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ABSTRACT

A wide range of Arm endpoints leverage integrated and discrete
GPUs to accelerate computation such as image processing and
numerical processing applications. However, in spite of these im-
portant use cases, Arm GPU security has yet to be scrutinized by
the community. By exploiting vulnerabilities in the kernel, attack-
ers can directly access sensitive data used during GPU computing,
such as personally-identifiable image data in computer vision tasks.
Existing work has used Trusted Execution Environments (TEEs)
to address GPU security concerns on Intel-based platforms, while
there are numerous architectural differences that lead to novel
technical challenges in deploying TEEs for Arm GPUs. In addition,
extant Arm-based GPU defenses are intended for secure machine
learning, and lack generality. There is a need for generalizable and
efficient Arm-based GPU security mechanisms.

To address these problems, we present StrongBox, the first GPU
TEE for secured general computation on Arm endpoints. During
confidential computation on Arm GPUs, StrongBox provides an
isolated execution environment by ensuring exclusive access to
the GPU. Our approach is based in part on a dynamic, fine-grained
memory protection policy as Arm-based GPUs typically share a
unified memory with the CPU, a stark contrast with Intel-based
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platforms. Furthermore, by characterizing GPU buffers as secure
and non-secure, StrongBox reduces redundant security introspec-
tion operations to control access to sensitive data used by the GPU,
ultimately reducing runtime overhead. Our design leverages the
widely-deployed Arm TrustZone and generic Arm features, with-
out hardware modification or architectural changes. We prototype
StrongBox using an off-the-shelf Arm Mali GPU and perform
an extensive evaluation. Our results show that StrongBox suc-
cessfully ensures the GPU computing security with a low (4.70% -
15.26%) overhead across several indicative benchmarks.
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1 INTRODUCTION

GPUs are now widely used in general- and high-performance ap-
plications such as 3D games [17], video processing and compres-
sion [18], mobile Virtual Reality [22], and neural network training
and inference [28, 45, 57]. In addition, GPUs are used not only in
server and cloud environments [42, 74], but also in small embedded
systems [4, 77] such as smartphones and autonomous vehicles to
satisfy the sharply-increasing performance demands.
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As GPUs have enjoyed increased popularity and distribution, the
associated security implications have not yet seen a correspond-
ing level of scrutiny from the community. To access sensitive data
processed by victim applications, an attacker can exploit numer-
ous vulnerabilities at the OS level to gain control of the GPU Dri-
ver, which in turn enables access to the GPU’s memory through
Memory-mapped I/O (MMIO) interfaces. In addition, the attacker
can break isolation between GPU applications by tampering with
the GPU page table, leaking the sensitive data processed on victim
GPU applications. Combined with the increase in the use of per-
sonally identifiable information [23, 25, 82] and sensitive secrets
computed with GPUs [29, 86], there is an urgent need to address
trusted computing requirements for ubiquitous GPUs.

Researchers and commercial vendors have proposed a number
of approaches to defend against leaking sensitive data [48, 79, 81,
89]. Recently, one such technology is Trusted Execution Environ-
ments (TEEs) [2, 5, 33, 79]. By using specialized hardware and
software, TEEs provide an isolated runtime environment for exe-
cuting security-critical code. TEEs have recently been adapted to
isolating secure GPU computation [51] using modified Intel Soft-
ware Guard eXtensions (SGX) [33], Graviton [90] and HETEE [93]
with customized TEE. However, none of these techniques have
been applied to Arm endpoint GPUs. One critical limitation lies
in architectural differences between Intel and Arm GPU platforms.
State-of-the-art GPUs on Intel-based devices are naturally isolated
because discrete GPU devices have dedicated memory. In contrast,
Arm-based devices often employ Systems on Chip (SoCs) in which
a unified memory is shared between the GPU and CPU (and conse-
quently, with an untrusted OS). This major change in architectural
assumptions heavily influences the design of relevant protection
mechanisms. In addition, several works [51, 90] involve highly-
coupled software stacks (e.g., GPU Driver and runtime). This line
of work requires porting heavy software to the enclave, which
executes on behalf of the protected confidential GPU application.
However, this may increase vulnerabilities within the system. On
the one hand, large software stacks increase the trusted code base
of the enclave/TEE. On the other hand, the implementation of such
ported software can be vulnerable [34–38], which severely threat-
ens data security during the computation. Finally, the GPU TEE
mechanisms [51, 90, 93] on Intel-based devices entail heavy hard-
ware modification, which, if adopted to Arm devices, would result in
poor compatibility. Existing secure computation on Arm endpoint
GPUs requires porting the entire GPU driver into the TrustZone
and only focuses on specific applications (e.g., deep learning in-
ference [64]). These defects have yet to be properly addressed. As
for the defense of GPU chips, NVIDIA recently proposes the H100
GPU [73] to establish a trusted execution environment on GPUs,
but this has yet to be demonstrably compatible with Arm endpoints.

We present StrongBox, the first GPU TEE for general compu-
tation on Arm endpoints. StrongBox aims to ensure secure and
isolated computation on GPUs in Arm endpoints, which contains
a unified memory with the untrusted OS and other peripherals.
StrongBox achieves three key goals. (1) Security: As a GPU TEE,
StrongBoxmust isolate each secure GPU task from both the vulner-
able system and malware. Thus, StrongBox prevents adversaries
from leaking data or tampering with critical code during the life
of confidential GPU applications. (2) Minimal TCB: StrongBox

must entail a minimal Trusted Computing Base (TCB) to reduce the
potential attack surface. To achieve this goal, StrongBox delegates
the heavy GPU Driver and GPU runtime code to perform complex
operations including memory allocation and deallocation, I/O, and
task scheduling, while accessing sensitive data is strictly controlled
by thin trusted components. (3) High Compatibility: StrongBox
maintains compatibility with ubiquitous Arm endpoint devices. In
particular, StrongBox neither relies on the features of specific Arm
endpoints, nor does it require hardware modification to GPU or
CPU chips.

To satisfy these requirements, the primary technical challenge is
to ensure the exclusivity of secure GPU execution while using a uni-
fied memory. We must provide an isolated runtime environment in
which secure GPU tasks can engage the GPU even when a compro-
mised OS would otherwise allow an attacker free reign over periph-
eral devices, drivers, and memory. Following the primary challenge,
we must address access control to sensitive data and code in confi-
dential applications. The data and code are scattered throughout
the memory, and their access permission must frequently change to
interface with the delegated components. Ultimately, the isolated
runtime environment must provide acceptable robustness with a
low performance overhead. To that end, we present the following:

• Rather than requiring additional hardware or porting the
GPU Driver to TEE, StrongBox implements a new access
control mechanism based on generic Arm features (i.e., Trust-
Zone and Stage-2 translation) to restrict unauthorized access
to GPU MMIO registers and unified GPU memory. The im-
plementation of StrongBox introduces a small TCB, which
is described in Section 6.

• StrongBox defines a dynamic access control policy for sen-
sitive data and critical code with fine granularity. Without
affecting the stability of the native system, we prevent mali-
cious operations against GPU task code and data. Detailed
analysis of performance and security implications are dis-
cussed in Sections 6 and 7, respectively.

• To ensure low performance overhead, we optimize redun-
dant security checks by differentiating GPU buffers for the
multi-task computation. Section 6 shows that performance
overhead is mitigated with our strategy.

We discuss our prototype implementation of StrongBox using
an Arm Juno R2 development board with clusters of Cortex-A53
and Cortex-A72 processors with a Mali-T624 GPU, both of which
share a unified memory space. Our prototype introduces a TCB of
1,366 lines of code, which is orders of magnitude smaller than the
state-of-the-art approach [64] of porting a 30K LoC Arm Midgard
GPU Driver to TEE. We measure the performance of our proto-
type using a popular GPU benchmark suite, called Rodinia [30],
which has been widely used to evaluate the performance on Arm
devices [24, 59, 60]. Next, we examine the robustness of Strong-
Box through three typical neural network models (LeNet-5 [58],
SqueezeNet [49], and MobileNet-v1 [46]), and evaluate the effec-
tiveness of our optimization mechanism. Moreover, we compare
StrongBox to the state-of-the-art GPU TEEs in varied aspects,
following with the security analysis of StrongBox under the as-
sumed adversary. Our evaluation results indicate that StrongBox
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successfully achieves its security guarantees while introducing a
reasonably low (4.70% - 15.26%) performance overhead.

We claim the following contributions in this work:
• We present StrongBox, the first unified-memory GPU TEE
that runs on Arm endpoints. StrongBox provides an iso-
lated execution environment for secure tasks and protects
sensitive data and code from a compromised kernel.

• We implement a prototype of StrongBox on an Arm devel-
opment board without any hardware or architecture modifi-
cation. We share the source code of StrongBox1.

• We perform a comprehensive evaluation of StrongBox, and
we present a detailed security analysis of our prototype.
Our results show that StrongBox effectively protects the
sensitive data with a comparable performance overhead.

2 BACKGROUND

2.1 Arm TrustZone

Arm TrustZone [21] is a hardware-based security mechanism that
provides a number of isolation guarantees for security-critical code
on Arm devices. TrustZone isolates the execution into two states:
(1) secure world, which provides a TEE for trusted applications or
trusted OS, and (2) normal world, which is used for untrusted appli-
cations or traditional OS. Confidential computation within secure
world is strictly protected by TrustZone via hardware isolation in
memory, and can be requested in the normal world through several
mechanisms, such as a privileged smc instruction.

The isolation of the normal and secure worlds is ensured by
hardware components that are parts of the TrustZone architecture.
One such component is the TrustZone Address Space Controller
(TZASC). Embedded in the memory bus, the TZASC sits between
DRAM and CPU/peripherals, monitoring access to secure and non-
secure address spaces. Moreover, the TZASC assigns a Non-Secure
Access Identity (NSAID) to each untrusted peripheral device. When
a peripheral requires read/write access to an address, the TZASC
looks up the configuration (usually stored in a register) of the cor-
responding memory region for the validity of the access. Thus, the
TZASC provides access control to the memory accessed by the CPU
and each peripheral device. However, the TZASC only supports
configuring 8 regions, limiting flexibility of such a memory protec-
tion mechanism. We present an assisted access control mechanism
in Section 2.2 to address this limitation.

TrustZone also isolates secure and non-secure interrupts in re-
sponse to device I/O. Specifically, TrustZone uses a Generic Inter-
rupt Controller (GIC) [6] to create two groups of interrupts, Group
0 (accessible only in secure world) and Group 1 (accessible in both
secure and normal worlds). TrustZone identifies the interrupt and
its group when they occur, in turn dispatching the interrupt to
the CPU with the related security state. TrustZone protects such
configurations from the malicious Non-secure components (e.g.,
applications, OS, and hypervisor). In off-the-shelf Arm devices, in-
terrupts related to the GPU are initially categorized into Group 1
and handled by a non-secure GPU Driver. In this paper, we control
the switching of GPU interrupt state to efficiently process sensitive
data and restore the environment.
1https://github.com/Compass-All/CCS22-StrongBox

2.2 Arm Address Translation

Arm defines a two-stage (formally called Stage-1 and Stage-2) trans-
lation mechanism to map the memory space of OS and applications
within physical memory. Stage-1 translates the virtual address (VA)
of kernel or user space into an intermediate physical address (IPA),
and Stage-2 maps the IPA to the real physical address (PA). Stage-
2 translation is widely supported on Cortex-A series [12–14, 16]
chips, which is the mainstream processor for GPU-equipped Arm
endpoints. However, most Arm endpoints disable this translation
since they do not typically fit multi-tenant hypervisors. In Strong-
Box, we enable this feature for page-level access control on the
GPU MMIO registers and the GPU task memory.
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Figure 1: Application workflow on Arm endpoint GPUs.

2.3 Workflow of Arm Endpoint GPUs

To control endpoint GPUs at the software level, Arm provides two
GPU software stacks: (1) the closed-source user runtime in the user
layer (e.g., OpenCL [20]), and (2) the open-source GPU Driver in
the kernel layer. The user-level runtime provides various high-level
APIs, built-in functions, and specific data structures to support
developing GPU applications. The kernel-level GPU Driver mainly
controls memory allocation and task scheduling and submission
via Memory-Mapped Interfaces (MMIO).

A GPU application is composed of one or more GPU tasks, which
further contain several GPU threads. Figure 1 shows the typical
execution of a GPU application on an Arm endpoint GPU: First, the
GPU software stacks allocate memory for the essential components
in GPU tasks (i.e., GPU buffers, code segments, and non-confidential
metadata) and build the corresponding GPU page table ( 1○). Next,
data are loaded into the allocated GPU buffers through a Direct
Memory Access (DMA) controller ( 2○). Then, the GPU software
stack loads the binary code into GPU memory ( 3○). After that, the
GPU task start command is sent by configuring the GPU MMIO
registers ( 4○). After receiving the submission command, the GPU
computes the task based on the code and data, and stores the execu-
tion result in specific memory ( 5○). Once the GPU task is finished,
the GPU sends a hardware interrupt to notify the interrupt han-
dler in the GPU software stack. For multi-task GPU applications,
the GPU software stack repeatedly loads the task code, submits
the task, and waits for completed GPU computation ( 3○– 6○). In
contrast, data are typically loaded only once, following GPU pro-
gramming conventions [9, 76, 87]. Note that most Arm endpoint
GPUs equip multiple shader cores, simultaneously processing mul-
tiple threads belonging to the same GPU task [15, 77]. However,
the GPU tasks are executed sequentially on Arm endpoint GPUs.
Unlike server GPU software stacks such as NVIDIA CUDA [72],
which can concurrently execute tasks without data dependency,
studies show that mainstream Arm endpoint GPUs [61] and related
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SDKs [53] have yet to support concurrent execution. After process-
ing all tasks, results are directly accessed or exported through DMA
( 7○). StrongBox secures the task execution ( 4○ and 6○) and builds
a secure data path ( 2○ and 7○) for data transfer.
3 THREAT MODEL AND ASSUMPTIONS

We assume a privileged attacker who seeks to leak or tamper with
sensitive data and execution results of GPU applications. Specifi-
cally, the attacker can control the kernel as well as the entire GPU
software stacks, including the GPU Driver, runtime, and other pe-
ripheral drivers. To tamper with sensitive data and code in GPU
applications, the attacker can directly access a unified memory
used for GPU tasks, or control peripherals to subvert detection.
In addition to direct access, the attacker who controls the GPU
driver can compromise the memory management of the GPU ap-
plications, mapping sensitive data to an unprotected region. We
also consider an adversary aiming to break the isolated execution
environment of the victim GPU applications, such as submitting an
arbitrary number of malicious tasks. By modifying the correspond-
ing GPU page table, the attacker can require the malicious tasks
to access the memory of the victim task. Following existing best
practices for SGX-based GPU TEEs [51], we assume the GPU, Trust-
Zone, and their firmware are trusted since they can be guaranteed
by secure boot and attestation from a trusted remote host. Thus,
StrongBox firmware is correctly loaded into Arm endpoints with
verification. In addition, we trust secure world and do not consider
threats against the trusted kernel or applications. Moreover, we
consider cryptographic-based attacks, physical attacks, and side-
channel/spy attacks to be beyond the scope of this paper. As with
existing GPU TEEs [51, 90, 93], we do not address the Denial-of-
Service attacks against long-running applications, though other
TrustZone-based TEEs [91] are a potential solution to this attack.
4 DESIGN

StrongBox allows users to use confidential GPU applications inside
an untrusted system. Recall that these applications include tasks
such as face recognition [50], fingerprint recognition [56], and
neural network inference [46, 80], all of which entail some degree
of potentially-sensitive data. We envision scenarios in which users
execute the deployed confidential GPU applications to establish
cryptographic keys with StrongBox using a key-management
protocol. To defend against data leakage during data transfer, users
send the encrypted data to StrongBox. Then StrongBox protects
and decrypts the data, allowing the GPU to process them securely.
Lastly, users retrieve encrypted results from StrongBox.

Before we elaborate on the design of StrongBox, we discuss
three potential alternative design choices. First, we could port the
GPU into TrustZone [64]. However, such isolation requires migrat-
ing the entire GPU and related software components (e.g., GPU
driver and runtime) to secure world, which would invariably re-
quire a large TCB and expose a large attack surface. Second, we
could virtualize the entire GPU. However, such a design requires a
hypervisor to support memory virtualization, GPU state virtualiza-
tion, scheduling, and other critical functions, thus requiring a large
TCB and high runtime overhead. Third, we could add extra hard-
ware to support GPU TEEs. Graviton [90] and the recent NVIDIA
H100 GPU [73] add extra hardware inside the GPU chip to craft
and arrange a confidential environment for GPU. However, such

GPU devices involve various architecture differences compared
with Arm endpoint GPUs, and such hardware modification would
adversely affect compatibility. Based on these issues, we propose
StrongBox to secure the GPU computation on Arm endpoints.
4.1 Goals

The goal of StrongBox is to achieve an effective, lightweight, and
compatible GPU TEE on Arm endpoint devices, in which the OS and
applications are potentially compromised. As a result, our design
must achieve three critical goals described below.

G1: Provide a Trusted Execution Environment for secure

GPU tasks. The primary goal is to secure sensitive data for GPU
applications. To achieve this goal, StrongBox must protect two
modes of data access from Host OS to the execution environment:
(1) from the OS to GPU and (2) from the OS to the memory of
GPU tasks. In the former case, StrongBox diverts the control
flow of the GPU from the untrusted GPU Driver to TrustZone’s
secure world, including the interaction with GPU registers and GPU
interrupts (see Section 4.3). For the latter case, StrongBoxmanages
the access to the unified memory to restrict untrusted access to the
task execution environment (see Section 4.4).

G2: Reducing the size of trusted computing base. Next, we
must maintain a lightweight TEE. Several GPU TEEs and secure
computing systems [51, 64, 90] trust large software stacks (e.g.,
libraries and drivers) for pre-processing sensitive data, exposing a
large attack surface within the TEE. However, we observe that the
software stack can perform its critical functions (e.g., memory man-
agement of GPU tasks and scheduling GPU tasks) without direct
access to the sensitive data. Thus, we instead preserve the GPU Dri-
ver in normal world, while introducing a lightweight StrongBox
runtime that protects GPU memory even if the driver is compro-
mised. This design achieves a thin TCB without undermining the
security of the existing system (discussed in Section 4.2).

G3: Ensuring the compatibility with Arm endpoints. Third,
we introduce a GPU TEE designed for Arm endpoints with min-
imal changes to the underlying platform. State-of-the-art GPU
TEEs [51, 90, 93] adopt additional hardware components to en-
sure secure computation. These specialized hardware requirements
increase challenges associated with migrating systems as well as the
associated production costs. Thus, we design our approach to rely
neither on specialized hardware components nor physical modifica-
tion of devices — instead, we use features that are widely-available
on general Arm devices (discussed in Section 4.2).
4.2 StrongBox Overview

Figure 2 illustrates the design of StrongBox, which is divided
into software and hardware components. As shown in Figure 2-
left, the GPU applications, both non-confidential and confidential,
are first processed by the GPU runtime (e.g., OpenCL [20]) and
the Host OS. The Host OS transfers essential data through DMA
using the GPU driver to handle memory management and task
scheduling. Note that the GPU tasks in non-confidential and confi-
dential GPU applications are categorized as non-secure tasks and
secure tasks, respectively. The non-secure tasks then proceed to
the GPU. However, when a secure task is ready to execute, the
GPU driver triggers an smc instruction to divert control flow to
our StrongBox runtime. The StrongBox runtime is deployed in
the secure monitor (EL3) to protect the secure tasks with several
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Figure 2: StrongBox architecture overview

trusted modules (e.g., secure boot and key management modules).
To protect the data security in secure tasks, StrongBox provides
two principal components: GPU Guard and Task Protector. GPU
Guard provides a protective layer that ensures the GPU can execute
in isolation, and ensures that secure tasks are completed before
final computed results are returned. Task Protector works in tan-
dem with GPU Guard to ensure that sensitive data are protected to
provide confidentiality. Together, these components help to fulfill
our goal of isolated GPU execution and confidential storage. In
addition, we reuse the GPU runtime and driver software in the
OS (EL1) to reduce the overall TCB size (G2). The GPU driver and
runtime manage hardware resources and data transfer for both
confidential and non-confidential GPU applications (EL0), while
the data security is ensured by the thin StrongBox runtime. As a
result, our approach ensures that the GPU can execute secure tasks
in isolation while executing within a potentially-compromised OS.
Note that hypervisors are not deployed on most Arm endpoints,
and StrongBox requires no modification to secure world (i.e., SEL0
– SEL2).

For hardware components, StrongBox leverages existing and
software configurable devices to ensure high compatibility (G3).
We split the system’s memory into four regions: Two untrusted
regions, which we call (1) Normal RAM and (2) Non-secure Task
RAM, which are respectively used for kernel and non-secure tasks;
and two trusted regions that we call (3) Trusted RAM, which is
reserved for StrongBox runtime and Stage-2 translation table, and
(4) Secure Task RAM, which is a fixed, non-secure memory region
reserved for the confidential GPU application to dynamically re-
quest memory and create GPU page table mappings. To protect the
two trusted regions, StrongBox leverages the Memory Manage-
ment Unit (MMU) and a specially-configured TZASC. In the MMU,
StrongBox performs Stage-2 translation to control access from the
Host OS to GPU MMIO interfaces and to the two trusted regions.
Meanwhile, we leverage the TZASC to control access to the two
trusted regions from GPU and other peripherals.

In the following sections, we describe how StrongBox works
with the non-confidential software stack to protect the execution
environment, and how the software components behave.

4.3 Exclusivity of GPU on Critical Execution

StrongBox’s primary security goal is to provide exclusive execu-
tion of secure GPU tasks. That is, if any secure task is executing
on the GPU, no other task can be scheduled on the GPU simultane-
ously. As shown in Section 3, attackers who control the GPUMMIO
can subvert the isolated execution environment. To defend against
such an attacker, we adapt state-of-the-art GPU TEEs to Arm GPU
devices, which requires addressing two issues. First, while exist-
ing GPU TEEs migrate heavy GPU driver code into an enclave or
TEE to control the GPU, we keep this code in the untrusted kernel,
and instead react to specific smc events that route control to the
StrongBox runtime. Second, we use existing Arm features to con-
trol the access of GPU hardware — specifically, Stage-2 translation
helps lock the system mapping of GPU MMIO registers during
computation. By leveraging custom smc event handlers and Stage-2
translation, we can prevent highly-privileged attackers from gain-
ing control of the GPU or executing malicious tasks.

StrongBox reuses the existing GPU driver in the untrusted
kernel, and instead secures execution using lightweight software
components. To achieve this, we must work with the GPU dri-
ver to reroute control under several cases related to the creation,
management, and execution of secure GPU tasks. First, we design
a dedicated scheduling rule for secure tasks. Once a secure task
is ready to execute, any non-secure computation, are forced to
reschedule and wait for the completion of the submitted secure
task. For the running tasks, GPU driver repeatedly evaluates the
contents of GPU registers to determine if any tasks are executing.
Once we determine that the GPU is not executing any task, GPU
driver uses a dedicated smc call which signals for the protection
and security check in StrongBox runtime. In contrast, normal,
non-secure tasks can submit as usual — the GPU driver will not
emit the smc call to work with our security components.

Recall that the GPU driver is untrusted because it is part of the
untrusted OS — however, we can mitigate attacks that compromise
the GPU driver. When we receive an smc call, we use our GPU
Guard to detect and eliminate threats. GPU Guard defends against
these attacks by isolating and securely introspecting the execu-
tion environment. Before submitting secure tasks to the GPU, GPU
Guard confines the access to GPU MMIO via Stage-2 translation to
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prohibit unauthorized access from the untrusted OS. Any malicious
operations against the GPU MMIO interfaces (e.g., modifying GPU
registers or submitting a task) are captured by generating Stage-2
page-fault exceptions, while trusted operations in StrongBox are
not affected. After locking the GPU MMIO, GPU Guard guarantees
the GPU environment security. First, GPU Guard checks the GPU
task state registers to ensure no hidden tasks. Next, GPU Guard
works with Task Protector to further check the other critical GPU
registers (e.g., page table base register and GPU task code register).
Task Protector also checks the memory containing the loaded task’s
GPU page table, code, and data regions described in Section 4.4. The
page table memory is locked and checked by StrongBox before the
first secure task executes and is unlocked after completing the last
secure task. The check prevents an attacker frommapping the sensi-
tive GPU buffer addresses into out-of-control memory. In addition,
we perform integrity checks for the code and data regions before
submitting each secure task to the GPU. Meanwhile, to handle GPU
interrupts in StrongBox, the security state of GPU interrupts is
switched from non-secure to secure via GIC. Finally, GPU Guard
submits the prepared tasks to the GPU through writing tasks sub-
mission register. Then, the GPU will carry out the prepared task as
expected. After submitting the secure task, StrongBox returns to
the GPU driver and releases the CPU. Therefore, StrongBox does
not block the CPU core during GPU computation. For secure task
synchronization, StrongBox requires the GPU driver to sched-
ule the GPU tasks to be submitted, while it does not support the
concurrent submission since mainstream Arm endpoint GPUs [61]
and related SDKs [53] have yet to support the concurrent computa-
tion of GPU tasks (as mentioned in Section 2.3). Moreover, when
processing, StrongBox does not block other smc calls that do not
interact with the GPU.

When computation completes, the GPU sends an interrupt (which
is previously configured as secure) to notify StrongBox. Thus, the
StrongBox runtime intercepts the GPU interrupt and restores the
GPU MMIO and GPU memory access permission. Furthermore,
GPU Guard configures the GIC and switches the GPU interrupt

back to non-secure state to allow the GPU driver to handle the in-
terrupt. After restoring the MMIO access permissions and interrupt
state, the GPU is allowed to process new tasks.

4.4 Dynamic and Fine-grained Protection

StrongBox must ensure the confidentiality of sensitive data and
the integrity of secure GPU tasks that store data in the Secure Task
RAM. Thus, an attacker may try to access the unified memory that
stores sensitive data inside the GPU buffer. Alternatively, an at-
tacker may attempt to modify the GPU page table entries (PTEs),
exporting sensitive data to unprotected regions. To guarantee the
security, a straight-forward method is to statically protect the en-
tire task memory with one or more TZASC slots. However, this
leads to two challenging issues. First, such static protection can se-
verely undermine the functionality of the GPU driver. For instance,
it prevents the GPU driver from processing the non-confidential
metadata of the secure tasks. Second, the layout of sensitive data
and code are physically scattered and dynamically-changed in Se-
cure Task RAM for different GPU applications. Thus, static TZASC
partitions may not work in our unified memory scenario where
memory management must be flexible. Another solution based
on existing Arm-based secure computing [64] is to port the GPU
software stacks into TrustZone; however, this incurs large TCB
and breaks our design principle of minimal TCB. Thus, we need an
alternative to using static TZASC partitions.

Instead, we develop a dynamic and fine-grained memory protec-
tion mechanism by combining Stage-2 translation and TZASC. We
explicitly divide the Secure Task RAM into two physically continu-
ous regions: Task region and GPU page table region. For the Task
region, Stage-2 translation dynamically performs page-level protec-
tion to critical memory containing data and code in different stages,
and we use a TZASC slot to manage the access fromDMA, GPU, and
other peripherals. As for the GPU page table region, StrongBox
employs Stage-2 translation to monitor modification requests from
the untrusted OS. To avoid potential peripheral attacks, we further
leverage TZASC to prohibit write access from peripherals to the
GPU page table region. If the content in these regions is incorrectly



StrongBox: A GPU TEE on Arm Endpoints CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

allocated, we terminate the application and erase any sensitive data.
We categorize access permission of these two regions into six types:

• Full Accessible: Allow any read/write operations.
• Write Protected: Allow the read operations from any compo-
nent, but monitor the write operations.

• DMA Prohibited: Disallow the read/write operations from
untrusted peripherals through DMA.

• OS-DMA Prohibited: Disallow the read/write operations from
both OS and the untrusted peripherals through DMA.

• GPU-DMA Prohibited: Disallow the read/write operations
from GPU and untrusted peripherals through DMA.

• OS-GPU-DMA Prohibited: Disallow the read/write operations
from OS, GPU, and untrusted peripherals through DMA.

Figure 3 illustrates the evolution of access permission during the
life-cycle of a confidential GPU application. The initial access per-
mission of the Secure Task RAM is configured as Full Accessible to
allow preparing an application for submission via the GPU software
stack. During task execution and switching, the GPU page table
region is configured asWrite Protected to avoid potential leakage of
sensitive data. Task Protector traps modifications to the GPU page
table and introspects any malicious memory mappings, (e.g., double
mapping and mapping to untrusted regions). Moreover, since the
GPU page table is initially prepared by GPU driver, Task Protector
verifies the entire page table before running the first secure task.
As for the task region, access permissions for each GPU buffer and
code region can vary. Upon execution of a secure task, we config-
ure the entire task region as DMA Prohibited except the memory
of the executed task, which is OS-DMA Prohibited to secure the
subsequent encryption and integrity verification of code and data
regions. During the task switching, the GPU buffers are encrypted
by default (e.g., Buffer 1 in Task 1, and Buffer 2, 3, and 4 in Task 2).
For any buffer that is used in subsequent secure tasks (e.g., Buffer 2
in Task 1), StrongBox supports retaining plaintext and configures
the plaintext memory as OS-GPU-DMA Prohibited, and all memory
except the plaintext data memory is configured as GPU-DMA Pro-
hibited until the submission of next secure task. After all tasks are
finished, all sensitive plaintext data are encrypted, and the entire
Secure Task RAM is configured as Full Accessible to allow the user
to load the result. Furthermore, for security purposes, StrongBox
prevents secure tasks in different confidential GPU applications
from sharing the Secure Task RAM. Any task in other confidential
GPU applications cannot start until the previous confidential GPU
application finishes all secure tasks and safely terminates. This
organization of memory provides strong isolation guarantees for
any sensitive data that is used by a secure GPU task.

Next, we design a secure data path to avoid data leakage during
DMA transfers. Any sensitive data transferred via DMA requires
encryption and integrity checks using Hash-based Message Au-
thentication Code (HMAC). Task Protector performs secure intro-
spection to decrypt or encrypt the sensitive data with the shared
keys, and calculates each HMAC according to the plaintext data or
code. Since the memory of secret keys, intermediate or plaintext
data, and the corresponding task page table are protected by our
Stage-2 translation and TZASC mechanism, TOCTTOU attacks
against computed hash values are infeasible. Next, Task Protector
notifies GPU Guard to continue with task submission, or abort it
due to verification failures. When a secure GPU task is finished,

Task Protector restores the execution environment. Specifically, the
executed results are encrypted and hashed before reverting to a
non-secure state. Thus, plaintext instances of data exist only during
secure task execution.
4.5 Optimization for Multi-Task Computation

StrongBox also introduces nontrivial overhead on GPU applica-
tions. We observe that cryptographic functions and access permis-
sion change on GPU buffers incur the most overhead, which can
be aggregated in typical GPU applications over multiple tasks. In
various multi-task scenarios (e.g., image processing [43, 69, 75],
machine learning inference [88], signal processing [41], and cryp-
tography acceleration [65]), data from one task may feed to the
next. By default, Task Protector unnecessarily encrypts all data
buffers from one task, even though a subsequent secure task will
immediately consume the data. Thus, we can optimize such steps
by leveraging the input/output relations of GPU buffers.

StrongBox tracks buffer usage of GPU applications and sup-
ports a flexible cryptographic policy to handle different types of
GPU buffers. More specifically, we detail the policy in Table 1. Task
Protector applies one of three policies to data upon the first usage
of a GPU buffer. For data requiring confidentiality, we use the en-
cryption policy (F1), while the policy F2 can be applied to the GPU
buffers only requiring an integrity check. For the GPU buffers with-
out meaningful data before GPU computation, the policy F3 can be
selected. After the last usage of buffers, StrongBox only needs to
encrypt and expose (L1) the output buffer as result, while erasing
(L2) the data in input data and temporary data on GPU buffers. Note
that plaintext buffers are maintained with proper protection during
the secure task execution and task switching, which only allows the
access from the secure state CPU and the authenticated secure GPU
tasks. These policies allow flexible memory management while
protecting sensitive data.
Table 1: StrongBox’s operations on varied GPU buffers at

two timestamps. The F1 - F3 and L1 - L2 mean different

policies to process a GPU buffer at two timestamps.

Timestamp Operation on GPU buffers

First Time to Process
(F1) Enforce Protection + Decryption
(F2) Enforce Protection + Integrity Check
(F3) Enforce Protection

Last Time to Process (L1) Encryption + Cancel Protection
(L2) Erase + Cancel Protection

The shown policies in Table 1 fully protect against the incorrect
specification cases and the attacker who attempts to leak the sen-
sitive data by subverting the defined policy. StrongBox always
protects any GPU buffers before sensitive data within are decrypted,
and always encrypts or erases sensitive data within GPU buffers
before terminating the protection. Furthermore, we consider an
attacker who can terminate the GPU application early and leave
plaintext data inside the memory. However, the sensitive data is
still under protection and is isolated from the untrusted OS. To
further guarantee the data security, we perform a secure termina-
tion check before creating the next GPU application. During the
check, StrongBox first verifies the entire Stage-2 translation table
to detect whether the protection of any GPU task region has yet to
be removed. If any exist, StrongBox erases the plaintext in these
regions and restores the protection in Stage-2 translation. After
checking the Stage-2 translation table, StrongBox restores the
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TZASC to finish the secure termination check. Our optimization
effectively reduces the performance overhead of our GPU TEE.

4.6 Trust Establishment

In this subsection, we discuss the assumptions we make to establish
a chain of trust to our software components.
Secure Boot. The initialization of StrongBox can be guaranteed
by secure boot. By verifying the digital signatures of the loaded im-
ages, the boot process ensures the integrity and authenticity of the
entire StrongBox system. When the code segment of StrongBox
is checked after secure boot, we can safely configure the memory
region and interrupts for GPU tasks.
Remote Attestation and KeyManagement.We assume Strong-
Box is deployed by endpoint device vendors, and its load-time
integrity is verified by the secure boot. We assume public key in-
frastructure, including a public/private key pair and certificate, is
installed into secure world by the vendor. To exchange a secret
key, the developer encrypts an AES key with the certified public
key. Then, the StrongBox runtime in secure world receives the
encrypted AES key and decrypts it with the private key. Next, the
AES key is used to encrypt and decrypt the secure GPU code and
data. We share the same key for tasks within a confidential GPU
application and establish a new AES key for the next one. Note that
the AES key only provides the confidentiality, and the authentic-
ity of the passed information is not needed since anyone can pass
code/data to StrongBox and use the GPU TEE.

5 IMPLEMENTATION

Weprototype StrongBox on anArm Juno R2 development board [7]
with 8GB DRAM, an embedded Mali-T624 GPU, and the Arm
TrustZone extension. We use Linux v4.14.59 with an open-source
Midgard GPU Driver [19] in normal world, and run Arm Trusted
Firmware (ATF) v2.1 in secure monitor. To create an isolated execu-
tion environment, we reserve 264MB as Secure Task RAM, including
a 256MB region (0xB0000000–0xBFFFFFFF) to hold secure tasks
and a 8MB region (0xAF800000–0xAFFFFFFF) for GPU page table.
The Trusted RAM contains the memory space for ATF and an addi-
tional 4MB region (0xA0000000–0xA03FFFFF) for the Stage-2 trans-
lation table. In ATF, we deploy StrongBox runtime to configure
two hardware components: TZC-400, which is an implementation
of TZASC, and GIC-400, which handles the GPU interrupts. To
setup Stage-2 translation, we create a flat mapping for the entire
memory region except the Trusted RAM. In addition, three major
registers (HCR_EL2, VTTBR_EL2, and VTCR_EL2) are configured to
enable the translation, thus providing an important mechanism
for securing sensitive data used in sensitive applications. We also
secure GPU tasks using cryptographic and integrity checking oper-
ations. We assume that TrustZone secure world has established a
key management system and a communication channel with the
user. These steps can be achieved following previous work [52, 84]
and we do not claim this as a contribution of our work. We use
Advanced Encryption Standard (AES) encryption with a pre-shared
128-bit key for cryptographic operations on the sensitive data. For
integrity verification, we use the SHA-256 algorithm to compute
hashes of various data. These operations can be accelerated using
hardware-assisted instructions and SIMD extensions in Armv8.

5.1 GPU Driver

To fulfill the protection policy for secure GPU tasks, we modify
the kbase_mem_alloc_page function in the Midgard Driver to al-
locate pages of secure tasks in the aforementioned 256MB region of
Secure Task RAM, while the non-secure tasks take the remaining
non-reserved DRAM space. Moreover, we find that the original
Memory Manager in Midgard GPU Driver maintains a memory
pool for GPU tasks, and requests additional pages from the kernel
once the pool is exhausted. Therefore, we explicitly create an extra
secure memory pool in the GPU driver to assign the reserved mem-
ory for secure tasks. Wemanage this pool with Contiguous Memory
Allocation [39] (CMA) and use cma_alloc to allocate the page in
reserved memory. In addition, we must guarantee that any two
GPU buffers cannot share the same page. Otherwise, the protection
restoration of one GPU buffer can lead to unintentional leakage to
other GPU buffers on the same page. Unfortunately, this guarantee
can be violated during buffer creation in the closed-source OpenCL
library. To address this concern, we allocate an additional page
for each GPU buffer and redirect the non-aligned buffer pointer
to the next page-aligned address. In this way, we force the start
address of all GPU buffers to be page-aligned, which ensures differ-
ent GPU buffers do not share the same page. We further confirm
page-alignment requirements are fulfilled with an additional check
in our security modules.

Besides the Memory Manager, we modify the original scheduler
in the GPU driver to assist to create the isolated execution environ-
ment of secure tasks. Upon the arrival of a submitted secure task,
the Task Scheduler blocks and reschedules the submission of any
other tasks via a lock. Next, the scheduler in StrongBox checks
the GPU state registers and waits until all running GPU tasks are
finished. Once the GPU is idle, the scheduler submits the secure
task to GPU Guard and Task Protector for further protection.

5.2 GPU Guard

During the process of critical GPU applications, GPU Guard pre-
vents unauthorized access to the GPU. Once it receives the specific
smc call, it first configures the Stage-2 translation table entries to
prevent any unauthorized access to GPU MMIO. Specifically, it sets
the last bit of the corresponding Stage-2 PTEs as 0 to invalidate
the mapping of GPU MMIO regions, then invalidates the TLB en-
tries for each CPU core. The attacker who attempts to access GPU
registers through the GPU MMIO will fail in a translation fault.

To switch to secure execution, StrongBox leverages the GPU
driver to set the control and critical state register, then safely verifies
critical registers. We follow the source code of the GPU driver [19]
to sanitize critical registers, such as JS_STATUS (which shows the
GPU state), JS_HEAD_NEXT (which stores the location of secure task
code), and AS_TRANSTAB (which stores the GPU page table base) in
StrongBox runtime. To submit a task, GPU Guard writes a start
command (0x1) to the JS_COMMAND_NEXT register.

To intercept the GPU interrupt, we use the GIC [6] to mark it as
a secure interrupt. On our Juno board, the ID of the task complete
interrupt is 65. Thus, we configure the GICD_IGROUPR register of
this interrupt to the secure state (0x0). Once the secure task is
complete, GPU Guard receives the interrupt, waits for the data
process in Task Protector, and resets the interrupt to non-secure
state (0x1) before returning to the OS.



StrongBox: A GPU TEE on Arm Endpoints CCS ’22, November 7–11, 2022, Los Angeles, CA, USA.

5.3 Task Protector

Task Protector leverages both TZASC and Stage-2 translation to
restrict the access of Secure Task RAM, which contains the GPU
page table and task regions. In the GPU page table slot, we reject
writing operations from all peripherals and DMA by disabling most
bits in TZASC NSAIDW registers except the bits CPU (AP). As for
writing operations from the untrusted OS, we monitor modification
through exceptions, and verify whether the writing operation is
illegal in the exception handler. Besides protecting the GPU page
table, we check the GPU page table base register AS_TRANSTAB for
each secure task. In the task slot, we leverage the TZASC to manage
read and write access from DMA, GPU, and other peripherals by
configuring the corresponding bits in both the NSAIDW and NSAIDR
registers. Moreover, random access to data and code from the un-
trusted OS is limited by dynamically changing the Stage-2 mapping
with TLB invalidation. Any illegal read or write access to the code
and data is prohibited by triggering the Stage-2 translation fault.

As part of implementing access control, Task Protector performs
cryptographic and integrity-checking operations for each secure
task. Thus, our prototype supports using the agreed-upon algorithm
to perform this functionality, such as AES-128 algorithm for crypto-
graphic operation and SHA-256 in integrity verification. However,
we encounter two technical issues in verifying the code integrity of
secure GPU tasks: (1) the task pointer does not simply point to the
code segment, and (2) the code length is not given. For the former
problem, we analyze the content pointed to by the task pointer via
reverse engineering. We eliminate the flag bits in JS_HEAD_NEXT
register and find the start address of the secure GPU task. Thus, we
obtain the code pointer at the offset 0x138 of the start address. To
calculate the code length, we leverage an unofficial study [8, 11] de-
scribing the instruction format. To further guarantee the execution
order integrity of GPU tasks, we combine the task code contents
with the task index to generate the code signature. Moreover, we
generate the signature of output GPU buffers and provide the total
number of executed secure tasks. This way, we verify the integrity
of secure tasks code, execution order, and execution result.

To reduce the performance overhead, we provide an interface
to allow the developer manually specify the optimization policy.
Recall from Section 4.5 that the developer provides pairs of time
points about the first and last usage of sensitive GPU buffers to
decrypt and re-encrypt the sensitive data. Since GPU programs
require developers to specify which GPU buffers to be processed on
each GPU task, such information can be naturally obtained during
application development. Therefore, developers must spend a small
amount of manual effort to deduce and implement the policy.

6 EVALUATION

In this section, we evaluate our prototype of StrongBox based on
our implementation (Section 5). We consider six research questions
in our evaluation:
RQ1. How large is the TCB required for StrongBox?
RQ2. How much overhead is incurred on GPU benchmarks?
RQ3. How much overhead is incurred on neural network models?
RQ4. How effective is our approach to optimizing sequential secure
GPU tasks?
RQ5. How does StrongBox compare to state-of-the-art GPU TEEs
and secure computation systems?

Table 2: Code size of StrongBox.

Component Function Lines of Code

GPU Driver S-2 Initialization 389
GPU Driver 179

ATF

TZASC Initialization 8
Cryptographic Operation 530
Integrity Verification 148
GPU Access Control 344
Other Configuration 175

Total 1,773

Table 3: List of the selected Rodinia benchmark suites.

Problem size Tasks Seq. Exe. Memory Data (In./Out.)

KNN 42,764 points 1 ✓ 0.49 MB 0.33 MB / 0.16 MB
PF 100,000 × 100 points 5 ✓ 38.59 MB 38.14 MB / 0.44 MB
LUD 2,048 × 2,048 points 382 ✓ 16.00 MB 16.00 MB / 16.00 MB
H3D 512 × 512 × 8 points 500 ✓ 24.00 MB 24.00 MB / 8.00 MB
LMD 25 × 25 × 25 boxes 1 ✓ 63.42 MB 63.42 MB / 23.84 MB
GS 2,048 × 2,048 points 4,094 ✓ 32.01 MB 32.01 MB / 32.01 MB

RQ6. How much overhead is incurred on system performance?

6.1 RQ1: TCB Size of StrongBox

Table 2 shows the code size of StrongBox reported by cloc [1], a
utility that reports standard lines of code. Recall that the Trusted
Code Base (TCB) consists of code that initializes and configures
system registers and address translation, as well as cryptographic
operations and access control. The code in the TCB implements
our software modules as described in Section 4. StrongBox re-
lies on Arm Trusted Firmware (ATF) to securely boot the device,
perform remote attestation, and conduct other trust establishment
operations. To reduce the attack surface, StrongBox’s TCB does
not include the large Arm Midgard GPU driver (approximately 30K
LoC) nor the OpenCL driver (32MB). As a result, our TCB is orders
of magnitude smaller than state-of-the-art GPU TEE systems that
assume these are trusted. In contrast, in StrongBox, even if the
driver becomes compromised, our security mechanism can still
secure the sensitive data computed on the GPU.

6.2 RQ2: Evaluation on Rodinia Benchmarks

To demonstrate the runtime performance of StrongBox, we con-
sider the Rodinia benchmark suite [30], which offers realistic work-
load scenarios to measure the performance of GPU computing.
6.2.1 Experimental Setup. In total, we select six applications from
the Rodinia suite. Table 3 shows the number of tasks and the amount
each task consumes during execution. We consider one lightweight
application (K-Nearest Neighbor), three medium-weight applica-
tions (LU Decomposition, Pathfinder, and Hotspot 3D), and two
heavy-weight applications (Gaussian and LavaMD). Together, these
six applications cover a swath of use cases for Arm-based GPU
devices that consume sensitive input, temporary, and output data
that we can use our system to protect. In our evaluation, we directly
load the encrypted input data into the GPU buffer and receive the
encrypted output results. Thus, we apply the corresponding pro-
tection policy to allow the GPU securely process the plaintext data.
Moreover, we slightly modify the Rodinia GPU application code by
replacing a part of the original OpenCL APIs with our wrapped API
to suit StrongBox (e.g., adhering to our page-alignment require-
ment and creating a shared buffer to receive protection policies).



CCS ’22, November 7–11, 2022, Los Angeles, CA, USA. Yunjie Deng et al.

Furthermore, we have checked that the GPU tasks inside the ap-
plications are executed sequentially, which is consistent with the
GPU task execution flow in Section 2.3.

We show a breakdown of the performance overhead for our
prototype. We group the results as Base and Increment, which
represent the native performance and additional time introduced by
StrongBox, respectively. ForBase, we measure the time elapsed by
confidential GPU applications in untrusted components (Untrusted)
and the computation time on the GPU (GPU). In Increment, we
consider the overhead contributed by three components: GDriver,
which includes additional resource consumption within the GPU
driver. GGuard, the time elapsed while executing GPU Guard.
TProtect, which is the sum of time elapsed in Task Protector. We
run each of the six benchmark tasks 30 times, with and without
StrongBox enabled, and report the average time.
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Figure 4: Runtime performance on six Rodinia benchmarks.

6.2.2 Performance Analysis. Figure 4 shows a comparison between
a system with and without StrongBox enabled across both exe-
cution time and memory consumption. It shows that StrongBox
introduces low (4.70% – 15.26%) overhead in across applications of
varied sizes. As expected from Section 5.1, the additional memory
consumption from our page-alignment requirement is insubstan-
tial since it is primarily attributable to the number of GPU buffers.
Table 4 reports further details for each component. It shows that
GGuard incurs the smallest time cost in the entire benchmark
suite, primarily because GPU Guard requires a small and constant
time cost (about 1ms) to process a single task in any application.
Moreover, since GDriver includes the overhead of scheduling and
secure/non-secure switching, it is determinedmainly by the number
of tasks, which primarily impacts the runtime of the Task Scheduler.
Our results reflect this intuition: the GS application with 4,094 tasks
introduces 1,561ms overhead, compared to the KNN application with
1 task, which introduces 1ms overhead. In Task Protector, cryp-
tographic and integrity checking operations are proportional to
the input and output data size. For instance, TProtect component
in H3D (total 32MB data) generates approximately half the latency
of GS (total 64MB data), despite the fact that GS entails eights of
times more tasks than H3D. These results indicate that StrongBox
successfully optimizes the redundant slowdown caused by Task Pro-
tector in applications that involve multiple secure GPU tasks. We
further examine time savings using our optimizations in Section 6.4.

Table 4: Breakdown (ms) of overhead in StrongBox.

Base Increment
Untrusted GPU GDriver GGuard TProtect

KNN 54.82 0.30 1.09 0.01 4.86
PF 125.75 2788.63 12.09 0.09 399.48
LUD 507.55 3364.18 246.22 6.51 338.10
H3D 413.13 4633.01 304.76 8.88 332.82
LMD 168.54 13474.49 6.47 0.02 977.46
GS 2140.54 47291.35 1561.26 65.90 694.52

6.3 RQ3: Evaluation on Neural Network Models

To further measure the robustness of StrongBox in typical state-
of-the-art GPU applications, we next evaluate the inference over-
head on three indicative real-world neural network models of vary-
ing complexity: The lightweight LeNet-5 [58], the middle-weight
SqueezeNet [49], and the heavy-weight MobileNet-v1 [46]. The size
of the selected models is summarized in Table 5. Typically, a neural
network model contains several layers, each of which represents
one or more tasks. The layers compute the sensitive data on nodes
and forward them via links with weights. Following previous neu-
ral network secure inference work [64], we strictly guarantee the
confidentiality of the input and output data on the nodes and verify
the integrity of the model links. Based on this protection strategy,
we apply the corresponding protection policy to the node and link
buffers. Besides, similar to the basic benchmarks, all neural network
GPU tasks are executed sequentially.

Table 5 compares the performance of the neural network models
on the native system and StrongBox, and details the time cost
in Task Protector protection (TProtect). StrongBox introduces
low overhead (2.80%) on the tiny network models LeNet-5, and
an acceptable overhead on the heavier SqueezeNet and MobileNet
(8.48% and 19.67%, respectively). Further analysis indicates that the
overhead is dominated by the protection time (TProtect) on the
node and link buffers due to the heavy memory usage, consistent
with the evaluation of basic benchmarks inRQ2. Moreover, the link
protection generates more overhead than the node protection even
though it has less memory usage. The primary reason is the var-
ied protection strategies on the node and link buffers. StrongBox
performs access control and integrity verification for the entirety
of parameters in linked buffers to ensure the model integrity. Al-
though the access control is implemented on all nodes, only nodes
in the head and tail layers require cryptographic and integrity check
operations. The computation results in the intermediate layers do
not need to be exported, instead requiring only access control. In
brief, StrongBox secures inference with reasonably low overhead,
especially for models with a small link size.

6.4 RQ4: Evaluation on Optimization Policy

Recall from Section 4.5 that StrongBox effectively optimizes pro-
tection overhead by eliding redundant cryptographic and access
permissions changes of sensitive data, which decreases the over-
head caused by Task Protector. To measure improvements in per-
formance from our approach, we compare the time consumption
of total execution and Task Protector module (TProtect) on the
selected Rodinia benchmark suite (whose problem sizes are shown
in Table 3) with and without the optimization. As shown in Table 6,
StrongBox effectively reduces the performance overhead in all
GPU applications. For the multi-task GPU applications, TProtect
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Table 5: Problem size and execution time of the selected models.

Model Layers Seq. Exe. Nodes Link Total time
Size TProtect time Size TProtect time Vanilla StrongBox Overhead

LeNet-5 6 ✓ 39.29 KB 0.12 ms 202.91 KB 0.98 ms 333.05 ms 342.36 ms 9.31 ms (2.80%)
SqueezeNet 29 ✓ 8.60 MB 13.31 ms 4.62 MB 34.36 ms 784.44 ms 850.97 ms 66.53 ms (8.48%)
MobileNet-v1 17 ✓ 21.04 MB 42.40 ms 16.23 MB 101.28 ms 889.17 ms 1064.07 ms 174.90 ms (19.67%)

introduces the most execution time (54.50% – 97.40%) when com-
puting multi-task benchmarks without optimization. However, the
proportion of this slowdown sharply decreases to 1.34% – 12.01%
with our optimization. As for single-task applications, StrongBox
achieves modest optimization on TProtect by differentiating the
input and output data buffers rather than simply encrypting/de-
crypting all GPU buffers. Thus, by addressing the primary cause of
the slowdown, StrongBox reduces the performance overhead.

6.5 RQ5: Comparison to Other GPU TEEs

Table 7 illustrates how StrongBox achieves our goals under differ-
ent architectures and ecosystems. Intel-based devices typically em-
ploy physically-isolated dedicated GPU devices. In contrast, GPUs
on Arm endpoints must share a unified memory with the vulnerable
OS. This difference indicates that the Intel-based GPU TEEs can
secure the computation by controlling a small-sized GPU MMIO,
while Arm-based defense mechanisms must secure a large-sized
main memory. In addition, all GPU TEEs support the sequential
task execution, while the Intel-based GPU TEEs (i.e., Gravition [90],
HIX [51], HETEE [93]) further support the concurrent secure task
execution for server GPU. Worse yet, the Intel-based GPU TEEs
can leverage the open-source CUDA runtime (e.g., gdev [54]), while
the defense mechanism of StrongBox currently must employ a
closed-source GPU runtime (specifically, OpenCL [20]). However,
StrongBox still guarantees data security on Arm-based GPU plat-
forms with unified memory.

The ecosystem and architecture variance indicate that Strong-
Box must focus on the protection of endpoint GPU computation.
Based on this scenario, our design choices are lightweight and com-
patible with Arm endpoint GPUs. In particular, StrongBox avoids
porting the heavy and vulnerable GPU driver into the TEE (or en-
clave in Intel-based GPU TEEs). As for compatibility, StrongBox
requires no modification to existing devices/ISA or additional hard-
ware for security purposes. In comparison to existing Arm-based
secure GPU computation [64], StrongBox aims at general compu-
tation rather than specific machine learning inference. Moreover,
StrongBox is agnostic to kernel memory management and can
preserve the GPU for untrusted usage.

Table 6: Comparison of execution time (ms) between the

non-optimized mechanism and StrongBox on the selected

Rodinia benchmark. The TProtect column shows the execu-

tion time in Task Protector module and its proportion to the

total execution time. Note that other components except the

Task Protector module (TProtect) are not modified.

Benchmark No Optimization StrongBox
TProtect Total TProtect Total

Single
Task

KNN 7.31 (11.55%) 63.30 4.86 (7.95%) 61.10
LMD 1,227.88 (8.27%) 14,854.08 977.46 (6.68%) 14,626.98

Multi
Task

PF 3,495.99 (54.50%) 6,414.31 399.48 (12.01%) 3,326.04
LUD 97,179.42 (95.24%) 102,032.57 338.10 (7.58%) 4,462.57
H3D 196,457.42 (96.87%) 202,797.82 332.82 (5.85%) 5,692.59
GS 2,149,460.48 (97.40%) 2,206,881.00 694.52 (1.34%) 51,753.57
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Figure 5: Relative performance of Nbench applications when

concurrently running a non-confidential/confidential GPU

application.

6.6 RQ6: Evaluation on System Performance

We select Nbench [27] to measure the system slowdown caused by
StrongBox, which is widely used to measure the performance of
CPU computation and memory intensive operations [44, 63, 92].
To demonstrate the system overhead, we select a long-running
application LMD from the Rodinia benchmark [30] to concurrently
execute each Nbench application. The time elapsed during the LMD
application is approximately half of each Nbench application but
is mainly composed of GPU computation. We measure the per-
formance degradation of Nbench applications when concurrently
running the non-confidential and confidential LMD application. Fig-
ure 5 shows the normalized results of the Nbench applications,
whose performance degradation are slight when running with
both non-confidential (average 1.28%) and confidential GPU ap-
plication (average 1.91%). Thus, StrongBox incurs a small perfor-
mance degradation on system-wide computation, which is mainly
explained by two reasons: first, StrongBox releases the CPU re-
source during the GPU computation, which is the primary time
cost in most GPU applications; second, StrongBox does not block
other CPU resources when processing the secure GPU tasks. Over-
all, the security benefits of StrongBox incur a small overhead to
system-wide performance.

7 SECURITY ANALYSIS
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Figure 6: Four indicative attack scenarios against the process

of a confidential GPU application. 1○ indicates an attack on

code, sensitive data, andGPUpage tables in Secure TaskRAM.

2○ represents an attack from malicious tasks. 3○ represents

an attack with a fake GPU. 4○ shows Iago [31] attacks.
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Table 7: Comparison to the state-of-the-art GPU TEEs and secure GPU computation.

Graviton HIX HETEE Secdeep StrongBox

Architecture and ecosystem distinction

ISA Intel Intel Intel Arm Arm
GPU Task Memory Dedicated Dedicated Dedicated Unified Unified

User-level driver Open-source Open-source - Closed-source Closed-source

Design distinction

Application Server computation Server computation Server computation Endpoints DL inference Endpoints computation
Task Execution Model Sequential/Concurrent Sequential/Concurrent Sequential/Concurrent Sequential Sequential
Position of GPU driver Untrusted OS Inside enclave Inside enclave Inside TEE Untrusted OS

Hardware changes Yes Yes Yes No No
Protection to task memory GPU MMIO GPU MMIO GPU MMIO TZASC + Kernel Mapping TZASC + S-2 trans.

7.1 Attack on Secure Task RAM

Sensitive Data and Code. As shown in Figure 6- 1○, a privileged
attacker may attempt to directly access the sensitive data inside the
GPU buffer during the execution of the confidential GPU applica-
tions. To defend against such data leakage, StrongBox designs a
trusted data path between the user application and the GPU exe-
cution environment via both cryptographic algorithms and access
control. The sensitive data are encrypted with the secret key ex-
changed between the users and StrongBox. Thus, an attacker
without the secret key cannot leak sensitive data. For the subse-
quent decryption and verification in StrongBox, the plaintext
regions are strictly protected by the TZASC and Stage-2 transla-
tion, with which unauthorized access from the compromised OS
or peripherals is restricted. Furthermore, she may terminate the
GPU application early, temporarily leaving the plaintext data inside
memory. However, these data are still protected. Next, she may
attempt to create a malicious secure GPU task to steal the vestigial
plaintext inside the latest victim GPU application that terminates
unexpectedly. However, the secure termination check, which en-
forces cleanup of protected memory, is always performed before
creating a new GPU application. Consequently, the confidentiality
of sensitive data is fully maintained by the StrongBox. In addition,
she may tamper with task integrity by injecting malicious code
or modifying provided data. To address this, StrongBox verifies
the HMAC for the content in the secure task. If the provided sig-
nature fails to match the HMAC value, StrongBox terminates the
application and clears the memory.
GPU Page Table. Figure 6- 1○ also shows that the attacker may
subvert the GPU page table by double mapping or mapping the
critical GPU address (e.g., GPU buffer) to an unprotected region.
However, since the page table is strictly protected when processing
secure tasks, the malicious mappings are detected before computing
secure tasks. Note that TOCTTOU attacks here are infeasible as the
regions have been protected before checking. In addition, she may
change the base address of the page table during the process ofmulti-
task applications, while such an attack is detected by comparing the
value of corresponding registers between the secure introspection
of adjacent tasks. For peripheral attacks, StrongBox configures
the TZASC to deny illegal access to the GPU page table region from
other peripherals except for the GPU. Ultimately, our protection
successfully prevents her from leaking sensitive data.
7.2 Attack with Malicious Tasks

We consider the attacker who attempts to execute an arbitrary
number of malicious tasks with malicious code. As shown in Fig-
ure 6- 2○, she may perform two types of attacks. First, she directly
launches a malicious confidential GPU application and uses the ma-
licious secure tasks to subvert the StrongBox runtime and critical

configurations (e.g., Stage-2 translation table) in the Trusted RAM.
Second, she crafts malicious GPU tasks and attacks the confidential
GPU applications (i.e., access sensitive data, code, and GPU page
table inside Secure Task RAM). Thus, we propose corresponding
defenses against these attacks: (1) To secure the runtime and con-
figuration, StrongBox tightly restricts the access to the Trusted
RAM from the peripherals, including the GPU. (2) As for protecting
Secure Task RAM, StrongBox ensures that only secure GPU tasks
can access the Secure Task RAM, and disallows the GPU to access
the Secure Task RAM after secure tasks are switched out. Note
that she may fake a malicious task as a secure task in the current
confidential GPU application, while it fails the code HMAC check.
Moreover, to tamper with the isolated execution environment, she
may submit malicious tasks during the secure computation or hide
these tasks before switching to the secure tasks. Thus, Strong-
Box first deprives access to GPU MMIO from the untrusted OS via
Stage-2 translation, invalidating any malicious tasks submission
from the GPU driver. Furthermore, to preclude hidden malicious
tasks, StrongBox requires an additional check on GPU status via
the protected GPU MMIO interfaces. When detecting a hidden task,
StrongBox safely terminates the GPU application.
7.3 Attack with Fake GPU

Rather than attacks that directly compromise GPU chips, the at-
tacker may attempt to impersonate a GPU device to spoof GPU
state or submission of secure tasks (shown in Figure 6- 3○). However,
we guarantee that StrongBox always interacts with an authentic
GPU. Recall from Section 4.3 that StrongBox checks the GPU state
registers and writes the task submission command by accessing the
GPU MMIO registers. Based on the available manuals [3, 7, 40, 83],
the physical address of embedded GPU MMIO registers is fixed
and unmodifiable. Therefore, an attacker cannot change the MMIO
physical address of the SoC peripherals without physical access to
the AXI bus. Consequently, by accessing the unchangeable GPU
MMIO physical address, StrongBox obtains the authentic GPU
state and submits the secure tasks to actual GPU.
7.4 Attack with Compromised GPU Software

Figure 6- 4○ shows that the attacker may manipulate the untrusted
GPU software stacks (i.e., GPU driver and GPU runtime) to launch
an Iago-style attack [31], which can be achieved in three possible
ways: (1) manipulating the return values of memory allocation to
the unprotected regions, (2) providing the incorrect values of GPU
registers to tamper with the critical GPU configurations, and (3)
providing incorrect order to execute the secure tasks or simply
dropping/replying result. For memory-based Iago attacks, Strong-
Box verifies the validity of the allocated memory. We ensure that
the allocated memory for secure GPU buffers is inside the Secure
Task RAM and does not overlap with other GPU buffers. As for
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GPU register configurations, StrongBox protects the GPU MMIO
registers and checks the critical GPU register states. Furthermore,
we verify both the task code contents and the task index to guaran-
tee both the code integrity and execution order. Besides, we provide
the signature of output GPU buffers and the number of executed
secure tasks. In this way, we can detect changes to execution order
or the result dropping/replying.
8 DISCUSSION

Hypervisor-enabled Arm Devices. StrongBox is not suitable
for Arm cloud platforms. The primary reason is that cloud GPUs
generally own dedicated memory and are connected through PCIe.
Moreover, our current prototype cannot directly work in Arm end-
points with the hypervisor. Although StrongBox does not block
the functionality of the hypervisor, it requires non-trivial restric-
tion (e.g., secure the hypervisor firmware and remove the code to
access Stage-2 registers) on the untrusted hypervisor to guarantee
StrongBox security, introducing a large TCB. However, in future
Armv9 endpoints, StrongBox can leverage the new feature, called
Granule Protection Table (GPT) [10], to prevent the secure GPU
computation from untrusted accessing. By configuring the GPT
entries for Secure Task RAM, StrongBox preserves dynamic and
fine-grained memory protection without needing Stage-2 transla-
tion. Meanwhile, the access control of GPU MMIO can be achieved
with similar configurations on GPT entries.
Temporary Exclusivity of GPU. StrongBox requires a tempo-
rary exclusivity of the GPU for secure task computation, while
it only causes minimal influence on system performance due to
three reasons. First, recall from Section 2.3 that the current Arm
endpoints GPU and related SDKs have yet to support concurrent
task execution. Thus, parallel executing secure GPU tasks belong-
ing to the same application is natively unsupported. Second, the
secure tasks in practical are lightweight, and hence the exclusivity
of GPU is transient. For instance, face recognition on mobile devices
typically takes less than one second [78]. Lastly, it is possible to
mitigate the impact on GPU rendering by temporarily switching to
software-based renderers [66].
Mitigating Performance Overhead. StrongBox achieves a rea-
sonably low performance overhead with compatibility. However,
such overhead can be reduced on specific devices. For the crypto-
graphic and integrity-check operations, we can accelerate them
with the equipped hardware. Another choice is to build a trusted
channel between the user and StrongBox runtime. User leverages
a trusted camera to directly transfer the plaintext biometric infor-
mation into protected GPU buffers without additional encryption.

9 RELATEDWORK

GPU TEEs and Secure GPU Computation. Studies have ex-
ploited the isolation features of GPUs for secure computation. Gravi-
ton [90] uses a secure context to provide an isolated execution envi-
ronment for GPUs. The maintenance of the secure context depends
on a modified GPU command processor. HIX [51] extends SGX-
based support on GPU enclaves by introducing new SGX instruc-
tions to secure GPU MMIO. Hence it still depends on the physical
modification of devices. In addition, HIX depends on a substantial
GPU software stack (e.g., GPU Driver), which can undermine the se-
curity of the enclave. HETEE [93] achieves confidential computation

in a heterogeneous system with accelerators. However, the defense
mechanism requires hardware devices (e.g., an additional FPGA) for
implementing the trusted computation. Recently, NVIDIA released
the H100 GPU [73] for confidential AI applications, while it is not
proven to be feasible on unified-memory devices. Besides GPU
TEEs, recent works have demonstrated privacy-preserving comput-
ing on GPUs in machine learning, such as private training [86] and
inference [68, 71], while their systems are not applicable to other
GPU computing applications. In StrongBox, we support general
GPU computation on Arm endpoints.
TEE-based Computing on Arm. Recent works leverage Trust-
Zone to secure the execution for machine learning inference [32,
55, 70], one-time password generation [84], and providing legal
contracts [67]. However, they are CPU-based computations and do
not use the GPU to accelerate secure computation. For the TZASC-
dependent TEEs (e.g., SANCTUARY [26] and TrustICE [85]), pro-
cessing sizable and discontinuous GPU buffers is not realistic due to
the limited number of configurable regions in TZASC. Secdeep [64]
addresses it by controlling the kernel page table and migrating GPU
software stacks into TEE. Meanwhile, it severely undermines the
kernel functionality and introduces a large attack surface to TEE. In
StrongBox, we secure GPU with fine-grained memory protection,
which presents a thin TCB and minimal effects on kernel function-
ality. Several TEEs (e.g., vTZ [47] and Twinvisor [62]) also create
the isolated TEE via Stage-2 translation, while they consider the
GPU resource as untrusted and have yet to use it for acceleration.
In contrast, StrongBox achieves dynamic and complex memory
protection on both the GPU tasks memory and GPU MMIO by
leveraging the Stage-2 translation.
10 CONCLUSION

In this paper, we propose a novel GPU TEE on Arm-based devices
called StrongBox. Our approach provides three key outcomes: En-
suring data confidentiality, protecting task integrity, and providing
an isolated computing environment. To fulfill our goals, we lever-
age TrustZone and Stage-2 translation to flexibly manage access to
GPU task RAM and GPU memory-mapped interfaces. Moreover,
the core components of StrongBox are protected from malicious
access from both the (untrusted) kernel and other peripherals. Our
design requires no modification to the Arm architecture or any
hardware components, providing a higher degree of compatibility
than previous GPU TEEs. To better understand StrongBox, we
measure the performance of a prototype implemented on an off-
the-shelf development board, and analyze the security guarantees
provided by StrongBox across a wide range of attack scenarios.
Our evaluation shows that StrongBox successfully defends against
potential attacks while introducing a low (4.70% – 15.26%) overhead
across several indicative benchmarks.
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