
RingGuard: Guard io_uring
with eBPF

Wanning He*, Hongyi Lu*, Fengwei Zhang, Shuai Wang

1st Workshop on eBPF and Kernel Extensions

Speed up with asynchronous I/O

Database

a

a

b

b

Database

a
b

c
d

a
b

c

d

Synch. I/O Async. I/O

Send request Receive respond Wait

2

q aio
• Only support un-buffered disk I/O
• Blocked if the storage device is not

ready
• 104 extra bytes of memory copy

are required for each IO event

Asynchronous I/O in Linux

3

Asynchronous I/O in Linux

q io_uring
• support a wide range of operations
• No need to wait for the file

descriptor getting ready
• Could be a zero-copy system; syscall

batching

q aio
• Only support un-buffered disk I/O
• Blocked if the storage device is not

ready
• 104 extra bytes of memory copy

are required for each IO event

4

Overview of io_uring
q Main components
• A submission queue and a completion queue
• User requests are represented as submission queue entries (SQE)
• Their results are represented as completion queue entries (CQE)

Submission
Queue

Completion
Queue

User Space

Kernel Space

SQE

SQE

CQE

CQE

User

Kernel 5

Asynchronous I/O with io_uring

q Supports a wide range of operations
• Disk I/O, network I/O, …

q Easy-to-use user-level interface
• Can be programmed with C and Rust

q Efficiency
• Shared memory
• Syscall batching

6

io_uring security concerns

• Bypass system calls • Bypass Linux security APIs
(e.g. seccomp)
• Bypass privilege control

Performance benefits: New security problems:

7

Bypass privilege control using io_uring

High-privilege
process A

1 Create an io_uring

A’s credential

High-privilege file
8

Bypass privilege control using io_uring

High-privilege
process A

2 Hand it over to B Low-privilege
process B

A’s credential

High-privilege file
9

Bypass privilege control using io_uring

Hypervisor A

High-privilege file

Virtualized
guest B

A’s credential

w
4

Check
credentials

Host

3 Request to
write

5 Successfully write

A’s credential

VM

10

io_uring security concerns

Reported year #CVEs
2019 1
2020 1
2021 3
2022 10

2023 (Sep.) 11

• Increasing number of vulnerabilies are
reported

11

io_uring security concerns

Reported year #CVEs
2019 1
2020 1
2021 3
2022 10

2023 (Sep.) 11

• Increasing number of vulnerabilies are
reported

eBPF programs can be hooked to an io_uring and verify its operations

12

Advantages of using eBPF for io_uring protection

• Lightweight, flexible, and transparent
• On-the-fly protection without recompiling/rebooting the kernel
• Independent of hardware features - can be deployed to various

scenarios.

13

RingGuard: our solution to io_uring security issues

q Key idea:
• A framework that allows system administrators to define

eBPF programs to verify io_uring requests
q New extensions to the kernel:
• Introduce new a BPF hookpoint to the io_uring subsystem
• Necessary helpers for RingGuard eBPF programs

14

The workflow of RingGuard
User application

Kernel

Register
to ring

Utilities Logger Auditor

RingGuard

System admin
io_uring

Define RingGuard auditor
and logger as eBPF program

15

Utilities Logger Auditor

RingGuard

The workflow of RingGuard
User application

Kernel

Req n

Req 3

Req 2

Req 1

io_uring
System admin

3
Submit
requests

16

Utilities Logger Auditor

RingGuard

The workflow of RingGuard
User application

Kernel

Req n

Req 3

Req 2

Req 1

io_uring
System admin

Log requests 4 Audit requests

5 Check the log

17

Challenge of RingGuard performance

q Submitting 512 requests simultaneously is 7x faster than separately
q Cause: repeatedly construct & destruct eBPF runtime contexts
q Solution: batch io_uring requests and audit them all at once
• threshold: the minimum number of requests to trigger RingGuard
• timeout: the maximum waiting time if there are not enough requests

q Results: improve the performance by around 17%

18

Audit io_uring requests with eBPF

Submission
Queue

User Space

Kernel Space

Submission
Queue

Completion
Queue

Req 2

Req 3
Shared

Memory

User application

Kernel thread
Req 1

2

If req is valid then
 submit_req(sqe)

Auditor

1

req = dequeue_req()

19

Audit io_uring requests with eBPF

• A RingGuard eBPF program (simplified)

The auditing rule can be flexibly defined by the administrator!

20

Auditing policies

• Based on the information in a single request.
• Based on multiple requests.

21

Auditing policies

• Based on the information in a single request.
• Based on multiple requests.

22

Lots of information in an io_uring request

23

Lots of information in an io_uring request

All information can be used to verify user requests!
24

Auditing policies

• Based on the information in a single request.
• Based on multiple requests.

25

Auditing policies

• Based on the information in a single request.
• Based on multiple requests.

Will give an example in the case study!

26

Typical use cases of RingGuard

• Sandbox the privileges of an io_uring user
• Patch io_uring vulnerabilities on the fly

27

Typical use cases of RingGuard

• Sandbox the privileges of an io_uring user
• Patch io_uring vulnerabilities on the fly

28

Sandbox process privileges with RingGuard

A’s credential

High-privilege file (fd_1)

w

Low-privilege
process B

RingGuard

fd_1 is not open for B;
Block

29

Sandbox process’s privileges with RingGuard

• Restrict the syscalls that is able to make from an io_uring
• Impose a flexible syscall (request) filtering similar to seccomp-bpf
• Can be applied to virtual machines and containers

30

Typical use cases of RingGuard

• Sandbox the privileges of an io_uring user
• Patch io_uring vulnerabilities on the fly

31

Attack interface mitigation

• RingGuard can prevent attacks launched through io_uring requests.

CVE ID Auditing rule
2020-29534 Check the provided file descriptor of FILES_UPDATE.
2021-3491 Check the buffer length of PROVIDE_BUFFERS.
2021-20226 Validate the existence of provided file in CLOSE.
2022-1976 Block a specific string of I/O requests.
2022-2327 Check the work flags of multiple I/O requests.
2022-4696 Check the work flags of SPLICE.
2022-29582 Block linked TIMEOUT and LINK_TIMEOUT.
2022-1508 Check multiple parameters in READ.

32

Case study: CVE-2022-29582

q Related io_uring operations:
• IORING_OP_TIMEOUT: set a timeout event for I/O operations submitted

through io_uring.
• IORING_OP_LINK_TIMEOUT: set a timeout event for a particular I/O

operation submitted through io_uring.

q Key idea:
• Set a timeout event for TIMEOUT operation using LINK_TIMEOUT to create

a race condition in a multicore machine, which would trigger a use-after-free
vulnerability in the kernel.

LINK_TIMEOUT TIMEOUT Other requests

33

io_queue_next(LT)

Return from
io_queue_nextio_queue_next(T)

io_free_req(LT)io_req_find_next(T)

Time

LT is free
static void io_kill_linked_timeout(struct
io_kiocb *req)
{
 struct io_ring_ctx *ctx = req->ctx;
 struct io_kiocb *link;
 link = list_first_enry_or_null(…);
}

link = LT
LT is used after free!

Race through io_free_req()

34

q Rationale:
• An edge case that seldom (if any) happens
• Linked requests have some obvious features, making them easy for

RingGuard to detect

Just block the linking of TIMEOUT and LINK_TIMEOUT!

Prevent such exploit with RingGuard

35

RingGuard overhead

78

55

40
31 27

96

64
50

39 35

64 128 256 512 1024

Av
er

ag
e

Su
bm

is
si

on
 L

at
en

cy

(μ
s/

re
qu

es
t)

Total Number of Requests

Without RingGuard With RingGuard

Average latency of handling NOP events with io_uring

36

Batch submission for better performance

Total latency of handling 512 NOP events (submitted separately)
with timeout = 10 ms under different threshold values

37

Conclusion

• Explore the potential of combining io_uring and eBPF.
• RingGuard: A security mechanism for io_uring requests using eBPF

programs.
• RingGuard imposes flexible and transparent request inspection with

reasonable overhead.

38

