1st Workshop on eBPF and Kernel Extensions

RingGuard: Guard io _uring
with eBPF

Wanning He*, Hongyi Lu*, Fengwei Zhang, Shuai Wang

"SUSTechfZZL’Z’.Z; '''''' " _® THE HONG KONG

UNIVERSITY OF SCIENCE
(#)COMPASS Lab Ul {5 echnotocy
COMPuter And System Security Lab

Speed up with asynchronous I/0O

Synch. I/O Async. |/O
5 o
l b
: §

- l Kl —
g Database : . Database

|
|
. m
|
| d

- Send request - Receive respond - Wait

Asynchronous I/O in Linux

daio
* Only support un-buffered disk 1/0

* Blocked if the storage device is not
ready

* 104 extra bytes of memory copy
are required for each 10 event

Asynchronous I/O in Linux

3 aio Jio_uring
* Only support un-buffered disk 1/0 e support a wide range of operations

* Blocked if the storage device is not ¢ No need to wait for the file
ready descriptor getting ready

e 104 extra bytes of memory copy * Could be a zero-copy system; syscall
are required for each 10 event batching

Overview of io_uring

J Main components
* A submission queue and a completion queue
* User requests are represented as submission queue entries (SQE)

* Their results are represented as completion queue entries (CQE)

Asynchronous I/O with io_uring

] Supports a wide range of operations
* Disk I/0O, network 1/0, ...

] Easy-to-use user-level interface
* Can be programmed with C and Rust

] Efficiency

* Shared memory
 Syscall batching

l0_uring security concerns

Performance benefits: New security problems:

* Bypass Linux security APIs
(e.g. seccomp)

* Bypass system calls

* Bypass privilege control

Bypass privilege control using io_uring

High-privilege

process A

@ Create anio_uring

/ A’s credential \

o)

High-privilege file

Bypass privilege control using io_uring

High-privilege @ Hand it over to B . Low-privilege
process A process B

-~

A’s credential \

/

High-privilege file

Bypass privilege control using io_uring

Hypervisor A

Virtualized

guest B

Request to
9 write /

N a

A’s credential

J

Check
@ credenti

/

/ _

VM © Successfully write

High-privilege file

Host

10

l0_uring security concerns

* Increasing number of vulnerabilies are
reported

Reported year #CVEs

2019 1
2020 1
2021 3
2022 10
2023 (Sep.) 11

11

l0_uring security concerns

* Increasing number of vulnerabilies are

reported
2019 1
2020 1
2021 3
2022 10
2023 (Sep.) 11

eBPF programs can be hooked to an io_uring and verify its operations

12

Advantages of using eBPF for io_uring protection

* Lightweight, flexible, and transparent
* On-the-fly protection without recompiling/rebooting the kernel

* Independent of hardware features - can be deployed to various
scenarios.

13

RingGuard: our solution to io_uring security issues

J Key idea:
* A framework that allows system administrators to define
eBPF programs to verify io_uring requests
1 New extensions to the kernel:
* Introduce new a BPF hookpoint to the io_uring subsystem
* Necessary helpers for RingGuard eBPF programs

14

The workflow of RingGuard

w User application

° Define RingGuard auditor
and logger as eBPF program

RingGuard

Utilities Auditor

9 Register
to ring

durin ol

The workflow of RingGuard

User application
9 Submit
requests f

RingGuard

Req 3

Req 2

Utilities Auditor

Req 1l

durin ol

16

The workflow of RingGuard

w User application

9 Check the log

RingGuard

Utilities

@ Log requests Audit requests«

durin ol

17

Challenge of RingGuard performance

J Submitting 512 requests simultaneously is 7x faster than separately
] Cause: repeatedly construct & destruct eBPF runtime contexts

1 Solution: batch io_uring requests and audit them all at once
 threshold: the minimum number of requests to trigger RingGuard
 timeout: the maximum waiting time if there are not enough requests

1 Results: improve the performance by around 17%

18

Audit io_uring requests with eBPF

User Space
Shared

Kernel Space

Completion
Queue
Ol

\
P Auditor i —®—>i Kernel thread>

19

Audit io_uring requests with eBPF

* A RingGuard eBPF program (simplified)

1| to_submit = rg_bpf_nr_req(ring_ctx);

2| for (1 = @; 1 < to_submit; i++) {

3 rg_bpf_dequeue_req(ring_ctx, &req);
4 /* auditing and logging */

5 rg_bpf_submit_req(ring_ctx, &req);
6| }

The auditing rule can be flexibly defined by the administrator!

Auditing policies

* Based on the information in a single request.
* Based on multiple requests.

21

Auditing policies

* Based on the information in a single request.

22

Lots of information in an io_uring request

\O oo ~J (@) (&)} [a= w DN p—

—_ = = =
W N = O

struct 1o_uring_sqe {
__u8 opcode;
__u8 flags;
__ul6 1ioprio;
__s32 fd;
union {
uée4

__u6b4

of f;

addr?2;

5

union {
__u64
__ub4

addr ;
splice_off_in;
s

__u32 len;

15
16
17
18
19
20
21
22
23
24

hE

union {
__kernel_rwf_t rw_flags;
__u32 timeout_flags;
__u32 unlink_flags;

I

__u64 user_data;

23

Lots of information

struct 1o_uring_sqe {
__u8 opcode;
__u8 flags;
__ul6 ioprio;
__s32 fd;
union {
__u64
__u64

of f;
addr2;

O 00 N N T b W N e

15

union {
__ubt4
__ubt4

—
o

addr ;
splice_off_in;

e
W DN e

35
__u32 len;

—
>

15
16
17
18
19
20
21
22
23
24

%

In an i0_uring request

union {

__kernel_rwf_t rw_flags;

_u32 timeout_flags;

u3?2

unlink_flags;
s

__u64 user_data;

All information can be used to verify user requests!

24

Auditing policies

* Based on multiple requests.

25

Auditing policies

* Based on multiple requests.

Will give an example in the case study!

26

Typical use cases of RingGuard

e Sandbox the privileges of an io_uring user
* Patch io_uring vulnerabilities on the fly

27

Typical use cases of RingGuard

e Sandbox the privileges of an io_uring user

28

Sandbox process privileges with RingGuard

fd_1is not open for B; Low'pri"”%ge
Block process
| |

R

RingGuard

_ ~ /

A

High-privilege file (fd_1)

Sandbox process’s privileges with RingGuard

* Restrict the syscalls that is able to make from an io_uring
* Impose a flexible syscall (request) filtering similar to seccomp-bpf
* Can be applied to virtual machines and containers

30

Typical use cases of RingGuard

* Patch io_uring vulnerabilities on the fly

31

Attack interface mitigation

* RingGuard can prevent attacks launched through io_uring requests.

CVEID Auditing rule

2020-29534 Check the provided file descriptor of FILES _UPDATE.
2021-3491 Check the buffer length of PROVIDE_BUFFERS.
2021-20226 Validate the existence of provided file in CLOSE.
2022-1976 Block a specific string of I/0 requests.

2022-2327 Check the work flags of multiple I/O requests.
2022-4696 Check the work flags of SPLICE.

2022-29582 Block linked TIMEOUT and LINK_TIMEOUT.

2022-1508 Check multiple parameters in READ.

Case study: CVE-2022-29582

] Related io_uring operations:
« TORING_OP_TIMEOUT: set a timeout event for I/O operations submitted
through io_uring.
« TORING_OP_LINK TIMEOUT: set a timeout event for a particular I/O
operation submitted through io_uring.

J Key idea:

* Set a timeout event for TIMEOUT operation using LINK_TIMEOUT to create
a race condition in a multicore machine, which would trigger a use-after-free

vulnerability in the kernel.

LINK_TIMEOUT TIMEOUT Other requests

33

Race through io free req()

io _queue_next(T)

io_req_find next(T)

static void io kill linked timeout(struct

io _kiocb *req)

{

struct io _ring ctx *ctx = reqg->ctx;
struct io_kiocb *1link;
link = list_first_enry or_null(..);

link = LT
LT is used after free!

Time

io _queue_next(LT)

i0 gueue next
io free req(LT)

LT is free

34

Prevent such exploit with RingGuard

Just block the linking of TIMEOUT and LINK TIMEOUT!

] Rationale:

* An edge case that seldom (if any) happens

* Linked requests have some obvious features, making them easy for
RingGuard to detect

35

RingGuard overhead

® Without RingGuard = With RingGuard

96
78
64
55 50
40 390
I 31 I
64 128 256 512

Total Number of Requests

Average Submission Latency
(ns/request)

35
27 I

1024

Average latency of handling NOP events with io_uring

36

Batch submission for better performance

- — = Baseline (without batching)

Total Submission Latency (ms)

512 Without
RingGuard
Threshold

Total latency of handling 512 NOP events (submitted separately)
with timeout = 10 ms under different threshold values

37

Conclusion

* Explore the potential of combining io_uring and eBPF.

* RingGuard: A security mechanism for io_uring requests using eBPF
programs.

* RingGuard imposes flexible and transparent request inspection with
reasonable overhead.

38

