

SoK: A Comparison Study of Arm TrustZone and CCA

Haoyang Huang¹, Fengwei Zhang¹, Shoumeng Yan², Tao Wei², Zhengyu He².

有方科技大学 2 約15000

Outline

- Introduction to Arm TrustZone and CCA
- Comparison in Flexibility
- Comparison in Security
- Conclusion

1 TrustZone Overview

- TrustZone was first introduced in ARMv6 and provides a hardware-based isolated execution environment.
- TrustZone divides the whole system into two parts: Normal World and Secure World.
- TrustZone ensures isolation between two words through hardware extensions (e.g. **TZASC** and **TZPC**).

1 Confidential Compute Architecture (CCA) Overview

- CCA was announced in 2021 and introduced as supplement to Armv9.2-A
- CCA introduces a series of New isolation boundaries:
 - Root World: Used for code and data in EL3
 - Realm World : Used for third party confidential computing

	Normal World	Secure World	Realm World	Root World
Non-Secure	Allow	Block	Block	Block
Secure	Allow	Allow	Block	Block
Realm	Allow	Block	Allow	Block
Root	Allow	Allow	Allow	Allow

Confidential Compute Architecture (CCA) Overview

- Besides two additional worlds, CCA also introduces a set of new hardware features:
 - Dynamic assignment of memory to different worlds (Granule Protection Check, GPC)
 - Memory Encryption (Memory Protection Engine, MPE)

.....

- Introduction to Arm TrustZone and CCA
- Comparison in Flexibility
- Comparison in Security
- Conclusion

2 Flexibility Comparison: Memory Management

- Memory management represents the system's ability to adjust permission settings of memory regions to meet specific requirements.
- TrustZone achieves memory partition using **TZASC**:
 - TZASC determine the **range** of each memory region and their corresponding worlds through specific registers.
 - TZASC allows to configure the **read and write permissions** for each memory region.

2 Flexibility Comparison: Memory Management

- Memory management represents the system's ability to **adjust permission settings of memory regions** to meet specific requirements.
- CCA achieves memory partition using GPC:
 - GPC is a hardware extension in **MMU** and relies on **Granule Protection Table (GPT)** to identify the associated world of each memory granule.

2 Flexibility Comparison: Memory Management

- Regarding Memory Management, TZASC and GPC are different in following fields:
 - Minimal Granularity of Memory Regions:
 - TrustZone: 32KB
 - CCA: 4KB
 - Memory Region Number:
 - TrustZone: Limited
 - CCA: Unlimited
 - Core-specific Configuration:
 - TrustZone: All cores share the same memory partition policy.
 - CCA: Each core can be configured with different partition policy.
 - R/W-separate Configuration:
 - TrustZone: Supported
 - CCA: Unsupported

2 Flexibility Comparison: Peripheral Management

- Peripheral management represents the system's ability to **adjust permission settings of peripherals** to meet specific requirements.
- TrustZone achieves peripheral management using **TZPC**:
 - TZPC allows to configure the security state dynamically for each peripheral.
- CCA achieves peripheral management using **GPC**:
 - In Arm architecture, access to peripherals is achieved through Memory Mapped I/O (MMIO).
 - Therefore, GPC can be used to adjust access permissions of peripherals.

2 Flexibility Comparison: Peripheral Management

- Regarding Peripheral Management, TZPC and GPC are different in following fields:
 - Minimal Granularity:
 - TrustZone: The Whole Peripheral
 - CCA: 4KB
 - Peripheral Number:
 - TrustZone: Limited
 - CCA: Unlimited
 - Core-specific Configuration:
 - TrustZone: All cores share the same memory partition policy.
 - CCA: Each core can be configured with different partition policy.

- Introduction to Arm TrustZone and CCA
- Comparison in Flexibility
- Comparison in Security
- Conclusion

3 Security Comparison: Memory and Peripheral Isolation

- Both TrustZone and CCA can prevent the processor and DMA devices from illegally accessing memory and peripherals. However, they are different in following fields:
- Level to Configure:
 - TrustZone: TZASC and TZPC can be configured by the software in S-EL1/2.
 - **CCA: GPC** can only be configured by the code running in **EL3**.
- Isolation for Monitor in EL3:
 - TrustZone: The code and data belonging to EL3 belong to **Secure World**.
 - CCA: The code and data belonging to EL3 belong to **Root World**.
- Hardware-assisted Encryption:
 - TrustZone: Not Support.
 - CCA: Support through **Memory Protection Engine (MPE)**.

3 Security Comparison: Interrupt Isolation

- An interrupt is a signal from hardware or software sent to the processor to indicate that an event has occurred.
- Malicious interrupts can interfere with the expected workflow of the processor.
- Interrupt Isolation:
 - **TrustZone:** It supports the isolation of secure interrupts and non-secure interrupts.
 - CCA: Interrupts for VMs are virtualized by the hypervisor in Normal World.

EL and Security State of PE	Group 0	Group 1	
		Secure	Non-secure
Secure EL0/1	FIQ	IRQ	FIQ
Non-Secure EL0/1/2	FIQ	FIQ	IRQ
EL3	FIQ	FIQ	FIQ

3 Security Comparison: Attestation

- The hardware-assisted attestation brings significant benefits to system security and integrity.
- It measures the system's state and provides assurance that the software running on the system has not been tampered with or modified since its initial trusted state.
- Moreover, hardware-assisted attestation can verify whether applications run on a platform that genuinely supports the required security features.
- Hardware-assisted Attestation:
 - TrustZone: Not Support
 - CCA: Support

3 Security Comparison: TLB and Cache

- When the processor tries to access the memory, it first checks whether the translation result and data are in TLB and cache.
- However, since the hardware extensions for memory isolation are behind the TLB and cache, they cannot intercept access to the TLB and cache.
- Therefore, there is a need for TEEs to provide additional hardware mechanisms to ensure the security of TLB and cache.
- Isolation for TLB:
 - **Both TrustZone and CCA** extends the TLB with additional bits in **entries** to support identifying their associated worlds.
- Isolation for Cache:
 - Both TrustZone and CCA extends the Cache with additional bits in cache line to support identifying their associated worlds.

- Introduction to Arm TrustZone and CCA
- Comparison in Flexibility
- Comparison in Security
- Conclusion

4 Summary for Comparison in Flexibility

Criteria		TrustZone	CCA
Memory Management	Dynamic Allocation	•	
	Minimal Granularity	32KB	4KB
	Memory Region Number	Limited	Unlimited
(§111-A)	R/W-separate Configuration	•	—
	Core-specific Configuration	_	
Peripheral Management (§III-B)	Dynamic Configuration	•	
	Peripheral Number	Limited	Unlimited
	Core-specific Configuration	_	●

4 Summary for Comparison in Security

	TrustZone	CCA	
	Access Control for processors	•	•
Memory Isolation	Access Control for DMA	•	
(§IV-A)	Isolation between S-EL1/2 and EL3	_	•
	Level to Configure	S-EL1/2	EL3
Memory Encryption (§IV-B)	Hardware-assisted Encryption	_	●
Devinhand Isolation	Access Control for processors		
	Access Control for DMA	•	ightarrow
(91V-C)	Level to Configure	S-EL1/2	EL3
Interrupt Isolation (§IV-D)	Individual Interrupt for TEE	•	-
Attestation (§IV-E)	Hardware-assisted Attestation	-	●
TLB and Cache (§IV-F)	Isolation in TLB and Cache	•	

Thank You

https://compass.sustech.edu.cn/

