETD-H

TETD-H is a suite of § VMCALL handlers providing TETD
related services (e.g., to activate an exclusive agent in sleep).

These handlers reside in the KVM code space. A full list of
APIs are in Appendix A. These VMCALLSs from a TD to the
VMM are issued via TDCALL with register RAX bit 15:0 spec-
ifying the type as VMCALL. Register R10 is used to specify
VMCALL number, R11-R14 are used as arguments. We use
the VMCALL number range [13 — 20] for the new calls.

Physical Pages Handling. Pages used for TD agents must
adhere to the standard TD private page requirements, which
means they should be located in CMR regions (just like SGX
enclaves). TETD-H manages and keeps track of all pages
allocated. One minor issue is that, these pages are not mapped
to the TDP and not accounted for the QEMU process. Thus,
the host OS cannot automatically reclaim it when the TD
is destroyed. To circumvent this problem, we use a garbage
collector that runs periodically, checks whether the TD is
still active and updates the agent metadata table (Table 6).
Once a TD no longer exists in the system, its agent pages are
reclaimed.

VE Suppression. When the guest TD accesses a GPA that
does not exist in either EPT, two mechanisms may handle
this: a Virtualization Exception (#VE) or an EPT-violation. A
#VE is handled by the guest OS, and the VMM is unaware of
it; while a EPT-violation directly exits the VM and handle it
by the VMM. When using secret worksite, to make sure that
each malicious activity triggers a relocation, we enforce #VE
suppression for the whole TD. To control this behavior, we
can use Secure EPT entries to manage it on a page-by-page
basis, or configure it globally in the VMCS. Although the
VMCS, as part of the TDVPS, is managed by the TDX mod-
ule. Although managed by the TDX Module, the VMCS is
accessible to the VMM using VMPTRLD and VMPTRST instruc-
tions. In our prototype, we manually configured the VMCS
to suppress #VE across the entire TD, ensuring that any at-
tempt to access blocked memory or guessing non-existed GPA
would be detected.

5.2 TETD-G

TETD-G handles system-level tasks such as managing the
paging hierarchy and also works as the middle-man between
the agent and TETD-H. In the following, we describe four
key components in TETD-G: (D Agent SDK, @ Agent Envi-
ronment, @ TDCALL Wrapper and, @ Agent Encapsulation.

Agent SDK. TETD-G enables the agent with capabilities
through Agent SDK, a static library that is compiled together
with the agent. By calling the library functions, the agent can
partition its workflow into phases.

Each agent begins its workflow using init. This call registers
a function pointer that handles agent initialization, enabling
TETD-G to invoke it during Bootup. At this phase, agents
also register call IDs and entry points. The ret interface is
used to manage the graceful and secure exit of agents. If not
invoked, TETD-G returns a failure status after a user-space

1194 34th USENIX Security Symposium

USENIX Association

agent reaches end-of-execution. To safeguard against eaves-
dropping in the VMM, TETD-G encrypts the arguments and
return values using AES-NI with a pre-distributed key. In col-
laborative mode, agents process return values through shared
buffers. However, this requires additional security measures
from the developer, as TETD-G does not enforce encryption
on the buffer here.

Agent Environment. TETD-G functions similarly to a mini-
OS. It deals with system environment such as paging hier-
archy, interrupt and stores related metadata. Its workflow is
described as followed.

Upon bootup, a separate stack, guest page table, IDT, and
GDT are generated for the agent, locating in its private mem-
ory. Necessary page table hierarchies are constructed, so that
the agent accesses its own private pages without trusting the
guest kernel. In TETD-G paging, page table entries belonging
to the guest kernel GPAs are linked to the original hierarchies.
These entries are set to non-executable to prevent accidental
calls to the kernel. A dedicated IDT is also initialized, while
empty handlers are used to mitigate attacks from other cores.
Additionally, a separate GDT is created into the agent’s private
space to protect against segment overwrite. For agents run-
ning in userspace, TETD-G also controls the privilege switch
of the agent vCPU, by setting return address to TETD-G in
the TA32_LSTAR MSR.

TDCALL Wrapper. The wrapper library handles all the
assembly operations used by other components. It consists of
an assembly file containing the core instructions and a shim
written in C. The shim packs and parses parameters passed
through registers. This allows TETD-G to seamlessly transit
between high-level functions and assembly instructions.

Agent Encapsulation. TETD-G and the agent are a kernel
module loaded during system boot. The compiled binaries are
placed in the extra modules directory. To load the module au-
tomatically during system boot, we leverage the systemd [56]
to this ends. A custom systemd service unit is created for each
agent, ensuring they are initiated at the correct stage in the
boot sequence (After SYSINIT.TARGET).

6 Evaluation

6.1 Security Analysis and Evaluation

TETD security addresses the risk of an in-TD adversary ac-
cessing an agent’s memory or interfering with its execution.
We assess it from both system and software perspectives. As
TETD defends exclusive agents using GPA-blocking and col-
laborative ones using secret locations, our system security
analysis addresses them separately.

6.1.1 Effectiveness of GPA Blocking

We experiment with two attacks targeting a given GPA-
blocked memory page. One is to read the blocked memory
using the agent’s previous mapping, which is to validate
whether TLB entries used by the agent remain valid. The
other is to build a new mapping to read the GPA. In both
experiments, the read, write, or execute attempts on the
blocked GPA trigger an EPT violation and are caught by the
host VMM, which GPA-blocking effectively prevents any
TD thread from accessing the protected page.

Since current TDX versions do not allow a peripheral
device to access a TD’s private pages [31], probably due to
incompatibility to MK-TME, DMA attacks cannot threaten
TETD agents. In the event that the future Trusted Execution
Environment I/O (TEE-1IO) [33] allows DMA accesses to
private pages, it is also promising to extend TETD to counter
the attacks, because the host VMM retains its role of resource
management.

6.1.2 Secrecy of Worksite Relocation

The runtime security of a collaborative agent depends on
the secrecy of its worksite location. Since the secure EPT
is shared by the agent and the TD kernel, the GPA-to-HPA
mappings for the agent are also open for the TD kernel to use.
However, the adversary must guess the GPA page used by
the running agent in order to set up its VA-to-GPA mappings
before making any access. Note that this GPA guessing is
an online attack in TETD, in the sense that any direct access
using an incorrect guess leads to an EPT-violation exception
and the core is trapped to the host VMM to handle. In other
words, a failed guess can be immediately caught by TETD-H.

Probability of Successful Guess. We further show that the
success probability of the adversary’s one guess is negligible.
Suppose that a worksite of size n bytes is in use. As the
platform uses 52-bit GPA addresses, the entire GPA space
is 252 bytes. Note that TETD-H randomly picks the GPA
site from the private GPA space (51-bit) except those used by
the TD. Hence, the success probability p of one guess upon
any GPA in the worksite is (251"7*/‘4)’ where M represents the
guest physical memory allocated to the TD. Considering a
typical CVM with memory between 8 GB and 512 GB, i.e.,
23 < M < 2% and an agent with 2 MB size (n = 221y we
have p ~ 1/2%, which implies that the attacker is expected to
make approximately 1/2%° guesses before success. Note that
after the worksite is relocated, the attacker’s efforts targeting
the previous location become invalid.

Side-Channel Attack Mitigation. The relocation scheme
is geared to reduce the risk of side-channel exposure of se-
cret GPA, as all TD threads are stalled and cannot launch
side-channel attacks during relocation. It is generally more
difficult to attack GPAs secrecy than VA or PA secrecy, since
GPAs neither affects the agent’s control flow or data flow, nor

USENIX Association

34th USENIX Security Symposium 1195

appear in the memory or general registers. Note that specu-
lative execution attacks [35,42] could potentially be used to
stealthily guess a GPA without triggering an EPT violation.
The approach is that speculative execution is applied to leave
information in the cache reflecting whether the guessed GPA
is valid and then the attacker uses cache side-channel [70] to
deduce it. While such attacks are more silent than direct GPA
accesses, they do not reduce the prior deduction of the ex-
pected amount of guesses. There are two countermeasures to
mitigate the risk. One is to increase the frequency of worksite
relocation so that the adversary cannot complete the needed
trials within the shortened time window. The other is that the
agent can disturb the adversary’s cache-based side-channel
analysis. The rationale is that the traces left by speculative
execution using a wrong GPA only appear in L3 cache, not
in L1 or L2 cache (otherwise it implies the adversary has
already accessed the data before.) Hence, the agent can intro-
duce noises to L3 cache, e.g., to randomly load data or flush
it, so that the adversary cannot have a reliable side-channel
to infer traces left by speculative execution. Some studies
achieve side-channel resistance through constant-time hard-
ware design, resource reuse, or threshold implementation with
provable security [22,34].

6.1.3 Software Attack Analysis

As a security system, TETD is not meant to cope with soft-
ware attacks exploiting vulnerabilities in protected agents.
Nonetheless, it is worth analyzing how TETD’s architectural
features can help protect agents, especially in view of TD ker-
nel exploits being the primary motivation of TETD. Vulnera-
bilities in commodity kernels, such as CVE-2024-1086 [24]
and CVE-2024-53141 [13], are due to both its widely exposed
interface (more than 300 system calls in Linux) to support a
multitude of services and also the inclusion of various third-
party device drivers. TETD ensures no control flow transfer
or CPU sharing between an agent and any TD thread. Hence,
an agent’s interactions with a TD thread are restricted to data
passing only. As an agent’s functionality is much simpler than
the kernel, it is easier to enforce input sanitization. Note that
TETD-G in an agent subsystem exposes no interface to the
TD kernel or other agents. In short, to develop an agent with
less or zero vulnerabilities is more achievable than secure
kernel development.

6.2 TETD Performance Evaluation

In the following, we measure TETD’s own operation overhead
by experimenting with an empty-load agent. Performance in
realistic settings is studied through two representative TETD
applications in Section 6.3 and 6.4 respectively.

6.2.1 CPU Time of TETD Primitives

We first measure the round-trip time of six SEAMCALLSs and
two TDCALLSs involved in TETD operations, i.e., the interval
between the caller’s instruction issuance and its receiving of
the return value(s). Except that GPA-blocking/unblocking use
2 MB as the workload and VMCALL has an empty handler
in the host VMM, the rest have a fixed workload determined
by TDX specification. Table 2 reports the experiment results.

Table 2: Roundtrip Time of TETD Relevant SEAMCALLSs
and TDCALLSs (in us).

SEAMCALL/TDCALL Time Workload Adjustable

TDH.MEM. RANGE . BLOCK 10.2 2 MB Yes
TDH.MEM.RANGE.UNBLOCK 4.7 2 MB Yes
TDH.MEM. TRACK 2.1 N/A N/A
TDH.MEM. SEPT.ADD 6.9 1 Page No
TDH.MEM.PAGE . AUG 8.0 1 Page No
TDH.MEM. PAGE . REMOVE 34 1 Page No
TDG.MEM.PAGE . ACCEPT 4.2 1 Page No
TDG.VP.VMCALL 10.6 N/A N/A

To measure CPU time of TETD’s primitive operations, we
develop a zero-function agent with a 128 KB memory dummy
payload. Table 3 shows their average costs for the agent to
run in exclusive mode and collaborative mode. The bootup
time, i.e., the interval between TETD-G starts and the agent
init function returns, dominates the cost of agent initialization
(about 1.2 milliseconds) which barely impacts the whole TD
kernel launch (about 4.5 seconds). The table also shows that
the runtime operation overheads for exclusive execution are
much higher than for collaborative execution, which is due
to the former’s need for blocking and unblocking the agent’s
GPA region. However, collaborative agents incur relocation
costs. Since the relocation cost varies with the amount of
memory to copy, we run experiments with various agent sizes,
as reported in Table 4. Note that the cost is close to the initial-
ization cost since both are dominated by memory copy and
Secure EPT configuration. To put the data in perspective, it
takes the kernel about 680 us to copy 2 MB of data on our
experiment platform.

Table 3: CPU Time of TETD Operations (in us).

Operation Exclusive Collaborative
Init Bootup 1103.5 1197.2
Sleep 172.2 23.1
Total 1275.5 1220.3
Runtime Activate 203.2 32.1
Sleep after exec 109.4 10.3
Total (one round exe.) 312.6 42.4

1196 34th USENIX Security Symposium

USENIX Association

1007 ggooooeneoohenneee S S A —~100{ ® - =
< ~ X
+ 99 <
o - £ % .
W N
e o8 b g -
v \ 98 5
S \ = \
g 97 £ \
14 97
° \
- 96) % \
Q N N g6 \
N g5 L é AN
© ~ \
~ 95 \
£ 941 -m- Exclusive “m 5 -m- Exclusive ‘.
2 93| —&- Collaborative Z g4] - Collaborative

S L 100{ 4 A
R 100 B, S A g S .
- Y=
“q!:) A A A]
a 99 B &
. @
nE) " A g 99| —®- Exclusive
= 98 [} x - Collaborative
e N, el
9] N g
N, 2
g w| E
s —- Excluslve. S gp| mmm .
2 961 —&- Collaborative S W B e S

1 25 50 75 100 1 25 50 75 100
Requests per second Requests per second

(a) System behavior impact on

Apache throughput Bench (CPU performance)

(b) System behavior impact on Lm-

1 25 50 75 100
Requests per second

5

ayload Size (KB)

(c) System behavior impact on Lm- (d) Agent size impact on Apache
Bench (memory performance) throughput

Figure 8: Normalized Benchmark Data Reporting TETD’s Impact on TD Performance.

Table 4: CPU Time for Relocation (in us).

Payload Size (MB) | 1/8
| 221

/4 172 1 2 4
249 353 549 916 1402

Relocation Time

6.2.2 TD Performance Impact From TETD

We study TETD’s impact on TD performance from three
angles: TETD’s system behaviors, the size of the memory
to isolate, and relocation. In order to focus on the impacts
owning to TETD as a system, instead of an agent’s own ex-
ecution, we conduct experiments with an empty-load agent.
All experiments are in a TD allocated with 16 vCPUs with
one assigned to the agent.

Common System Behavior Impact. TETD’s system opera-
tions harming TD performance include cache flushing and TD
exit/resume as they either slowdown or temporarily suspend
thread execution in the TD. We consider them as the primarily
performance impact from TETD, as they are introduced by it
and common to all kinds of agents.

We use Apache Benchmark [17] to assess impacts from TD
disruptions such as exit and pausing and use LMbench [50]
to assess cache miss effects upon memory and CPU perfor-
mance. In the experiments, we tune the frequency of agent
activation/sleep where these operations are taken. Albeit in-
curring negligible execution time due to no workload, our
agent occupies 16 KB memory requiring protection. We run
the agent in both exclusive and collaborative mode. The re-
sults are reported in Figure 8.

Both Figure 8(a) and 8(b) show the clear trend that whole-
TD pausing takes a noticeable toll on TD performance, ap-
proximately 6.8% drop due to 100 times of pausing per sec-
ond. The performance hit is primarily due to the time of TD
pausing. The conclusion is drawn by comparing the curve
for collaborative execution with the one for exclusive execu-
tion. As both agents are requested with the same frequency,
the callers face the same number of TD exit/resume. How-
ever, each request of the exclusive mode incurs a whole-TD
pausing, while the request for collaborative mode does not.

It implies that exclusive mode agents are not ideal for tasks
demanding frequent invocations. Figure 8(c) shows TETD’s
impact on TD memory performance, with both types of exe-
cutions exhibiting a similar pattern.

Protected Memory Size. The second group of experiments
shows how the performance impact varies with the agent
size. We also use an empty agent, with different amounts of
static data to expand its memory footprint without increasing
its execution time. The agent is activated with a constant
frequency of 50 Reqs/s.

Figure 8(d) shows the benchmark results with agent pay-
load ranging from 16 KB to 4 MB. As the size increases, there
is a visible performance drop in exclusive mode, suggesting
that increasing memory footprint introduces some overhead
due to guest page table operations. On the other hand, the col-
laborative mode performance degradation is less noticeable
as the agent size increases, demonstrates better scalability.

6.3 TETD Application I: TD Introspection

To assess exclusive mode execution performance in a real-
istic setup, we build an agent called TDReader for TD in-
trospection services and compare its performance against
00SEVen [61].

6.3.1 TDReader

The TD owner’s remote server holds a pair of certified public
and private keys and communicates with TDReader through
an untrusted proxy in a non-confidential VM residing in the
same platform as the TD. TDReader establishes a TLS-like
end-to-end channel with the server through a shared key & to
ensure communication integrity and secrecy. Figure 9 illus-
trates how TDReader receives commands and returns results.
The proxy and TDReader exchange data and synchronize their
operations through a TD-VM shared memory region using
QEMU’s Inter-VM Shared Memory IVSHMEM) [57] which
maps a set of physical pages to the TD via the TD’s shared
EPT and to the VM via its EPT. Note all data written to the
buffer is encrypted under & by either TDReader or the owner’s

USENIX Association

34th USENIX Security Symposium 1197

remote server.

SEAM mode

IVSHMEM Tp
head |

TD private memory

TDReader'E
TETPC JI} Kerel

TDX Module

&

Encrypt
Proxy | cet data & Dump
ped
VM tail

-Targel Metadata - Target data

Figure 9: Communication Channel between TDReader and
the Proxy VM.

To support introspection, we grant TDReader Ring-0 privi-
lege so that it can adaptively create mappings and has the suf-
ficient privilege to read the TD kernel. For physical memory
acquisition, TDReader builds its own VA-to-GPA mappings
to dump the contents out. For virtual memory introspection,
TDReader accesses the target virtual memory by using the
target’s VA-to-GPA mappings, which are copied into its own
page tables with execution permissions (if any) stripped off.
As explained in Section 4.1.1, TDReader’s paging hierarchy
already has kernel mappings after its bootup. For additional
target mappings, TDReader can copy the needed entries
provided by the remote server into its own paging table.

6.3.2 Implementation and Experiments

We implement a TDReader agent prototype with 1.8 KLoC
of C code (excluding dependencies such as cryptographic li-
braries and symbol table handling). The binary of TDReader,
compiled along with TETD-G, occupies 2.9 MB. TDReader
uses ECDSA with secp256r1 (P-256) curve for request authen-
tication and AES-NI to encrypt the outcome in AES-GCM
mode. The TD-VM shared memory comprises of 64 pages
and is organized as a ring buffer.

We run two experiments to measure TDReader’s
performance and dependability, i.e., guaranteed launched
without kernel support. In both experiments, we manu-
ally introduce the TD kernel crash by using echo c >
/proc/sysrg-trigger. We then issue the request from the
proxy VM to the VMM to activate TDReader.

Experiment 1: Full-TD Memory Acquisition. We create a
TD configured with 2 GB system RAM in our platform and
run experiments to dump all contents in the RAM. As a virtual
machine, the TD’s RAM is set at seven GPA regions whose
base addresses and sizes are chosen by default. Different from
non-confidential VMs, all assigned GPA pages are mapped
with host physical pages by the VMM during TD bootup.
TDReader reads those GPA regions and writes all contents
to the shared buffer after encryption. In total, 1.994 GB are
retrieved and it takes about 3.1 seconds to complete.

Experiment 2: Kernel Object Retrieval. In our second
experiment, TDReader retrieves data objects from the crashed
kernel. We select eight compatible introspection targets from

previous work([44], [61]). TDReader retrieves kernel objects
by using virtual addresses obtained from the symbol table and
accesses them through the agent’s own guest page table.

Table 5: Inspection Time Comparison (in milliseconds).

Task TETD 00SEVen*| Speedup
Task list traversal 18.5 120 6.5
Privilege analysis 17.9 125 7.0
VES hook detection 16.7 115 6.9
TTY keylogger checks | 21.8 120 5.5
System call checks 44 60 13.6
Process memory map | 21.6 140 6.5
Module list traversal 19.3 130 6.7
Open file list 28.9 160 5.5

* The numbers for 00SEVen are estimated floor values (i.e., fastest speed) of
the corresponding time in Figure 6 of [61] which does not provide raw data.

Table 5 compares TDReader’s performance with
00SEVen’s introspection using a VMPLO agent with a
local-TCP analysis client. The data shows that TDReader is
multiple times faster than 0OSEVen across all introspection
tasks. Note that the results should be interpreted with caution,
as the two tools run on different hardware platforms whose
architectural differences, CPU speed, and DRAM chip
performance, etc. need to be factored into consideration.
However, we observe that TDReader reaps its performance
benefits from its architectural advantage over 00SEVen’s.

OOSEVen consists of a lightweight front-end in VMPLO
for memory reading only and a backend in another VM for
kernel object parsing. Note that kernel introspection typi-
cally follows the read-parse-read paradigm due to the need
for semantics extraction. Hence, the 00SE Ven front-end and
back-end depend on each other’s results to proceed, which
impairs its overall performance due to the incurred communi-
cation overheads and inability to run in parallel. In contrast,
TDReader has a unified design with all functionalities in one
space. We remark that the reason behind the design differ-
ence is 00SEVen’s privilege-layering approach and TETD’s
resource-separation approach. As explained in Section 3.4,
00SEVen must refrain from placing the complex backend into
VMPLO in order to keep the CVM TCB small. For TETD,
the agent is not a TCB to the TD and importing bulky code is
only an engineering issue.

6.4 TETD Application II: TDSigner

The second application, called TDSigner, demonstrates how
TETD can be used to harden a critical TD application by creat-
ing an enclave-like environment to run functions with secrets.
We apply it to a TLS server and measure its performance
using benchmarks.

1198 34th USENIX Security Symposium

USENIX Association

6.4.1 TDSigner

Consider a network service TD (e.g., a cloud-based DNS
server) that needs to sign outgoing messages. To safeguard
the owner’s signing credentials against runtime kernel com-
promise, we partition the signing service into (1) a front-end
residing in the TD for application-related functionalities, and
(2) TDSigner as a user-space TETD agent in collaborative
mode. In a similar vein to an SGX enclave, TDSigner runs
within the address space of the service application and holds
the long-term signing key protected by TETD-imposed one-
way isolation. It can directly read and write virtual addresses
used by the front-end.

Signing Key Installation. TDX provides the hardware-based
attestation mechanism that allows the TD owner to authenti-
cate her TD together with TD-provided data such as a public
key generated within the TD. However, the attestation cannot
differentiate between a TETD agent and the TD controlled
by its kernel. Hence, we propose a double-lock scheme to
securely import the owner’s signing key to TDSigner without
exposing it to the TD kernel or the VMM. Let S be the sign-
ing key. During TD image preparation, the owner generates a
random AES key k, and embeds the ciphertext Enc(S,k) to
TDSigner. After her TD is up and running, the owner authen-
ticates the TD and returns k to the TD through the encrypted
channel established following TD attestation. The TD then
passes k to TDSigner which can decrypt S. Note that only the
TD has access to k, however, not the ciphertext of S. Hence,
S is secure when the TD and the VMM do not collude, which
is consistent with our adversary model. We apply TDSigner
to harden a TLS server’s use of its private key in TLS hand-
shakes where the key is used to sign ServerHello messages
in TLS v1.3 [59]. As our TETD prototype currently does not
support multi-threading, the environment includes one TLS
server and one client thread.

6.4.2 Implementation and Experiments

TDSigner is implemented with 477 LoCs, excluding depen-
dencies, and occupies 1.2 MB. We use RSA-3072 and SHA-
256 [25] as the crypto algorithms. We instrument the TLS
process of the s_server application in the OpenSSL 3.5
suite. It issues a VMCALL to invoke TDSigner, who receives
the signing request and returns the signature via designated
buffers. The signature is computed over a structured message
consisting of: octet 32 (0x20) repeated 64 times, a context
string, a single 0x00 byte separator, and the transcript hash.
Our experiments show that signing 130 bytes data takes about
0.89 milliseconds, modestly higher than the original 0.73 mil-
liseconds. The main overhead is for waking up the agent from
sleep and switching into and back from user-space.

Experiment 1: TLS Handshake Performance. We evaluate
the impact of agent relocation frequency on TLS handshake
throughput. In this experiment, we use three configurations.

Ty, —— Legacy 100
@ 840 " —
a - -~ TETD (Without Relocation) S oo
@ 820 —&— TETD (With Relocation) =
c
c ‘t 96
S .
G 800 0 -
S 3 - :
5 N 92 L e B -
a = -
£ 9
£
ZO 881 —e— CPU Performance
86| ~®- Memory Performance

0 100 . 200 300 400
Relocation Interval (ms)

100 200 300 400 500 600 700
Handshake Rate (requests/sec)

(a) TLS handshake throughput under (b) System behavior impact under
varying relocation interval 3. varying workload, & = 5 ms.

Figure 10: System performance for TLS workload.

The first measures legacy OpenSSL performance, the second
uses TDSigner with relocations at fixed intervals ranging from
5 to 400 ms, and the third disables relocation, serving as a
comparison baseline. As presented in Figurel0(a), smaller
relocation intervals (e.g., 5—100 ms) offer stronger security by
reducing the window for potential side-channel attacks. How-
ever, this comes with performance overhead. As the interval
increases beyond 200 ms, throughput approaches the configu-
ration without relocation (774 conn/s), eventually nearing the
legacy performance (783 conn/s).

Experiment 2: TD Performance Impact. In Figure 10(b),
we measure system CPU and memory performance using LM-
bench [50] with a server actively executing with TDSinger
at various handshake rate (with the relocation interval set
at 5 ms to evaluate the highest-pressure overhead). As the
handshake rate increases from 100 to 700 requests per second
(near the highest throughput), CPU performance remains rela-
tively stable. In contrast, memory performance shows a more
noticeable decline, reaching 91% at peak load.

The application demonstrates TETD’s capability to protect
a segment of critical code and data in an application against a
corrupted kernel, and also shows how a secret can be securely
imported from the owner to an agent. It is in our future work
to dynamically launch authenticated and authorized agents
within a running TD.

6.5 TETD Application III: SuperAgent
6.5.1 Multi-Agent Support

With a slight extension, TETD can support multiple agents in
a TD. To manage them, TETD-H sets up an agent table for
each TD as shown in Table 6, which is updated according to
runtime states of the agents.

TETD permits more than one collaborative agents to sleep
and wait for execution at the same time, which offers more
flexible ways of trusted execution. It is the owner’s responsi-
bility to ensure the installed collaborative agents do not have
overlapping interfaces exposed to the TD threads. Concurrent
executions of exclusive agents are disallowed, as exclusive
agents are meant TD level services, such as introspection.

USENIX Association

34th USENIX Security Symposium 1199

However, installing multiple exclusive agents boosts system
reliability by avoiding a single-point-of failure. Noted that
TETD introduces two control bits to manage asynchronous
state discrepancies. One for signaling the agent to pause, and
the other reflects if the pause has taken effect.

Table 6: An agent table managed by SuperAgent. Mode 0
stands for Exclusive and Mode 1 for Collaborative.

ID | Mode | Worksite Size State
0 0xFF..20 ... | 2MB | Sleep
1 1 OxFF..10 ... | 64 KB | Active

6.5.2 SuperAgent Implementation

To show TETD’s support for multi-agent, we develop Super-
Agent that governs others in the TD and is able to access
their memory. The owner constructs SuperAgent image with
a unique flag indicating its special role. After SuperAgent
is loaded, it is given the agent ID-0. To enable SuperAgent,
we utilize the following admin API: TOGGLE_DISABLE and
ADMIN_ACCESS. The former instructs TETD-H to stop the
target agent from waiting for execution and to reject future
activation request. The latter instructs TETD-H to unblock
an exclusive agent’s worksite and expose it to SuperAgent.
For a collaborative agent under checking, TETD-H returns its
secret worksite. Note that TETD-G underneath SuperAgent
configures the guest page table to map the target GPA.

Experiment. We implement SuperAgent based on TDReader
by adding 42 lines of C code, and test it overseeing TDSigner,
the collaborative agent in our previous application 6.4. Sus-
pecting that a TD adversary attacks TDSigner by feeding it
with poisonous data, the TD owner first remotely activates
SuperAgent to suspend and disable TDSigner as a precau-
tionary measure. She then instructs SuperAgent to dump all
memory of TDSigner. Our experiment successfully enables
the owner to acquire TDSigner’s memory. The operation of
temporarily pausing the TDReader agent takes 22.9 us. The
total procedure costs 322.9 us.

In short, our study with TDReader and SuperAgent shows
that a TD owner benefits from TETD to gain a reliable and
secure foothold to manage and service a TD, despite the bar-
rier induced by TDX. On the one hand, an exclusive agent
like TDReader has the flexibility of reading target virtual
memory, similar to in-VM introspection agents [9, 63]. On
the other hand, it has the same security and dependability like
out-of-VM introspection techniques [18,73].

7 Related Work

Confidential VM Security. Our work builds upon Intel TDX,
which is part of a broader area of research focused on the

security of confidential virtual machines across various plat-
forms. Heckler [60] tampers with TDX registers using inter-
rupts. Google Project Zero has published a security report on
TDX [3]. Intel also conducts research on security practices
and side-channels mitigation on TME-MK [26,27,29]. AMD
SEV-SNP is used by Cabin [51], Veil [2], and NestedSGX [68]
to achieve in-CVM isolation, although SEV virtual machines
are also vulnerable to side channels [37,38]. Li et al. built
Realms for CCA to protect VM security [40]. Shelter com-
plements CCA’s primary Realm architecture to provide a
user-level TEE [71]. CAGE provides confidential computing
for GPU in Realms [67].

VM Introspection. While TETD is a general framework
for securing in-TD agents, introspection remains a key appli-
cation. A substantial body of work has been devoted to this
area [12,14,18,20,36,46,55,64,66,69,73], including studies
on applicability [20, 36, 69], semantics [14, 18, 73], model-
ing [55], and efficiency [46,73]. More recent research focuses
on introspection challenges within TEEs, with SMILE being
the first to explore live memory introspection of enclaves [74].

8 Discussions

Detectability. TETD does not claim to be undetectable by
the TD kernel. Guest kernel-level attackers could detect its
presence by comparing the NUM_VCPUS value obtained
from the TDG. VP . INFO TDCALL and the number of CPUs ac-
tually usable by the kernel. A mismatch between these values
would indicate that additional components are present. Upon
detecting such discrepancies, an attacker may become aware
of TETD’s existence and choose to abstain from malicious
actions to avoid triggering defensive mechanisms.

Compatibility. Although TETD is designed primarily for
TDX, its architecture is adaptable to other CVMs, such as
Arm CCA [5]. The fundamental protection mechanisms of
TETD, including memory blocking and vCPU scheduling,
can be ported onto Realm VMs by revising the RMM [6].

TDX Features. Several TDX features could support security
tasks similar to TETD. The first is TD Partition, which sup-
ports Nested Virtualization [32], similar to the VMPL. The
second is the Service TD [31], allowing Service TDs to be
bound to a target TD to access its metadata. This capability is
primarily intended for TD migration [30]. We plan to explore
these features as more details become available.

VMM Security. TETD ’s security assumes that the
VMM behaves correctly. Recent fuzzing efforts—such as
ViDeZZo [45], HyperPill [8], and Truman [48]—have shown
promise in uncovering hypervisor bugs. Other directions in-
clude formal verification of VMM s (e.g., SeKVM [39], Dif-
ferential Testing([47]), VRM [65]), and memory-safe imple-
mentations like Firecracker and Cloud-Hypervisor [7, 16]. De-
tecting runtime VMM misbehavior, however, remains an open

1200 34th USENIX Security Symposium

USENIX Association

challenge. One direction is to leverage the TDX Module’s
trusted role. For instance, the module could log SEAMCALLSs
related to EPT updates, enabling post-hoc validation of the
VMM’s behavior.

9 Conclusion

TETD provides a framework for ensuring trusted execution
for an agent inside a TD. By leveraging vCPU scheduling,
memory blocking and the secret GPA mechanism, TETD
achieves isolation from the untrusted VMM and malicious
kernel. Our work offers a secure yet flexible solution for host-
ing sensitive agents without breaking any TDX guarantees.
We conduct extensive evaluation on overhead and provide
three detailed case studies to show TETD’s practicality and
potential in real-world use.

Acknowledgments

We thank the anonymous reviewers for their insightful com-
ments. We also appreciate the helpful discussions with mem-
bers of the COMPASS group and acknowledge partial sup-
port from Ant Group. This work is partly supported by the
National Natural Science Foundation of China under Grant
No0.62372218, No.U24A6009, and Peng Cheng Laboratory
Grant PCL2024A05-1. Xuhua Ding’s research is supported by
the National Research Foundation, Singapore, and the Cyber
Security Agency of Singapore under its National Cybersecu-
rity R&D Programme (Proposal ID: NCR25-DeSSMU-0001).
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do
not reflect the views of the National Research Foundation,
Singapore, and the Cyber Security Agency of Singapore.

Ethics Considerations

This research introduces a software solution that maintains
service security even if Intel TDX’s TD is compromised and
guarantees that providers cannot covertly eavesdrop on tenant
data. It introduces no attack vectors and thus poses no risk
to Intel’s interests or reputation. All experiments run exclu-
sively on local machines using synthetic datasets, with no use
of cloud servers, ensuring no impact on personal privacy or
public services; it involves no human subjects and imposes
no physical or psychological burden on the research team.

While this research has rigorously avoided ethical con-
cerns and introduces no new vulnerabilities, we commit to
following coordinated disclosure practices in future research.
Specifically, any discovered vulnerabilities will be respon-
sibly reported to affected vendors for remediation prior to
public disclosure. We pledge to proactively address potential
issues arising from this work and develop contingency plans
to mitigate unintended consequences.

Open Science

We confirm that the submitted paper complies with the open
science policy of USENIX Security’25. We will make the
TETD source code (including the guest and host module,
along with example agent and deployment guidance) publicly
available.

References

[1] Adil Ahmad, Sangho Lee, and Marcus Peinado. HARD-
LOG: Practical Tamper-Proof System Auditing Using
a Novel Audit Device. In Proceedings of IEEE Sympo-
sium on Security and Privacy, 2022.

[2] Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang,
and Pedro Fonseca. Veil: A Protected Services Frame-
work for Confidential Virtual Machines. In Proceed-
ings of ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2023.

[3] Erdem Aktas, Cfir Cohen, Josh Eads, James Forshaw,
and Felix Wilhelm. Intel Trust Domain Extensions
(TDX) Security Review. Technical report, Google, 2023.

[4] AMD. SEV Secure Nested Paging Firmware ABI Spec-
ification. https://www.amd.com/content/dam/am
d/en/documents/epyc-technical-docs/specif
ications/56860.pdf, 2024. Accessed: 2024-05-22.

[51 Arm. Arm CCA Security Model 1.0. https://develo
per.arm.com/documentation/DEN0096/A_a, 2021.

[6] Arm. Realm Management Monitor Specification. http
s://developer.arm.com/documentation/den013
7/1-0rel0, 2022. Accessed: 2024-10-09.

[71 AWS. Firecracker. https://firecracker-microvm
.github.io.

[8] Alexander Bulekov, Qiang Liu, Manuel Egele, and Math-
ias Payer. HYPERPILL: Fuzzing for Hypervisor-bugs
by Leveraging the Hardware Virtualization Interface. In
Proceedings of USENIX Security Symposium, 2024.

[9] Martim Carbone, Matthew Conover, Bruce Montague,
and Wenke Lee. Secure and Robust Monitoring of Vir-
tual Machines through Guest-Assisted Introspection. In
Proceedings of International Symposium on Research
in Attacks, Intrusions and Defenses, 2012.

[10] Xiaoxin Chen, Tal Garfinkel, E Christopher Lewis,
Pratap Subrahmanyam, Carl A Waldspurger, Dan Boneh,
Jeffrey Dwoskin, and Dan RK Ports. Overshadow: a
virtualization-based approach to retrofitting protection
in commodity operating systems. ACM SIGOPS Oper-
ating Systems Review, 2008.

USENIX Association

34th USENIX Security Symposium 1201

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://developer.arm.com/documentation/DEN0096/A_a
https://developer.arm.com/documentation/DEN0096/A_a
https://developer.arm.com/documentation/den0137/1-0rel0
https://developer.arm.com/documentation/den0137/1-0rel0
https://developer.arm.com/documentation/den0137/1-0rel0
https://firecracker-microvm.github.io
https://firecracker-microvm.github.io

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez,
Salman Ahmed, Zhongshu Gu, Hani Jamjoom, Huber-
tus Franke, and James Bottomley. Intel TDX Demysti-
fied: A Top-Down Approach. ACM Computing Surveys,
2024.

Thomas Dangl, Stewart Sentanoe, and Hans P Reiser.
VMIFresh: Efficient and Fresh Caches for Virtual Ma-
chine Introspection. In Proceedings of International
Conference on Availability, Reliability and Security,
2022.

Divya. PoC Released for Linux Kernel Vulnerability
Allowing Privilege Escalation. https://gbhackers.
com/poc-released-for-linux-kernel-vulnera
bility/, 2025. Accessed: May 22, 2025.

Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich,
Jonathon Giffin, and Wenke Lee. Virtuoso: Narrow-
ing the Semantic Gap in Virtual Machine Introspection.
In Proceedings of IEEE Symposium on Security and
Privacy, 2011.

Bryan Payne et al. LibVMI: Simplified Virtual Machine
Introspection. https://libvmi.com.

Linux Foundation. Cloud-Hypervisor. https://www.
cloudhypervisor.org.

The Apache Software Foundation. Apache HTTP Server
Benchmark. https://httpd.apache.org, 2024.

Yangchun Fu and Zhigiang Lin. Space Traveling across
VM: Automatically Bridging the Semantic Gap in Vir-
tual Machine Introspection via Online Kernel Data Redi-
rection. In Proceedings of IEEE Symposium on Security
and Privacy, 2012.

Varun Gandhi, Sarbartha Banerjee, Aniket Agrawal,
Adil Ahmad, Sangho Lee, and Marcus Peinado. Re-
thinking System Audit Architectures for High Event
Coverage and Synchronous Log Availability. In Pro-
ceedings of USENIX Security Symposium, 2023.

Tal Garfinkel, Mendel Rosenblum, et al. A Virtual Ma-
chine Introspection Based Architecture for Intrusion
Detection. In Proceedings of Network and Distributed
System Security Symposium, 2003.

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Translation Leak-aside Buffer: Defeating
Cache Side-channel Protections with TLB Attacks. In
Proceedings of USENIX Security Symposium, 2018.

Shiyang He, Hui Li, Qingwen Li, and Fenghua Li. A
Time-Area-Efficient and Compact ECSM Processor over
GF(p). Chinese Journal of Electronics, 32(6):1355—
1366, 2023.

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Owen S Hofmann, Sangman Kim, Alan M Dunn,
Michael Z Lee, and Emmett Witchel. Inktag: Secure
applications on an untrusted operating system. In Pro-
ceedings of International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2013.

Google Inc. CVE-2024-1086: Linux Kernel nf_tables
Use-After-Free Vulnerability. https://nvd.nist.g
ov/vuln/detail/CVE-2024-1086, 2024. Accessed:
May 22, 2025.

Intel. Intel SHA Extensions. https://www.intel.co
m/content /www/us/en/developer/articles/tec
hnical/intel-sha-extensions.html, 2013.

Intel. Intel Trust Domain Extension Guest Kernel Hard-
ening Documentation. https://intel.github.io/
ccc-linux-guest-hardening-docs/index.html,
2023.

Intel. MKTME Side Channel Impact on Intel TDX.
https://www.intel.com/content/www/us/en/de
veloper/articles/technical/software-secur
ity-qguidance/best-practices/mktme-side-cha
nnel-impact-on-intel-tdx.html, 2023.

Intel. Multi-Key Total Memory Encryption Specifica-
tion. https://cdrdv2-public.intel.com/679154
/multi-key-total-memory-encryption-spec-1
.4.pdf, 2023. Accessed: 2024-04-25.

Intel. Trust Domain Security Guidance for Developers.
https://www.intel.com/content/www/us/en/
developer/articles/technical/software-sec
urity-guidance/best-practices/trusted-dom
ain-security-guidance-for-developers.html,
2023.

Intel. Intel TDX Module Architecture Specification: TD
Migration. https://cdrdv2.intel.com/v1/dl/get
Content /733580, 2024. Accessed: 2024-12-01.

Intel. Intel Trust Domain Extensions Module Base Ar-
chitecture Specification. https://www.intel.com/
content/www/us/en/developer/articles/tec
hnical/intel-trust-domain-extensions.html,
2024. Accessed: 2024-07-01.

Intel. Overview and architecture specification for TD
partitioning of the Intel TDX Module. https://cdrd
v2.intel.com/vl/dl/getContent/773039, 2024.

Intel Corporation. Intel TDX Connect TEE-IODevice
Guide. https://cdrdv2-public.intel.com/7726
42 /whitepaper-tee-io-device-quide-v0-6-5.p
df, 2023.

1202 34th USENIX Security Symposium

USENIX Association

https://gbhackers.com/poc-released-for-linux-kernel-vulnerability/
https://gbhackers.com/poc-released-for-linux-kernel-vulnerability/
https://gbhackers.com/poc-released-for-linux-kernel-vulnerability/
https://libvmi.com
https://www.cloudhypervisor.org
https://www.cloudhypervisor.org
https://httpd.apache.org
https://nvd.nist.gov/vuln/detail/CVE-2024-1086
https://nvd.nist.gov/vuln/detail/CVE-2024-1086
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html
https://intel.github.io/ccc-linux-guest-hardening-docs/index.html
https://intel.github.io/ccc-linux-guest-hardening-docs/index.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mktme-side-channel-impact-on-intel-tdx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mktme-side-channel-impact-on-intel-tdx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mktme-side-channel-impact-on-intel-tdx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/mktme-side-channel-impact-on-intel-tdx.html
https://cdrdv2-public.intel.com/679154/multi-key-total-memory-encryption-spec-1.4.pdf
https://cdrdv2-public.intel.com/679154/multi-key-total-memory-encryption-spec-1.4.pdf
https://cdrdv2-public.intel.com/679154/multi-key-total-memory-encryption-spec-1.4.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-domain-security-guidance-for-developers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-domain-security-guidance-for-developers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-domain-security-guidance-for-developers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-domain-security-guidance-for-developers.html
https://cdrdv2.intel.com/v1/dl/getContent/733580
https://cdrdv2.intel.com/v1/dl/getContent/733580
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://cdrdv2.intel.com/v1/dl/getContent/773039
https://cdrdv2.intel.com/v1/dl/getContent/773039
https://cdrdv2-public.intel.com/772642/whitepaper-tee-io-device-guide-v0-6-5.pdf
https://cdrdv2-public.intel.com/772642/whitepaper-tee-io-device-guide-v0-6-5.pdf
https://cdrdv2-public.intel.com/772642/whitepaper-tee-io-device-guide-v0-6-5.pdf

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Zhipeng Jiao, Hua Chen, Jingyi Feng, Xiaoyun Kuang,
Yiwei Yang, Haoyuan Li, and Limin Fan. A Combined
Countermeasure Against Side-Channel and Fault Attack
with Threshold Implementation Technique. Chinese
Journal of Electronics, 32(2):199-208, 2023.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre Attacks: Exploit-
ing Speculative Execution. In Proceedings of IEEE
Symposium on Security and Privacy, 2019.

Tamas K Lengyel, Justin Neumann, Steve Maresca,
Bryan D Payne, and Aggelos Kiayias. Virtual Machine
Introspection in a Hybrid Honeypot Architecture. In
Proceedings of USENIX Workshop on Cyber Security
Experimentation and Test, 2012.

Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas
Eisenbarth, Radu Teodorescu, and Yingian Zhang. A
Systematic Look at Ciphertext Side Channels on AMD
SEV-SNP. In Proceedings of IEEE Symposium on Secu-
rity and Privacy, 2022.

Mengyuan Li, Yingian Zhang, Huibo Wang, Kang Li,
and Yueqiang Cheng. CIPHERLEAKS: Breaking
Constant-time Cryptography on AMD SEV via the Ci-
phertext Side Channel. In Proceedings of USENIX Se-
curity Symposium, 2021.

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and
John Zhuang Hui. Formally verified memory protec-
tion for a commodity multiprocessor hypervisor. In
Proceedings of USENIX Security Symposium, 2021.

Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu,
Jason Nieh, Yousuf Sait, and Gareth Stockwell. Design
and Verification of the Arm Confidential Compute Ar-
chitecture. In Proceedings of USENIX Symposium on
Operating Systems Design and Implementation, 2022.

Moritz Lipp, Andreas Kogler, David Oswald, Michael
Schwarz, Catherine Easdon, Claudio Canella, and
Daniel Gruss. PLATYPUS: Software-based Power Side-
Channel Attacks on x86. In Proceedings of IEEE Sym-
posium on Security and Privacy, 2021.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In Proceedings of USENIX Secu-
rity Symposium, 2018.

Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and
Neer Roggel. Frequency Throttling Side-Channel At-

tack. In Proceedings of ACM Conference on Computer
and Communications Security, 2022.

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

(53]

Hongyi Liu, Jiarong Xing, Yibo Huang, Danyang Zhuo,
Srinivas Devadas, and Ang Chen. Remote Direct Mem-
ory Introspection. In Proceedings of USENIX Security
Symposium, 2023.

Qiang Liu, Flavio Toffalini, Yajin Zhou, and Mathias
Payer. Videzzo: Dependency-aware virtual device
fuzzing. In Proceedings of IEEE Symposium on Se-
curity and Privacy, 2023.

Yutao Liu, Yubin Xia, Haibing Guan, Binyu Zang, and
Haibo Chen. Concurrent and Consistent Virtual Ma-
chine Introspection with Hardware Transactional Mem-
ory. In Proceedings of International Symposium on
High-Performance Computer Architecture, 2014.

Hongyi Lu, Zhibo Liu, Shuai Wang, and Fengwei Zhang.
DTD: Comprehensive and Scalable Testing for Debug-
gers. Proceedings of the ACM on Software Engineering,
2024.

Zheyu Ma, Qiang Liu, Zheming Li, Tingting Yin, Wende
Tan, Chao Zhang, and Mathias Payer. Truman: Con-
structing Device Behavior Models from OS Drivers to
Fuzz Virtual Devices. In Proceedings of Network and
Distributed System Security Symposium, 2025.

Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei
Zhou, Anupam Datta, Virgil Gligor, and Adrian Perrig.
TrustVisor: Efficient TCB Reduction and Attestation.
In Proceedings of IEEE Symposium on Security and
Privacy, 2010.

Larry McVoy and Carl Staelin. LMbench: A Bench-
marking Tool for Memory and Network Performance.
https://lmbench.sourceforge.net, 1996.

Benshan Me, Saisai Xia, Wenhao Wang, and Dongdai
Lin. Cabin: Confining Untrusted Programs within Con-
fidential VMs. In Proceedings of International Con-
ference on Information and Communications Security,
2024.

Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian,
and Nael Abu-Ghazaleh. Rendered Insecure: GPU Side
Channel Attacks are Practical. In Proceedings of ACM
Conference on Computer and Communications Security,
2018.

Vikram Narayanan, Claudio Carvalho, Angelo Ruocco,
Gheorghe Almasi, James Bottomley, Mengmei Ye,
Tobin Feldman-Fitzthum, Daniele Buono, Hubertus
Franke, and Anton Burtsev. Remote attestation of confi-
dential VMs using ephemeral vIPMs. In Proceedings
of Annual Computer Security Applications Conference,
2023.

USENIX Association

34th USENIX Security Symposium 1203

https://lmbench.sourceforge.net

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Riccardo Paccagnella, Licheng Luo, and Christopher W
Fletcher. Lord of the Ring(s): Side Channel Attacks on
the CPU On-Chip Ring Interconnect Are Practical. In
Proceedings of USENIX Security Symposium, 2021.

Jonas Pfoh, Christian Schneider, and Claudia Eckert. A
formal model for virtual machine introspection. In Pro-
ceedings of ACM Workshop on Virtual Machine Security,
2009.

Lennart Poettering et al. systemd: System and service
manager. https://systemd.io.

QEMU. Inter-VM Shared Memory device. https:
//www.qgemu.org/docs/master/system/devices/
ivshmem.html.

Jianbao Ren, Yong Qi, Yuehua Dai, Xiaoguang Wang,
and Yi Shi. AppSec: A Safe Execution Environment
for Security Sensitive Applications. In Proceedings of
ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, 2015.

Eric Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.3. RFC 8446, August 2018. Proposed
Standard.

Benedict Schliiter, Supraja Sridhara, Mark Kuhne, An-
drin Bertschi, and Shweta Shinde. Heckler: Breaking
Confidential VMs with Malicious Interrupts. In Pro-
ceedings of USENIX Security Symposium, 2024,

Fabian Schwarz and Christian Rossow. 00SEVen—Re-
enabling Virtual Machine Forensics: Introspecting Con-
fidential VM Using Privileged in-VM Agents. In Pro-
ceedings of USENIX Security Symposium, 2024.

R Sekar, Hanke Kimm, and Rohit Aich. eAudit: A Fast,
Scalable and Deployable Audit Data Collection System.
In Proceedings of IEEE Symposium on Security and
Privacy, 2024.

Monirul I Sharif, Wenke Lee, Weidong Cui, and An-
drea Lanzi. Secure In-VM Monitoring Using Hardware
Virtualization. In Proceedings of ACM conference on
Computer and communications security, 2009.

Monirul I Sharif, Wenke Lee, Weidong Cui, and An-
drea Lanzi. Secure in-VM monitoring using hardware
virtualization. In Proceedings of ACM Conference on
Computer and Communications Security, 2009.

Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Ja-
son Nieh, and Ronghui Gu. Formal verification of a
multiprocessor hypervisor on arm relaxed memory hard-
ware. In Proceedings of ACM Symposium on Operating
Systems Principles, 2021.

[66]

[67]

[68]

[69]

[70]

(71]

[72]

(73]

[74]

A

Donghai Tian, Qiang Zeng, Dinghao Wu, Peng Liu,
and Changzhen Hu. Kruiser: Semi-synchronized non-
blocking concurrent kernel heap buffer overflow mon-
itoring. In Proceedings of Network and Distributed
System Security Symposium, 2012.

Chenxu Wang, Fengwei Zhang, Yunjie Deng, Kevin
Leach, Jiannong Cao, Zhenyu Ning, Shoumeng Yan,
and Zhengyu He. CAGE: Complementing Arm CCA
with GPU Extensions. In Proceedings of Network and
Distributed System Security Symposium, 2024.

Wenhao Wang, Linke Song, Benshan Mei, Shuang Liu,
Shijun Zhao, Shoumeng Yan, XiaoFeng Wang, Dan
Meng, and Rui Hou. The Road to Trust: Building En-
claves within Confidential VMs. In Proceedings of
Network and Distributed System Security Symposium,
2025.

Fangzhou Yao, Read Sprabery, and Roy H Campbell.
CryptVMI: A flexible and encrypted virtual machine
introspection system in the cloud. In Proceedings of In-
ternational Workshop on Security in Cloud Computing,
2014.

Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In Proceedings of USENIX security symposium,
2014.

Yiming Zhang, Yuxin Hu, Zhenyu Ning, Fengwei
Zhang, Xiapu Luo, Haoyang Huang, Shoumeng Yan,
and Zhengyu He. SHELTER: Extending Arm CCA
with Isolation in User Space. In Proceedings of USENIX
Security Symposium, 2023.

Mark Zhao and G Edward Suh. FPGA-Based Remote
Power Side-Channel Attacks. In Proceedings of IEEE
Symposium on Security and Privacy, 2018.

Siqi Zhao, Xuhua Ding, Wen Xu, and Dawu Gu. Seeing
Through The Same Lens: Introspecting Guest Address
Space At Native Speed. In Proceedings of USENIX
Security Symposium, 2017.

Lei Zhou, Xuhua Ding, and Fengwei Zhang. Smile:
Secure Memory Introspection for Live Enclave. In Pro-
ceedings of IEEE Symposium on Security and Privacy,
2022.

Interface Function Definition for TETD

The interface functions provided in TETD implementation is
shown in Table 7.

1204 34th USENIX Security Symposium

USENIX Association

https://systemd.io
https://www.qemu.org/docs/master/system/devices/ivshmem.html
https://www.qemu.org/docs/master/system/devices/ivshmem.html
https://www.qemu.org/docs/master/system/devices/ivshmem.html

Table 7: TETD Interface Function Definition

VMM-side Request | tetdh_vmm_agent_call

agent_id, agent_call_id,
agent_call_args

agent_call_results

agent_id, agent_call_id,

agent_call_results

Category | API Name | Arguments | Return Value
tetdg_exclu_init Zgzgtjgi)e, homebase agent_call_id, agent_call_args
TETD-G and H ‘ tetdg_collab_init ‘ agent_id, agent_type, homebase ‘ secretzone
Communication | tetdg_collab_relo_done | - | agent_call_id, agent_call_args
‘ tetdg_exclu_done ‘ agent_id, results ‘ agent_call_id, agent_call_args
‘ tetdg_collab_done ‘ agent_id, results ‘ -
| tetdg_agent_init | *agent_init_func() | -
Sﬁﬁggit tetdg_agent_call_register iigcl:l_tii{all_li_df;mc()]
| tetdg_agent_ret | results | -
‘ tetdg_admin_access ‘ agent_id ‘ homebase
‘ tetdg_admin_toggle_disable ‘ agent_id ‘ -

TD-side Request tetdg_td_agent_call

agent_call_args

B TETD Application IV: TDLogger

Our fourth application, TDLogger, is a kernel-space agent in
the collaborative mode. It hardens the kernel’s log entries for
critical system events by safeguarding them from modifica-
tion, i.e., to attain forward security of committed entries. Note
that TDLogger guarantees neither the genuineness of all en-
tries (i.e., whether they are not factual or fabricated) nor their
analysis effectiveness. However, it offers the opportunity to
capture traces of kernel compromise with forward security, de-
pending on whether a log action is triggered. Several schemes
have been proposed in conventional system [1, 19,62] to en-
hance kernel log security. None of them is applicable to the
TD.

TDLogger works with a TETD-enlightened TD kernel
which is instrumented to invoke the former to save critical
event data via VMCALL. TDLogger also periodically uploads
encrypted log entries to the owner via a network proxy VM,
in the same fashion as TDReader. As a proof of concept, we
handpick two security critical events deserving an immutable
log. One is the dynamic kernel module loading and the other
is the root login, which are two popular actions taken by mal-
ware to escalate its privilege and to gain the ability to conceal
its existence. For kernel module loading, the instrumented
code records the module name, uid, the parent process name
and ID, and the timestamp. For the root login, it records the
pid, uid, the TTY number, the session ID and the timestamp.

Implementation and Experiments. TDLogger is imple-

mented with 60 lines of assembly code and 106 lines of C
code, occupying 34 memory pages. The instrumented kernel
places a log messages (up to 128-bytes) in a buffer page and
passes its GVA to TDLogger. TDLogger stores the message
in its own memory and periodically uploads them (with en-
cryption) to the owner. Generating and secretly storing a 128
bytes message with TDLogger takes 190.3 microseconds. We
experiment TDLogger with a remote attacker played by our-
selves. The attacker remotely logs in to the TD’s root account
with stolen passwords, and loads a malicious kernel module
using the insmod command. Before logging out, the attacker
erases the traces in the system logs, including user login and
kernel module load logs, to conceal its activity. We report
the tampered log in Figure 12. It illustrates that no traces of
the attacker are found in the recent legacy user login logs or
kernel module load logs. Figure 11 shows TDLogger securely
stores those entries, whose timestamps do not appear in the
system logs.

PID: 1309, UID: 0, TTY Number: 0, Session ID: 1, Current time:

2024-11-12T10:21:51. 317135+00: 00

(a) Login message.

INAME: Malware, UID: 0, PPID: 1357, Parent Process Name: bash,

Current time: 2024-11-12T10:23:59.433219+00:00

(b) Module loading message.

Figure 11: TDLogger reveals evidence of the attacker’s mali-
cious activities.

USENIX Association

34th USENIX Security Symposium 1205

2024—11—12T10:21:23.672679+00:00 tdx—guest login[1227]:
pam_unix(login:session): session opened for user root (
uid=0) by root (uid=0)

2024-11-12T10:24:32. 927227+00:00 tdx—guest login[1378] 3
pam_]mix(login:session): session opened for user root (
uid=0) by root (uid=0)

(a) Legacy login messages.

2024-11-12T10:21:40. 873842+00:00 tdx—guest kernel:
Normal module have been loaded

2024-11-12T710:25:10. 184851+00:00 tdx—guest kernel:
Normal module have been loaded

(b) Legacy module loading messages.

Figure 12: Legacy logs show that the attacker’s malicious
activities have been removed.

1206 34th USENIX Security Symposium

USENIX Association

	Introduction
	TDX Internals and Constraints
	Memory Management for TDs
	vCPU Scheduling for TDs

	Overview
	Security Model for TETD
	Challenges and Design Considerations
	Our Approach
	The Idea
	Agent Subsystem and TETD Components

	Resource Separation versus Privilege Layering

	Design Details
	Exclusive Mode Execution
	Agent Bootup
	Agent Sleep & Activation

	Collaborative Mode Execution
	Agent Bootup, Sleep & Activation
	Worksite Relocation

	Implementation
	TETD-H
	TETD-G

	Evaluation
	Security Analysis and Evaluation
	Effectiveness of GPA Blocking
	Secrecy of Worksite Relocation
	Software Attack Analysis

	TETD Performance Evaluation
	CPU Time of TETD Primitives
	TD Performance Impact From TETD

	TETD Application I: TD Introspection
	TDReader
	Implementation and Experiments

	TETD Application II: TDSigner
	TDSigner
	Implementation and Experiments

	TETD Application III: SuperAgent
	Multi-Agent Support
	SuperAgent Implementation

	Related Work
	Discussions
	Conclusion
	Interface Function Definition for TETD
	TETD Application IV: TDLogger

