
Towards Transparent Debugging
Fengwei Zhang , Kevin Leach, Angelos Stavrou, and Haining Wang

Abstract—Traditional malware analysis relies on virtualization or emulation technology to run samples in a confined environment, and

to analyze malicious activities by instrumenting code execution. However, virtual machines and emulators inevitably create artifacts in

the execution environment, making these approaches vulnerable to detection or subversion. In this paper, we present MALT, a

debugging framework that employs System Management Mode, a CPU mode in the x86 architecture, to transparently study armored

malware. MALT does not depend on virtualization or emulation and thus is immune to threats targeting such environments. Our

approach reduces the attack surface at the software level, and advances state-of-the-art debugging transparency. MALT embodies

various debugging functions, including register/memory accesses, breakpoints, and seven stepping modes. Additionally, MALT restores

the system to a clean state after a debugging session. We implemented a prototype of MALT on two physical machines, and we

conducted experiments by testing an array of existing anti-virtualization, anti-emulation, and packing techniques against MALT.

The experimental results show that our prototype remains transparent and undetected against the samples. Furthermore, debugging

and restoration introduce moderate but manageable overheads on both Windows and Linux platforms.

Index Terms—Malware debugging, transparency, SMM

Ç

1 INTRODUCTION

TRADITIONAL malware analysis employs virtualization [1],
[2], [3] and emulation [4], [5], [6] technologies to dissect

malware behavior at runtime. This approach runs the mal-
ware in a VirtualMachine (VM) or emulator and uses an anal-
ysis program to introspect the malware from the outside so
that themalware cannot infect the analysis program.Unfortu-
nately, malwarewriters can easily escape this analysismecha-
nism by using a variety of anti-debugging, anti-virtualization,
and anti-emulation techniques [7], [8], [9], [10], [11], [12]. Mal-
ware can easily detect the presence of a VM or emulator and
alter its behavior to hide itself. Chen et al. [7] executed 6,900
malware samples and found that more than 40 percent of
them reduced malicious behavior under a VM or with a
debugger attached. Branco et al. [8] showed that 88 and 81
percent of 4 million analyzed malware samples had anti-
reverse engineering and anti-virtualization techniques, resp-
ectively. Furthermore, Garfinkel et al. [13] concluded that vir-
tualization transparency is fundamentally infeasible and
impractical. To address this problem, security researchers
have proposed analyzing malware on bare metal [14], [15].
This approach makes anti-VM malware expose its malicious
behavior, and it does not require any virtualization or emula-
tion technology. However, previous bare-metal malware
analysis [14] depends on the OS, and ring 0 malware can

evade the analysis. Thus, stealthy malware detection and
analysis still remains an open research problem.

In this paper, we present MALT, a novel approach that
progresses towards stealthy debugging by leveraging Sys-
tem Management Mode (SMM) to transparently debug
software on bare metal. Our system is motivated by the
intuition that malware debugging needs to be transparent,
and it should not leave artifacts introduced by the debug-
ging functions. SMM is a special-purpose CPU mode in all
x86 platforms. The main benefit of SMM is to provide a dis-
tinct and easily isolated processor environment that is trans-
parent to the OS or running applications. With the help of
SMM, we are able to achieve a high level of transparency,
which enables a strong threat model for malware debug-
ging. We briefly describe its basic workflow as follows. We
run malware on one physical target machine and employ
SMM to communicate with the debugging client on another
physical machine. While SMM executes, Protected Mode is
essentially paused. The OS and hypervisor, therefore, are
unaware of code executing in SMM. Because we run debug-
ging code in SMM, we expose far fewer artifacts to the mal-
ware, enabling a more transparent execution environment
for the debugging code than existing approaches.

The debugging client communicates with the target server
using a GDB-like protocol with serial messages. We imple-
ment the basic debugging commands (e.g., breakpoints and
memory/register examination) in the current prototype of
MALT. Furthermore, we implement seven techniques to pro-
vide step-by-step debugging that includes instruction-level,
branch-level, far control transfer level, and near return trans-
fer level. Additionally, because running a malware sample
changes the system’s state and these changes can lead to an
incorrect runtime result of the next malware sample, we
implement a novel technique to remotely restore the target
system to a clean state after a debugging session. It uses SMM
to reliably restore the hard disk so that even ring 0 malware
cannot tamper with the restoration process.

� F. Zhang is with the Department of Computer Science, Wayne State
University, Detroit, MI 48202. E-mail: fengwei@wayne.edu.

� K. Leach is with the Department of Computer Science, University of
Virginia, Charlottesville, VA 22904. E-mail: kjl2y@virginia.edu.

� A. Stavrou is with the Department of Computer Science, George Mason
University, Fairfax, VA 22030. E-mail: astavrou@gmu.edu.

� H. Wang is with the Department of Electrical and Computer Engineering,
University of Delaware, Newark, DE 19716. E-mail: hnw@udel.edu.

Manuscript received 14 July 2015; revised 3 Mar. 2016; accepted 15 Mar.
2016. Date of publication 23 Mar. 2016; date of current version 9 Mar. 2018.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2016.2545671

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2018 321

1545-5971� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0003-3365-2526
mailto:
mailto:
mailto:
mailto:

MALT runs the debugging code in SMM without using a
hypervisor. Thus, it has a smaller Trusted Code Base (TCB)
than hypervisor-based debugging systems [1], [4], [5], [6].
Moreover, MALT is OS-agnostic and immune to hypervisor
attacks (e.g., VM-escape attacks [16], [17]). Compared to
existing bare-metal malware analysis [14], [15], SMM has
the same privilege level as hardware. Thus, MALT is capable
of debugging and analyzing kernel and hypervisor rookits
as well [18], [19].

We develop a prototype of MALT on two physical
machines connected by a serial cable. To demonstrate the
efficiency and transparency of our approach, we test MALT
with popular packing, anti-debugging, anti-virtualization,
and anti-emulation techniques. The experimental results
show that MALT remains transparent against these techni-
ques. Additionally, our experiments demonstrate that MALT
is able to debug crashed kernels/hypervisors. MALT intro-
duces a reasonable overhead: It takes about 12 microsec-
onds on average to execute the debugging code without
command communication. Moreover, we use popular
benchmarks to measure the performance overhead for the
seven types of step-by-step execution on Windows and
Linux platforms. The overhead ranges from 1.46 to 1519
times slowdown on the target system, depending on the
user’s selected instrumentation method. In addition, we
measure the time for restoring the target system, and it
takes about 102 seconds to completely restore the system to
a clean state. The main contributions of this work are:

� We provide a bare-metal debugging tool called
MALT that leverages SMM for malware analysis. It
leaves a minimal footprint on the target machine and
provides a more transparent execution environment
for the debugger than existing approaches.

� We introduce a hardware-assisted malware analy-
sis approach that does not use the hypervisor and
OS code. MALT is OS-agnostic and is capable of
conducting hypervisor rootkit analysis and kernel
debugging.

� We implement various debugging functions, includ-
ing breakpoints and step-by-step debugging. Our
experiments demonstrate that MALT induces moder-
ate but manageable overhead on Windows and
Linux environments.

� We implement a novel technique to completely and
reliably restore the target system to a clean state after
a debugging session.

� Through testing MALT against popular packers, anti-
debugging, anti-virtualization, and anti-emulation
techniques, we demonstrate that MALT remains
transparent and undetected.

This paper is an extended version of our previous
work [20] published in IEEE Security and Privacy 2015 and
is organized as follows. Section 2 provides background on
SMM and BIOS. Section 3 surveys related work. Section 4
discusses our threat model and assumptions. Section 5
presents the architecture of MALT. Section 6 details the
implementation of MALT. Section 7 analyzes the transpar-
ency of MALT. Section 8 shows the performance evaluation
of our prototype. Section 9 discusses the limitations of
MALT. Section 10 concludes the paper.

2 BACKGROUND

2.1 System Management Mode

SystemManagement Mode [21] is a mode of execution simi-
lar to Real and Protected modes available on x86 platforms.
It provides a transparent mechanism for implementing plat-
form-specific system control functions such as power man-
agement. It is setup by the Basic Input/Output System
(BIOS) that is responsible for initializing the hardware dur-
ing the booting process.

SMM is triggered by asserting the System Management
Interrupt (SMI) pin on the CPU. This pin can be asserted in
a variety of ways, which include writing to a hardware port
or generating Message Signaled Interrupts with a PCI
device. Next, the CPU saves its state to a special region of
memory called System Management RAM (SMRAM). Then,
it atomically executes the SMI handler stored in SMRAM.
SMRAM cannot be addressed by the other modes of execu-
tion. The requests for addresses in SMRAM are instead for-
warded to video memory by default. This caveat therefore
allows SMRAM to be used as secure storage. The SMI han-
dler is loaded into SMRAM by the BIOS at boot time. The
SMI handler has unrestricted access to the physical address
space and can run any instructions requiring any privilege
level. SMM is often referred to as ring -2 since the OS is
referred as ring 0 and hypervisors are referred to as ring -1.
The RSM instruction forces the CPU to exit from SMM and
resume execution in the previous mode.

2.2 BIOS and Coreboot

The BIOS is an integral part of a computer. It initializes hard-
ware and loads the operating system. The BIOS code is
stored on non-volatile memory on the motherboard. In par-
ticular, we make use of an open-source BIOS called Core-
boot [22]. Coreboot performs some hardware initialization
and then executes a payload (e.g., UEFI). MALT uses Sea-
BIOS [23] as the Coreboot payload. Coreboot is written
mostly in C and allows us to edit the SMI handler very easily.
This makes MALT much more portable as Coreboot abstracts
away the heterogeneity of specific hardware configurations.

3 RELATED WORKS

3.1 Malware Debugging and Analysis

VAMPiRE [24] is a software breakpoint framework running
within the operating system. Since it has the same privilege
level as the operating system kernel, it can only debug ring
three malware. Rootkits can gain kernel-level privileges to
circumvent VAMPiRE. However, as MALT does not rely on
the operating system, it can debug rootkits safely.

Ether [1] is a malware analysis framework based on
hardware virtualization extensions (e.g., Intel VT). It runs
outside of the guest operating systems by relying on under-
lying hardware features. BitBlaze [26] and Anubis [5] are
QEMU-based malware analysis systems. They focus on
understanding malware behaviors, instead of achieving bet-
ter transparency. V2E [4] combines both hardware virtuali-
zation and software emulation. HyperDbg [3] uses the
hardware virtualization that allows the late launching of
VMX modes to install a virtual machine monitor and run
the analysis code in the VMX root mode. SPIDER [2] uses
Extended Page Tables to implement invisible breakpoints

322 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2018

and hardware virtualization to hide its side effects. Com-
pared to our system, Ether, BitBlaze, Anubis, V2E,
HyperDbg, and SPIDER all rely on easily detected emula-
tion or virtualization technology [7], [10], [12], [27] and
make the assumption that virtualization or emulation is
transparent from guest-OSes. In contrast, MALT relies on the
BIOS code to analyze malware on the bare metal. Addition-
ally, nEther [28] has demonstrated that malware running in
the guest OS can detect the presence of Ether using CPUID
bits, while MALT remains transparent. Moreover, MALT has
a smaller trusted computing base than hypervisor-based
malware analysis systems. Table 1 shows the trusted com-
puting base of various malware analysis systems.

Virt-ICE [6] is a remote debugging framework similar to
MALT. It leverages emulation technology to debug malware
in a VM and communicates with a debugging client over a
TCP connection. As it debugs the system outside of the VM,
it is capable of analyzing rootkits and other ring 0 malware
transparently. Willems et al. [15] used branch tracing to
record all the branches taken by a program execution. As
pointed out in the paper, the data obtainable by branch trac-
ing is rather coarse, and this approach still suffers from a
CPU register attack against branch tracing settings. How-
ever, MALT provides fine-grained debugging methods and
can defend against mutation of CPU registers. Bare-
Cloud [29] is a recent armored malware detection system; it
executes malware on a bare-metal system and compares
disk- and network-activities of the malware with other emu-
lation and virtualization-based analysis systems for evasive
malware detection, while MALT is used for malware debug-
ging. Table 1 summarizes the differences between MALT
and other malware debugging and analysis systems. The
source lines of code (SLOC) of HyperDbg Framework (HF)
is calculated by running wc command on its source code.
Other SLOCs are obtained from [30], and we use the Linux
kernel as the OS in Table 1.

3.2 System Restoration

BareBox [14] is a malware analysis framework based on a
bare-metal machine without any virtualization or emulation
technologies. It uses a small OS running outside of the tar-
get OS and provides a fast approach to restore a system
without rebooting. However, MALT improves BareBox in
the following two aspects: Completeness and High-privilege.
Completeness refers to all components in the target system
that must be restored. They include registers, cache, mem-
ory, disks, I/O devices, and firmware like BIOS. BareBox
only reinitializes some devices by manipulating the power
state, while MALT uses Coreboot [22] to reinitialize all devi-
ces. Additionally, MALT restores firmware by flashing the
BIOS and other devices. High-privilege means malware
with ring 0 privilege cannot tamper with or modify the

restoring process. BareBox only works for user-level mal-
ware, and malware with higher privilege can easily affect
the Meta-OS and tamper with the restoration process such
as re-imaging disk. However, MALT uses SMM to reliably
restore the disk so that ring 0 rootkits cannot tamper with
the restoration. Other system restoration approaches [31],
[32] use virtualization technology, which violates the trans-
parency requirement in our threat model.

3.3 SMM-Based Systems

In recent years, SMM-based research has appeared in the
security literature. For instance, SMM can be used to check
the integrity of higher level software (e.g., hypervisor and
OS). HyperGuard [33], HyperCheck [34], and HyperSen-
try [35] are integrity monitoring systems based on SMM.
SPECTRE [36] uses SMM to introspect the live memory of
a system for malware detection. Another use of SMM is
to reliably acquire system physical memory for forensic
analysis [37], [38]. However, MALT differs from previous
SMM-based systems in these aspects: (1) MALT is the first
system that uses SMM for debugging, and its intended
usage involves with human interaction; (2) it addresses
the debugging transparency problem by mitigating its
side effects, while previous systems do not consider this
challenging problem; (3) it uses a variety of methods to
trigger SMIs, and the triggering frequency can be instruc-
tion-level. In addition, other security researchers have
proposed using SMM to implement attacks. In 2004,
Duflot [39] demonstrated the first SMM-based attack to
bypass the protection mechanism in OpenBSD. Other
SMM-based attacks focus on achieving stealthy root-
kits [40], [41]. For instance, the National Security Agency
(NSA) uses SMM to build an array of rootkits including
DEITYBOUNCE for Dell and IRONCHEF for HP Proliant
servers [42].

4 THREAT MODEL AND ASSUMPTIONS

4.1 Usage Scenarios

MALT is intended to transparently analyze a variety of code
that is capable of detecting or disabling typical malware anal-
ysis or detection tools. We consider two types of powerful
malware in our threatmodel: armoredmalware and rootkits.

4.1.1 Armored Malware

Armored malware or evasive malware [29] is a piece of code
that employs anti-debugging techniques. Malicious code
can be made to alter its behavior if it detects the presence of
a debugger. There are many different detection techniques
employed by current malware [9]. For example, IsDebug-
gerPresent() and CheckRemoteDebuggerPresent()

are Windows API methods in the kernel32 library returning

TABLE 1
Comparison with Other Debuggers

MALT BareBox [14] V2E [4] Anubis [5] Virt-ICE [6] Ether [1] HyperDbg [3] VAMPiRE [24] SPIDER [2] IDAPro [25]

No VM/emulator @ @ @ @
Debug ring0 malware @ @ @ @ @ @ @
Trusted code base BIOS OS KVM+QEMU QEMU QEMU Xen HF OS KVM OS

SLOC of TCB (K) 1.5 16,281 13,397 786 786 509 18 16,281 12,593 16,281

ZHANG ET AL.: TOWARDS TRANSPARENT DEBUGGING 323

values based upon the presence of a debugger. Legitimate
software developers can take advantage of such API calls to
ease the debugging process in their own software. How-
ever, malware can use these methods to determine if it is
being debugged to change or hide its malicious behavior
from analysis.

Malware can also determine if it is running in a virtual
machine or emulator [7], [11], [12]. For instance, Red
Pill [27] can efficiently detect the presence of a VM. It exe-
cutes a non-privileged (ring 3) instruction, SIDT, which
reads the value stored in the Interrupt Descriptor Table
(IDT) register. The base address of the IDT will be different
in a VM than on a bare-metal machine because there is only
one IDT register shared by both host-OS and guest-OS.
Additionally, QEMU can be detected by accessing a
reserved Model Specific Register (MSR) [4]. This invalid
access causes a General Protection (GP) exception on a bare-
metal machine, but QEMU does not. Note that some kinds
of detection are due to fundamental limitations (e.g., SIDT
is not a privileged instruction) while others are implementa-
tion gaps (e.g., MSRs in QEMU).

4.1.2 Rootkits

Rootkits are a type of stealthy malicious software. Specifi-
cally, they hide certain process information to avoid
detection while maintaining continued privileged access
to a system. There are a few types of rootkits ranging
from user mode to firmware level. For example, kernel
mode rootkits run in the OS kernel (ring 0) by modifying
the kernel code or kernel data structures (e.g., Direct Ker-
nel Object Modification). Hypervisor-level rootkits run in
ring -1 and host the target operating system as a virtual
machine. These rootkits intercept all of the operations
including hardware calls in the target OS, as shown in
Subvirt [18] and BluePill [19]. Since MALT runs in SMM
with ring -2 privilege, it is capable of debugging user
mode, kernel mode, and hypervisor-level rootkits. As no
virtualization is used, MALT is immune to hypervisor
attacks (e.g., VM escape [16], [17]). However, firmware
rootkits running in ring -2 are out of the scope.

4.2 Assumptions

As our trusted code (SMI handler) is stored in the BIOS, we
assume the BIOS will not be compromised. We assume the
Core Root of Trust for Measurement (CRTM) is trusted so
that we can use Static Root of Trust for Measurement
(SRTM) to perform the self-measurement of the BIOS and
secure the boot process [43]. We also assume the firmware
is trusted, although we can use SMM to check its integ-
rity [44]. After booting, we lock the SMRAM to ensure the
SMI handler code is trusted. We discuss attacks against
SMM in Section 9. We assume the debugging client and
remote machine are trusted. We assume the system starts
without malicious code but an attacker can exploit software
vulnerabilities to gain the control of the system. Further-
more, we consider an attacker that can have unlimited
computational resources on our machine. We assume the
attacker compromises the OS with a maximal speed Last,
we assume the attacker does not have physical access to the
machines. Malicious hardware (e.g., hardware trojans) is
also out of scope.

5 SYSTEM ARCHITECTURE

Fig. 1 shows the architecture of the MALT system. The
debugging client is equipped with a simple GDB-like
debugger (debugging commands have similar syntax to
GDB’s). The user inputs basic debugging commands (e.g.,
list registers), and then the target machine executes the com-
mand and replies to the client as required. When a com-
mand is entered, the client sends a message via a serial
cable to the debugging server. This message contains the
actual command. While in SMM, the debugging server
transmits a response message containing the information
requested by the command. Since the target machine exe-
cutes the actual debugging command within the SMI han-
dler, its operation remains transparent to the target
application and underlying operating system.

As shown in Fig. 1, the debugging client first sends an
SMI triggering message to the debugging server; MALT
reroutes a serial interrupt to generate an SMI when the mes-
sage is received. Second, once the debugging server enters
SMM, the debugging client starts to send debugging com-
mands to the SMI handler on the server. Third, the SMI han-
dler transparently executes the requested commands (e.g.,
list registers and set breakpoints) and sends a response mes-
sage back to the client.

The SMI handler on the debugging server inspects the
debugged application at runtime. If the debugged applica-
tion hits a breakpoint, the SMI handler sends a breakpoint
hit message to the debugging client and stays in SMM until
further debugging commands are received. Once SMM has
control of the system, we configure the next SMI via perfor-
mance counters on the CPU. Next, we detail each compo-
nent of the MALT system.

5.1 Debugging Client

The client can ideally implement a variety of popular
debugging options. For example, we could use the SMI
handler to implement the GDB protocol so that it would
properly interface with a regular GDB client. Similarly,
we might implement the necessary plugin for IDAPro to
correctly interact with our system. Our related conference
publication [20] discusses the prospect of combining
MALT with GDB and IDAPro. However, this would
require implementing a complex protocol within the SMI
handler, which we leave for future work. Instead, we
implement a custom protocol with which to communicate
between the debugging client and the SMI handler. MALT
implements a small GDB-like client to simplify our imple-
mentation. For the system restoration process, we store a
clean disk image on the debugging client machine. Sec-
tion 6.7 explains this in detail.

Fig. 1. Architecture of MALT.

324 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2018

5.2 Debugging Server

The debugging server consists of two parts—the SMI han-
dler and the debugging target that contains the malware-
infected OS and applications. The SMI handler implements
the critical debugging features (e.g., breakpoints and state
reports), thus restricting the execution of debugging code to
System Management Mode. The debugging target executes
in Protected Mode or its other usual execution mode. Since
the CPU state is saved within SMRAM when switching to
SMM, we can reconstruct useful information and perform
typical debugging operations each time an SMI is triggered.

SMRAM contains architectural state information of the
thread that was running when the SMI was triggered. Since
the SMIs are produced regardless of the running thread,
SMRAM often contains a state unrelated to the debugging
target. In order to find the relevant state information, we
must solve the well-known semantic gap problem. By
bridging the semantic gap within the SMI handler, we can
ascertain the state of the thread executing in Protected
Mode. This is similar to Virtual Machine Introspection
(VMI) systems [45]. We need to continue our analysis in the
SMI handler only if the SMRAM state belongs to a thread
we are interested in debugging. Otherwise, we can exit the
SMI handler immediately. Note that MALT does not require
Protected Mode; SMM can be initialized from other x86
modes (e.g., Real Mode), but the semantics of the code
would be different.

5.3 Communication

In order to implement remote debugging in our system, we
define a simple communication protocol used by the client
and server hosts. The detailed protocol is described in our
previous paper [20]. The commands are derived from basic
GDB stubs, which are intended for debugging embedded
software. The commands cover the basic debugging opera-
tions upon which the client can expand. The small number
of commands greatly simplifies the process of communica-
tion within the SMI handler. For the disk restoration pro-
cess, the debugging server sends a chunk location to a
remote machine, and the remote machine responds with the
chunk value. Section 6.7 details this further.

6 DESIGN AND IMPLEMENTATION

6.1 Debugging Client

The client machine consists of a simple command line appli-
cation. A user can direct the debugger to perform useful
tasks, such as setting breakpoints. For example, the user
writes simple commands such as b 0xdeadbeef to set a
breakpoint at address 0xdeadbeef. The specific com-
mands are described in our previous paper [20]. We did not
implement features such as symbols. The client machine
uses serial messages to communicate with the server.

6.2 Debugging Server

The target machine consists of a computer with a custom
Coreboot-based BIOS. We changed the SMI handler in the
Coreboot code to implement a simple debugging server.
This custom SMI handler is responsible for all typical
debugging functions found in other debuggers such as
GDB. We implemented remote debugging functions via the

serial protocol to achieve common debugging functions
such as breakpoints, step-by-step execution, and state
inspection and mutation.

6.3 Semantic Gap Reconstruction

As with VMI systems [46], SMM-based systems encounter
the well-known semantic gap problem. In brief, code run-
ning in SMM cannot understand the semantics of raw
memory. The CPU state saved by SMM only belongs to
the thread that was running when the SMI was triggered.
If we use step-by-step execution, there is a chance that
another application is executing when the SMI occurs.
Thus, we must be able to identify the target application
so that we do not interfere with the execution of unre-
lated applications. This requires reconstructing OS
semantics. Note that MALT has the same assumptions as
traditional VMI systems [45].

In Windows, we start with the Kernel Processor Control
Region (KPCR) structure associated with the CPU, which
has a static linear address, 0xffdff000. At offset 0�34 of
KPCR, there is a pointer to another structure called KdVer-

sionBlock, which contains a pointer to PsActivePro-

cessHead. The PsActiveProcessHead serves as the
head of a doubly and circularly linked list of Executive Pro-
cess (EProcess) structures. The EProcess structure is a
process descriptor containing critical information for bridg-
ing the semantic gap in Windows NT kernels.

In particular, the Executive Process contains the value
of the CR3 register associated with the process. The value of
the CR3 register contains the physical address of the base of
the page table of that process. We use the name field in the
EProcess to identify the CR3 value of the target applica-
tion when it executes first instruction. Since malware may
change the name field, we only compare the saved CR3
with the current CR3 to identify the target process for fur-
ther debugging. Filling the semantic gap in Linux is a simi-
lar procedure, but there are fewer structures and thus fewer
steps. Previous works [36], [47] describe the method, which
MALT uses to debug applications on the Linux platform.
Note that malware with ring 0 privilege can manipulate the
kernel data structures to confuse the reconstruction process,
and current semantic gap solutions suffer from this limita-
tion [45]. As with VMI systems, MALT assumes that mal-
ware does not mutate kernel structures for correctly
bridging the semantic gap.

6.4 Triggering an SMI

The system depends upon reliable assertions of System
Management Interrupts (SMIs). Because the debugging
code is placed in the SMI handler, it will not work unless
the CPU can stealthily enter SMM.

In general, we can assert an SMI via software or hard-
ware. The software method writes to an Advanced Configu-
ration and Power Interface (ACPI) port to trigger an SMI,
and we can use this method to implement software break-
points. We can place an out instruction in the malware
code so that when the malware’s control flow reaches that
point, SMM begins execution, and the malware can be ana-
lyzed. The assembly instructions are: mov $0x52f, %dx;

out %ax, (%dx); The first instruction moves the SMI soft-
ware interrupt port number (0�2b on Intel, and 0�52f in

ZHANG ET AL.: TOWARDS TRANSPARENT DEBUGGING 325

our chipset [48]) into the dx register, and the second instruc-
tion writes the contents stored in ax to that SMI software
interrupt port. (The value stored in ax is inconsequential).
In total, these two instructions take six bytes: 66 BA 2F 05

66 EE. While this method is straightforward, it is similar to
traditional debuggers using INT3 instructions to insert arbi-
trary breakpoints. The alternative methods described below
are harder to detect by self-checking malware.

In MALT, we use two hardware-based methods to trigger
SMIs. The first uses a serial port to trigger an SMI to start a
debugging session. In order for the debugging client to
interact with the debugging server and start a session, we
reroute a serial interrupt to generate an SMI by configuring
the redirection table in I/O Advanced Programmable Inter-
rupt Controller (APIC). We use serial port COM1 on the
debugging server, and its Interrupt Request (IRQ) number
is 4. We configure the redirection table entry of IRQ 4 at off-
set 0x18 in I/O APIC and change the Delivery Mode (DM)
to be SMI. Therefore, an SMI is generated when a serial mes-
sage arrives. The debugging client sends a triggering mes-
sage, causing the target machine to enter SMM. Once in
SMM, the debugging client sends further debugging com-
mands to which the target responds. In MALT, we use this
method to trigger the first SMI and start a debugging ses-
sion on the debugging server. The time of triggering the first
SMI is right before each debugging session after reboot,
because MALT assumes that the first instruction of malware
can compromise the system.

The second hardware-based method uses performance
counters to trigger an SMI. This method leverages two
architectural components of the CPU: performance monitor-
ing counters and Local Advanced Programmable Interrupt
Controller (LAPIC) [49]. First, we configure the Perfor-
mance Counter Event Selection (PerfEvtSel0) register to
select the counting event. There is an array of events from
which to select; we use different events to implement vari-
ous debugging functionalities. For example, we use the
Retired Instructions Event (C0h) to single-step the whole
system. Next, we set the corresponding performance
counter (PerfCtr0) register to the maximum value. In this
case, if the selected event happens, it overflows the perfor-
mance counter. Last, we configure the Local Vector Table
Entry (LVTE) in LAPIC to deliver SMIs when an overflow
occurs. Similar methods [35], [50] are used to switch from a
guest VM to the hypervisor VMX root mode.

6.5 Breakpoints

Breakpoints are generally software- or hardware-based.
Software breakpoints allow for unlimited breakpoints, but

they must modify a program’s code, typically placing a sin-
gle interrupt or trap instruction at the breakpoint. Self-
checking malware can easily detect or interfere with such
changes. On the other hand, hardware breakpoints do not
modify code, but there can only be a limited number of
hardware breakpoints as restricted by the CPU hardware.
Moreover, ring 0 malware can detect a presence of the hard-
ware breakpoints by accessing the corresponding hardware
registers. VMPiRE [24] aims to address the limitations of
breakpoints, but it still relies on the OS so is not effective
against ring 0 malware. We believe stealthy breakpoint
insertion with ring 0 malware is an open problem.

MALT tackles this problem by using performance coun-
ters to generate SMIs. Essentially, we compare the EIP of
the currently executing instruction with the stored break-
point address during each cycle. We use 4 bytes to store the
breakpoint address and 1 byte for a validity flag. Thus, we
need only 5 bytes to store such hardware breakpoints. For
each Protected Mode instruction, the SMI handler takes
the following steps: (1) Check if the target application is the
running thread when the SMI is triggered; (2) check if the
current EIP equals a stored breakpoint address; (3) start to
count retired instructions in the performance counter, and
set the corresponding performance counter to the maximum
value; (4) configure LAPIC so that the performance counter
overflow generates an SMI.

Breakpoint addresses are stored in SMRAM, and thus the
number of active breakpoints we can have is limited by the
size of SMRAM. In our system, we reserve a 512-byte region
from SMM_BASE+0xFC00 to SMM_BASE+0xFE00. Since
each hardware breakpoint takes 5 bytes, we can store a total
102 breakpoints in this region. If necessary, we can expand
the total region of SMRAM by taking advantage of a region
called TSeg, which is configurable via the SMM_MASK reg-
ister [49]. In contrast to the limited number of hardware
breakpoints on the x86 platform, MALT is capable of storing
more breakpoints in a more transparent manner.

6.6 Step-by-Step Execution Debugging

As discussed above, we break the execution of a program by
using different performance counters. For instance, by
monitoring the Retired Instruction event, we can achieve
instruction-level stepping in the system. Table 2 summa-
rizes the performance counters we used in our prototype.
First, we assign the event to the PerfEvtSel0 register to indi-
cate that the event of interest will be monitored. Next, we
set the value of the counter to the maximum value (i.e., a 48-
bit register is assigned 248 � 2). Thus, the next event to
increase the value will cause an overflow, triggering an

TABLE 2
Stepping Methods in MALT

Performance Counter Events Description [49]

Retired instructions Counts retired instructions, plus exceptions and interrupts (each count as one instruction)
Retired branch Includes all types of architectural control flow changes, including exceptions and interrupts
Retired mispredicted branch Counts the number of branch retired that were not correctly predicted
Retired taken branches Counts the number of taken branches that were retired
Retired taken branch mispredicted Counts number of retired taken branch instructions that were mispredicted
Retired far control transfers Includes far calls/jumps/returns, IRET, SYSCALL and SYSRET, exceptions and interrupts
Retired near returns Counts near return instructions (RET or RET Iw) retired

326 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2018

SMI. Note that the -2 term is used because the Retired
Instruction event also counts interrupts. In our case, the
SMI itself will cause the counter to increase as well, so we
account for that change accordingly. The system becomes
deadlocked if the value is not chosen correctly.

Vogl and Eckert [50] also proposed the use of perfor-
mance counters for instruction-level monitoring. It delivers
a Non-Maskable Interrupt (NMI) to force a VM Exit when a
performance counter overflows. However, the work is
implemented on a hypervisor. MALT leverages SMM and
does not employ any virtualization, which provides a more
transparent execution environment. In addition, their
work [50] incurs a time gap between the occurrence of a per-
formance event and the NMI delivery, while MALT does not
encounter this problem. Note that the SMI has priority over
an NMI and a maskable interrupt as well. Among these
seven stepping methods, instruction-by-instruction step-
ping achieves fine-grained tracing, but at the cost of a
significant performance overhead. Using the Retired Near
Returns event causes low system overhead, but it only pro-
vides coarse-gained debugging.

6.7 System Restoration

Restoring a system to a clean state after each debugging ses-
sion is critical to the safety of malware analysis on bare metal.
In general, there are two approaches to restore a system:
reboot and bootless. The rebooting approach only needs to
reimage the non-volatile devices (e.g., hard disk or BIOS), but
it is relatively slow. The bootless approach must manually
reinitialize the system state, includingmemory and disks, but
takes less time. For the bootless approach, besides memory
and disk restoration, hardware devices alsomust be restored.
Modern I/O devices now have their own processors and
memory (e.g., GPUandNIC); quickly and efficiently reinitial-
izing these hardware devices is a challenging problem.

BareBox [14] used a rebootless approach to restore the
memory and disk of the analysis machine. However, Bare-
Box only focuses on user-level malware; it disables loading
new kernel modules and prevents user-mode access to ker-
nel memory. In other words, ring 0 malware can easily
detect the presence of BareBox using a memory scan and
manipulate the restoration process, while MALT can
successfully operate in the presence of kernel and hypervi-
sor rootkits. Additionally, BareBox does not fully restore
the I/O devices (e.g., the internal memory of GPU). Bare-
Cloud [29] used LVM-based copy-on-write to restore a
remote storage disk. MALT can also use the similar approach
to restore the disk. However, this method introduces foot-
prints (e.g., configurations for the remote disk) that malware
can detect, which violates the transparency goal.

6.7.1 System Restoring in MALT

To completely restore the debugging server, we consider
four components in MALT: (1) volatile memory (i.e., RAM),
(2) I/O devices, (3) hard disks, and (4) the BIOS. For the first
and second components, MALT uses the reboot approach to
restore them. Since we reboot the debugging server, the
memory and I/O devices are reset to clean states. This
addresses the problem of system restore for malware analy-
sis—I/O devices and kernel memory reinitialization when
ring 0 malware exists.

For the third component, we reimage the disk by using
SMM. Since the debugged malware has ring 0 privilege in
our threat model, we cannot use the disk restoration tools in
OSes or hypervisors. One simple solution is to take out the
disk and restore it in another machine. However, this is not
convenient for users. InMALT, we use SMM, as a trusted exe-
cution environment, to remotely reimage the disk over the
network. Fig. 2 shows the architecture of disk restoring in
MALT. The analysis machine is the Debugging Server that
runs malware; the remote trusted machine stores a copy of
the clean disk and we re-use the Debugging Client as the
remote trusted machine. We use the SMI handler to copy the
clean image from the remote trusted machine to the analysis
machine. Network packets are used for their communication.

Since we do not trust any code in the OS including device
drivers, we write two simple device drivers in the SMI han-
dler. One is for the hard disk, and the other one is for the
network card (i.e., NIC). We use Serial ATA (SATA) to con-
nect the Southbridge of the motherboard to the hard disk.
The I/O base address of the primary SATA controller is at
0x38a0 in the testbed. We can access disk data by perform-
ing SATA read/write operations. Note that the disk access
is at the block-level, and the sector size is 512-byte. For the
network card, the BIOS and OS have initialized it when
booting, so we only need to write the transmit/receive
descriptors to enable network communication.

Since replacing the whole disk image is time consuming
(based on our experiment, it takes about 8 hours to replace a
500 GB disk sector-by-sector), we only restore the modified
contents on the disk. In this case, we use a bitmap to record
the modified sectors. If we use a single bit for a sector, the
bitmap requires 128 MB for a 500 GB disk with a sector size
of 512-byte. To reduce the size of the bitmap, we group sec-
tors into a 32 KB chunk. This method is similar to Bare-
Box [14]. To record the modified chunks, we trigger an SMI
for each SATA operation. Specifically, we configure the IRQ
14 in I/O APIC to reroute a SATA controller interrupt to
become an SMI. Next, we check the SATA operation to see
if it is a write. If it is, we mark the bitmap at corresponding
location, and the bitmap is stored in the trusted SMRAM.

After a debugging session, the SMI handler restores the
disk by chunks. It looks the bitmap and sends packets to the
remote trusted machine to retrieve the value of the modified
chunks. We repeat this process until all chunks on the disk
have been restored. Note that MALT uses SMM to restore
the disk at the block-level, so this approach is file-system
friendly and OS-agnostic.

As for the last component, the BIOS, we use a tool Flash-
rom [51] to flash firmware. We need to flash the BIOS twice
for a debugging session; once after the debugging session to
inject the modified SMM code into the BIOS; and once

Fig. 2. Architecture of disk restoring in MALT.

ZHANG ET AL.: TOWARDS TRANSPARENT DEBUGGING 327

before the subsequent debugging session to remove the
footprint of the BIOS. Section 7 details this.

7 TRANSPARENCY ANALYSIS

In this paper, we consider the transparency of four subjects.
They are (1) virtualization, (2) emulation, (3) SMM, and (4)
debuggers. Next, we discuss the transparency of these sub-
jects one by one.

Virtualization. The transparency of virtualization is diffi-
cult to achieve. For instance, Red Pill [27] uses an unprivi-
leged instruction SIDT to read the interrupt descriptor
(IDT) register to determine the presence of a virtual
machine. To work on multi-processor system, Red Pill
needs to use SetThreadAffinityMask() Windows API
call to limit thread execution to one processor [10].
nEther [28] detects hardware virtualization using CPU
design defects. Furthermore, there are many footprints
introduced by virtualization such as well-known strings in
memory [7], magic I/O ports [14], and invalid instruction
behaviors [11]. Moreover, Garfinkel et al. [13] argued that
building a transparent virtual machine is impractical.

Emulation. Researchers have used emulation to debug
malware. QEMU simulates all the hardware devices includ-
ing CPU, andmalware runs on top of the emulated software.
Because of the emulated environment, malware can detect it.
For example, accessing a reserved or unimplemented MSR
register causes a general protection exception, while QEMU
does not raise an exception [12]. The underlying problem is
the design of emulator does not have transparent malware
analysis in mind (e.g., emulator architect may not implement
CPU errata). Table 3 shows more anti-emulation techniques.
In theory, these defects could be fixed, but it is impractical to
patch all of them in a timelymanner.

SMM. As explained in Section 2, SMM is a hardware
feature existing in all x86 machines. Regarding its transpar-
ency, the Intel manual [21] specifies the following mecha-
nisms that make SMM transparent to the application
programs and operating systems: (1) the only way to enter
SMM is by means of an SMI; (2) the processor executes
SMM code in a separate address space (SMRAM) that is
inaccessible from the other operating modes; (3) upon enter-
ing SMM, the processor saves the context of the interrupted

TABLE 3
Summary of Anti-Debugging, Anti-VM, and Anti-Emulation Techniques

Anti-debugging [8], [9]

API Call Kernel32!IsDebuggerPresent returns 1 if a target process is being debugged
ntdll!NtQueryInformationProcess: ProcessInformation field set to -1 if the process is being debugged
kernel32!CheckRemoteDebuggerPresent returns 1 in debugger process
NtSetInformationThread with ThreadInformationClass set to 0x11 will detach some debuggers
kernel32!DebugActiveProcess to prevent other debuggers from attaching to a process

PEB Field PEB!IsDebugged is set by the system when a process is debugged
PEB!NtGlobalFlags is set if the process was created by a debugger

Detection ForceFlag field in heap header (+0x10) can be used to detect some debuggers
UnhandledExceptionFilter calls a user-defined filter function, but terminates in a debugging process
TEB of a debugged process contains a NULL pointer if no debugger is attached; valid pointer if some debuggers are attached
Ctrl-C raises an exception in a debugged process, but the signal handler is called without debugging
Inserting a Rogue INT3 opcode can masquerade as breakpoints
Trap flag register manipulation to thwart tracers
If entryPoint RVA is set to 0, the magic MZ value in PE files is erased
ZwClose system call with invalid parameters can raise an exception in an attached debugger
Direct context modification to confuse a debugger
0x2D interrupt causes debugged program to stop raising exceptions
Some In-circuit Emulators (ICEs) can be detected by observing the behavior of the undocumented 0xF1 instruction
Searching for 0xCC instructions in programmemory to detect software breakpoints
TLS-callback to perform checks

Anti-virtualization

VMWare Virtualized device identifiers contain well-known strings [7]
checkvm software [54] can search for VMWare hooks in memory
Well-known locations/strings associated with VMWare tools

Xen Checking the VMX bit by executing CPUID with EAX as 1 [28]
CPU errata: AH4 erratum [28]

Other LDTR register [10]
IDTR register (Red Pill [27])
Magic I/O port (0x5658, ‘VX’) [14]
Invalid instruction behavior [11]
Using memory deduplication to detect various hypervisors including VMware ESX server, Xen, and Linux KVM [55]

Anti-emulation

Bochs Visible debug port [7]

QEMU cpuid returns less specific information [4]
Accessing reserved MSR registers raises a General Protection (GP) exception in real hardware; QEMU does not [12]
Attempting to execute an instruction longer than 15 bytes raises a GP exception in real hardware; QEMU does not [12]
Undocumented icebp instruction hangs in QEMU [4], while real hardware raises an exception
Unaligned memory references raise exceptions in real hardware; unsupported by QEMU [12]
Bit 3 of FPU Control World register is always 1 in real hardware, while QEMU contains a 0 [4]

Other Using CPU bugs or errata to create CPU fingerprints via public chipset documentation [12]

328 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2018

program or task; (4) all interrupts normally handled by the
operating system are disabled upon entry into SMM; and
(5) the RSM instruction can be executed only in SMM. Note
that SMM steals CPU time from the running program,
which is a side effect of SMM. For instance, malware can
detect SMM based on the time delay. Even so, SMM is still
more transparent than virtualization and emulation.

Debuggers. An array of debuggers have been proposed
for transparent debugging. These include in-guest [24], [25],
emulation-based [5], [26], and virtualization-based [1], [2]
approaches. MALT is an SMM-based system. As to the trans-
parency, we only consider the artifacts introduced by
debuggers themselves, not the environments (e.g., hypervi-
sor or SMM). Ether [1] proposes five formal requirements
for achieving transparency, including (1) high privilege, (2)
no non-privileged side effects, (3) identical basic instruction
execution semantics, (4) transparent exception handling,
and (5) identical measurement of time. MALT satisfies the
first requirement by running the analysis code in SMM with
ring -2. We enumerate all the side effects introduced by
MALT in Section 7.1 and attempt to meet the second require-
ment in our system. Since MALT runs on bare metal, it
immediately meets the third and fourth requirements. Last,
MALT partially satisfies the fifth requirement by adjusting
the local timers in the SMI handler. We further discuss the
timing attacks below.

7.1 Side Effects Introduced by MALT

MALT aims to transparently analyze malware with mini-
mum footprints. Here we enumerate the side effects intro-
duced by MALT and show how we mitigate them. Note that
achieving the highest level of transparency requires MALT
to run in single-stepping mode.

CPU. We implement MALT in SMM, another CPU mode
in the x86 architecture, which provides an isolated environ-
ment for executing code. After recognizing the SMI asser-
tion, the processor saves almost the entirety of its state to
SMRAM. As previously discussed, we rely on the perfor-
mance monitoring registers and LAPIC to generate SMIs.
Although these registers are inaccessible from user-level
malware, attackers with ring 0 privilege can read and mod-
ify them. LAPIC registers in the CPU are memory-mapped,
and its base address is normally at 0xFEE00000. In MALT,
we relocate LAPIC registers to another physical address by
modifying the value in the 24-bit base address field of the
IA32_APIC_BASE Model Specific Register [21]. To find the
LAPIC registers, attackers need to read IA32_APIC_BASE
MSR first that we can intercept. Performance monitoring
registers are also MSRs. RDMSR, RDPMC, and WRMSR are the
only instructions that can access the performance coun-
ters [49] or MSRs. To mitigate the footprints of these MSRs,
we run MALT in the instruction-by-instruction mode and
adjust the return values seen by these instructions before
resuming Protected Mode. If we find a WRMSR to modify the
performance counters, the debugger client will be notified.

Memory and cache. MALT uses an isolated memory region
(SMRAM) from normal memory in Protected Mode. Any
access to this memory in other CPU modes will be redir-
ected to VGA memory. Note that this memory redirection
occurs in all x86 machines, even without MALT; this is not
unique to our system. In 2009, Intel introduced System

Management Range Registers (SMRR) [21] that limits cache
references of addresses in SMRAM to code running in
SMM. This is the vendor’s response to the cache poisoning
attack [52] and SMRR is available on all Intel processors
since then. The AMD64 architecture does not have SMRR,
but the processor internally keeps track of SMRAM and sys-
tem memory accesses separately and properly handles sit-
uations where aliasing occurs (i.e., main-memory locations
as aliases for SMRAM-memory locations) [53]. MALT does
not flush the cache when entering and exiting SMM to avoid
cache-based side-channel detection.

IO configurations and BIOS. MALT reroutes a serial inter-
rupt to generate an SMI to initialize a debugging session,
and the modified redirection table entry in I/O APIC can be
read by malware with ring 0 privilege. We change the redi-
rection table entry back to its original value to remove this
footprint in the first generated SMI handler. Once SMM has
control of the system, the SMIs are triggered by configuring
performance counters. MALT uses a custom BIOS, Coreboot,
to program the SMM code. An attacker with ring 0 privilege
can check the hash value of the BIOS to detect the presence
of our system. To avoid this fingerprint, we flash the BIOS
with the original image before the debugging process using
the tool Flashrom [51], and it flashes the Coreboot with the
original AMI BIOS. At that time, the SMI handler, including
the MALT code, has been loaded into SMRAM and locked.
Note that we also need to reflash the Coreboot image for the
next system restart.

Timing. There are many timers and counters on the moth-
erboard and chipsets, such as the Real Time Clock (RTC), the
Programmable Interval Timer (8253/8254 chip), the High
Precision Event Timer (HPET), the ACPI PowerManagement
Timer, the APIC Timer, and the Time Stamp Counter (TSC).
Malware can read a timer and calculate its running time. If
the time exceeds a certain threshold, malware can conclude
that a debugger is present. For the configurable timers, we
record their values after switching into SMM. When SMM
exits, we set the values back using the recorded values minus
the SMM switching time. Thus, malware is unaware of the
time spent in the SMI handler. However, some of the timers
and counters cannot be changed, even in SMM. To address
this problem, we adjust the return values of these timers in
the instruction-level stepping mode. For example, the RDTSC
instruction reads the TSC register and writes the value to the
EAX and EDX registers. While debugging, we can check if the
current instruction is RDTSC and adjust the values of EAX
and EDX before leaving the SMI handler.

Unfortunately, MALT cannot defend against timing
attacks involving an external timer. For instance, malware
can send a packet to a remote server to get correct timing
information (e.g., NTP service). In this case, malware can
detect the presence of our system and alter its behavior
accordingly. One potential solution to address this problem
is to intercept the instruction that reaches out for timing
information and prepare a fake time for the OS. Naturally,
this would not be foolproof as an attacker could retrieve an
encrypted time from a remote location. Such attacks are dif-
ficult to contend with because we cannot always know
when a particular packet contains timing information. To
the best of our knowledge, all existing debugging systems
with any measurable performance slowdown suffer from

ZHANG ET AL.: TOWARDS TRANSPARENT DEBUGGING 329

this attack. However, external timing attacks require net-
work communications and thus dramatically increase the
probability that the malware will be flagged. We believe
that malware will avoid using external timing attacks pre-
cisely because it wants to minimize its footprint on the vic-
tim’s computer, including using spin loops. We can also
analyze portions of the malware separately and amortize
the analysis time.

7.2 Analysis of Anti-Debugging, -VM, and
-Emulation Techniques

To analyze the transparency of MALT system, we employ
anti-debugging, anti-virtualization and anti-emulation tech-
niques from [7], [9], [10], [11], [12] to verify our system.
Since MALT runs on a bare-metal machine, these anti-virtu-
alization techniques will no longer work on it. Additionally,
MALT does not change any code or the running environ-
ments of operating systems and applications so that normal
anti-debugging techniques cannot work against it. For
example, the debug flag in the PEB structure on Windows
will not be set while MALT is running. Table 3 summarizes
popular anti-debugging, anti-virtualization, and anti-emu-
lation techniques, and we have verified that MALT can
evade all these detection techniques.

7.3 Testing with Packers

Packing is used to obfuscate the binary code of a program. It
is typically used to protect the executable from reverse-engi-
neering. Nowadays, malware writers also use packing tools
to obfuscate their malware. Packed malware is more diffi-
cult for security researchers to reverse-engineer the binary
code. In addition, many packers contain anti-debugging
and anti-VM features, further increasing the challenge of
reverse-engineering packed malware.

To demonstrate the transparency of MALT, we use
popular packing tools to pack the Notepad.exe applica-
tion in a Windows environment and run this packed
application in MALT with near return stepping mode,
OllyDbg [56], DynamoRIO [57], and a Windows XP SP3
in VMware Fusion [58], respectively. Ten packing tools
are used, including UPX, Obsidium, ASPack, Armadillo,
Themida, RLPack, PELock, VMProtect, eXPressor, and
PECompact. All these packing tools enable the settings
for anti-debugging and anti-VM functions if they have
them. After running the packed Notepad.exe, if the
Notepad window appears, we know that it has launched

successfully. Table 4 lists the results. All the packing
tools except UPX, ASPack, and RLPack can detect
OllyDbg. Obsidium, Armadillo, Themida, PELock, and
eXPressor are able to detect DynamoRIO, and the VM
can be detected by Armadillo, Themida, VMProtect, and
eXpressor. In contrast, MALT remains transparent to all
these packing tools as we expected.

7.4 Transparency of MALT

Functions and code added by MALT. Sections 7.2 and 7.3 show
that existing anti-debugging, anti-VM, anti-emulation, and
packing techniques cannot detect the presence of MALT. This
is because the current techniques are not targeting MALT’s
functions or code, so it is possible that future malware could
detect MALT due to the ever-present cat-and-mouse game
between attackers and defenders. As for ‘tomorrow’s
malware,’ we enumerate and mitigate the side effects intro-
duced by MALT in Section 7.1. Note that mitigating all foot-
prints requires a high level of granularity provided by
stepping instructions. As with other debugging systems,
MALT cannot defend against external timing attacks.

Running environment used byMALT. MALT is built on SMM
so that the transparency of MALT depends on the implica-
tions of SMM usage. Since SMM is not intended for debug-
ging, the hardware and software on the system may not
expect this usage, which may introduce side-channel foot-
prints for attackers to detect MALT (e.g., performance slow-
down and frequent switching). However, we believe using
SMM is more transparent than using virtualization or emu-
lation as done in previous systems due to its minimal TCB
and attack surface.

Towards true transparency. Debugging transparency is a
challenging and recently active problem in the security com-
munity. Unlike previous solutions that use virtualization or
emulation, MALT isolates the execution in the CPU, which
provides a novel idea of addressing the transparency prob-
lem. Although MALT is not fully transparent, we would like
to draw the attention of the community to this hardware-
based approach because the running environment of the
debugger ismore transparent than those of previous systems
(i.e., virtualization and emulation). Moreover, we further
argue hardware support for truly transparent debugging.
For instance, there could be a dedicated and well-designed
CPU mode for debugging, perhaps with performance coun-
ters that are inaccessible from other CPU modes, which pro-
vides a transparent switchingmethod between CPUmodes.

TABLE 4
Running Packed Notepad.exe under Different Environments

Packing Tool MALT OllyDbg V1.10 DynamoRIO V4.2.0-3 VMware Fusion V6.0.2

UPX V3.08 OK OK OK OK
Obsidium V1.4 OK Access violation at 0x00000000 Segmentation fault OK
ASPack V2.29 OK OK OK OK
Armadillo V2.01 OK Access violation at 0x42434847 Crash Crash
Themida V2.2.3.0 OK Privileged instruction exception Exception at 0x10a65d7 Message: cannot run under a VM
RLPack V1.21 OK OK OK OK
PELock V1.0694 OK Display message and terminate Segmentation fault OK
VMProtect V2.13.5 OK Message: a debugger was found OK Crash
eXPressor V1.8.0.1 OK Message: unknown executable format Segmentation fault Crash
PECompact V3.02.2 OK Access violation at 0x00000000 OK OK

330 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2018

8 EVALUATION

8.1 Testbed Specification and Code Size

We evaluate MALT using two physical machines. The target
server used an ASUS M2V-MX_SE motherboard with an
AMD K8 northbridge and a VIA VT8237r southbridge. It
has a 2.2 GHz AMD LE-1250 CPU and 2GB Kingston DDR2
RAM. The target machine uses Windows XP SP3, CentOS
5.5 with kernel 2.6.24, and Xen 3.1.2 with CentOS 5.5 as
domain 0. To simplify the installation, they are installed on
three separate hard disks, and the SeaBIOS manages the
boot process. The hard disks we used are Seagate Barracuda
7,200 RPMwith a 500 GB capacity. The debugging client is a
Dell Inspiron 15R laptop with Ubuntu 12.04 LTS. It uses a
2.4 GHz Intel Core i5-2430M CPU and 6 GB DDR3 RAM.
We use a USB 2.0 to Serial (9-Pin) DB-9 RS-232 converter
cable to connect two machines for debugging commands.

We use cloc [59] to compute the number of lines of
source code. Coreboot and its SeaBIOS payload contain
248,421 lines. MALT adds about 1,900 lines of C code in the
SMI hander. After compiling the Coreboot code, the size of
the image is 1 MB, and the SMI hander contains 3,749 bytes.
The debugger client contains 494 lines of C code.

8.2 Breakdown of Operations in MALT

To understand the performance of our debugging system,
we measure the time elapsed during particular operations
in the SMI handler. We use the Time Stamp Counter to mea-
sure the number of CPU cycles elapsed during each opera-
tion; we multiplied the clock frequency by the delta in
TSCs. After a performance counter triggers an SMI, the sys-
tem hardware automatically saves the current architectural
state into SMRAM and begins executing the SMI handler.
The first operation in the SMI handler is to identify the last
running process in the CPU. If the last running process is
not the target malware, we only need to configure the per-
formance counter register for the next SMI and exit from
SMM. Otherwise, we perform several checks. First, we
check for newly received messages and whether a break-
point has been reached. If there are no new commands and
no breakpoints to evaluate, we reconfigure the performance
counter registers for the next SMI. Table 5 shows a break-
down of the operations in the SMI handler if the last run-
ning process is the target malware. This experiment shows
the mean, standard deviation, and 95 percent confidence
interval of 25 runs. The SMM switching time takes about

3.29 microseconds. Command checking and breakpoint
checking take about 2.19 microseconds in total. Configuring
performance monitoring registers and SMI status registers
for subsequent SMI generation takes about 1.66 microsec-
onds. Last, SMM resume takes 4.58 microseconds. Thus,
when the last process is the target malware, MALT takes
about 12 microseconds to execute an instruction without
debugging command communication.

8.3 Step-by-Step Debugging Overhead

To demonstrate the efficiency of our system, we measure
the performance overhead of the seven stepping methods
on both Windows and Linux platforms. We use a bench-
mark program, SuperPI [60], version 1.8 on Windows and
version 2.0 on Linux. SuperPI is a single-threaded bench-
mark that calculates the value of p to a specific number of
digits and outputs the calculation time. This tightly written,
arithmetic-intensive benchmark is suitable for evaluating
CPU performance. SuperPI calculates 64 K digits of p, and it
takes 1.610 and 1.898 s onWindows and Linux, respectively.
Note that the speed of p calculation varies, depending on
the selected algorithm. Additionally, we use a popular
Linux Command, gzip, to compress 4M digits of p to mea-
sure the performance overhead. The 4M digits of p is gener-
ated by the SuperPI program. On Windows, we install
Cygwin to execute gzip version 1.4. On Linux, we use
gzip version 1.3.5. The compression operation takes 1.875 s
on Windows and 1.704 s on Linux. After we run the pro-
grams without MALT, we enable each of the seven stepping
methods separately and record the runtimes. SuperPI shows
the runtimes, and we use shell scripts to calculate the run-
times of the gzip command. We run each experiment five
times and show the average results in Table 6.

Table 6 shows the performance slowdown introduced by
the step-by-step debugging. The first column specifies differ-
ent stepping methods; the following four columns show the

TABLE 5
Breakdown of SMI Handler (Time: ms)

Operations Mean STD 95% CI

SMM switching 3.29 0.08 [3.27,3.32]
Command and BP checking 2.19 0.09 [2.15,2.22]
Next SMI configuration 1.66 0.06 [1.64,1.69]
SMM resume 4.58 0.10 [4.55,4.61]

Total 11.72

TABLE 6
Stepping Overhead on Windows and Linux

Stepping methods Runtime (Seconds) Slowdown

Windowx Linux Windowx Linux

p gzip p gzip p gzip p gzip

Without MALT 1.610 s 1.875 s 1.898 s 1.704 s 1.00x 1.00x 1.00x 1.00x
Retired far control transfers 2.230 s 2.564 s 2.495 s 2.432 s 1.38x 1.36x 1.46x 1.42x
Retired near returns 74.43 s 73.14 s 61.56 s 59.08 s 46.2x 39.1x 36.1x 34.7x
Retired taken branches mispredicted 155.3 s 145.7 s 68.42 s 138.3 s 96.5x 40.2x 77.7x 81.2x
Retired taken branches 1020 s 1754 s 476.6 s 1538 s 634x 935x 280x 903x
Retired mispredicted branches 160.3 s 280.0 s 77.31 s 236.3 s 99.6x 149x 45.4x 138x
Retired branches 1200 s 2243 s 494 s 1760 s 745x 1196x 290x 1033x
Retired instructions 1645 s 2849 s 839 s 2333 s 1021x 1519x 492x 1369x

ZHANG ET AL.: TOWARDS TRANSPARENT DEBUGGING 331

running time of the SuperPI and gzip; and the last
four columns represent the slowdown of the programs,
which is calculated by dividing the current running time by
the base running time. It is evident that far control transfer
(e.g., IRET instruction) stepping only introduces a 1.5� slow-
down on Windows and Linux, which facilitates coarse-
grained tracing for malware debugging. As expected, fine-
grained stepping methods introduce more overhead. The
instruction-by-instruction debugging causes about 1519�
slowdown on Windows for gzip compressing 4M digits of
p, which demonstrates the worst-case performance degrada-
tion in our debuggingmethods. Oneway to improve the per-
formance is to reduce the time used for SMM switching and
resume operations by cooperating with hardware vendors.
Note that MALT is twice as fast as Ether [1], [4] in the single-
stepping mode. Table 5 shows that MALT takes 12 microsec-
onds to execute an instruction if the last running process is
the target malware (i.e., if MALT performs an analysis).
Table 6 shows the system overhead incurred by each step-
ping mode when no target malware is executing (i.e., when
MALT immediately returns from SMM). By analyzing the
results in Table 6, we observe that the time per instruction is
less than observed in Table 5. We believe this is due to hard-
ware caching. The CPU saves the current architectural state
into SMRAMwhen switching into SMM. If the system keeps
switching for each instruction, hardware may not write the
same contents back intomemory due to hardware caching.

Despite a three order-of-magnitude slowdown on Win-
dows, the debugging target machine is still usable and
responsive to user interaction. In particular, the instruction-
by-instruction debugging is intended for use by a human
operator from the client machine, and we argue that the user
would not notice this overheadwhile entering the debugging
commands (e.g., Read Register) on the client machine.1

We believe that achieving high transparency at the cost of
performance degradation is necessary for certain types of
malware analysis. Note that the overhead in Windows is
larger than that in Linux. This is because (1) the semantic gap
problem is solved differently in each platform, and (2) the
implementations of the benchmark programs are different.

8.4 System Restoration Overhead

To measure the overhead of a complete system restoration
in MALT, we measure the time taken by each restoration
step including system rebooting, disk restoration, and BIOS
flashing. To calculate the time taken to reboot the system,
we start an external timer when the OS executes the reboot
command (i.e., reboot on Linux and shutdown -h now on
Windows), and we stop the timer when the OS GUI is dis-
played after rebooting. Note that the booting time is OS-
dependent, and we use Linux in the experiment. Since we
only restore the changed chunks in the disk, the time taken
by disk restoration depends on the number of the modified
chunks. In the experiment, we make a copy of a file with
size of 10 MB and save it on the disk. Then, we use SMM to
restore the disk. We use the TSC to measure the time

elapsed for disk restoration and flashing the BIOS. Table 7
shows the breakdown of the system restoration process.
System rebooting takes about 25 seconds. This includes OS
shutdown, BIOS initialization, boot loader execution, and
OS loading. Since we only need to restore the modified con-
tents in the disk (i.e., 10 MB file and OS system logs), the
hard disk restoration only takes 21 seconds. For the BIOS
flashing, we need to flash the BIOS twice; one is to flash Cor-
eboot in the BIOS before rebooting, and the other is to flash
original BIOS back after rebooting to remove fingerprints.
Each flashing takes about 28 seconds, yielding a total of
about 56 seconds to flash the BIOS twice. Therefore, the total
time for system restoration process is about 102 seconds.
Compared to BareBox [14], MALT takes longer time to com-
plete system restoration. However, BareBox relies on a
Meta-OS and only works for user-level malware, while
MALT is capable of analyzing ring 0 code so that privileged
malware cannot tamper the restoration process. We believe
our system provides a more reliable approach for system
restoration in malware analysis.

9 DISCUSSION AND LIMITATIONS

MALT uses SMM as the foundation to implement various
debugging functions. Before 2006, computers did not lock
their SMRAM in the BIOS [40], and researchers used this
flaw to implement SMM-based rootkits [39], [40], [41].
Modern computers lock the SMRAM in the BIOS so that
SMRAM is inaccessible from any other CPU modes after
booting. Wojtczuk and Rutkowska demonstrated bypassing
the SMRAM lock through memory reclaiming [33] or cache
poisoning [52]. The memory reclaiming attack is addressed
by locking the remapping registers and Top of Low Usable
DRAM (TOLUD) register. The cache poisoning attack forces
the CPU to execute instructions from the cache instead of
SMRAM by manipulating the Memory Type Range Register
(MTRR). Duflot also independently discovered this architec-
tural vulnerability [61], but it has been fixed by Intel adding
SMRR [21]. Furthermore, Duflot et al. [62] listed some
design issues of SMM, but they can be fixed by correct con-
figurations in BIOS and careful implementation of the SMI
handler. Wojtczuk and Kallenberg [63] recently presented
an SMM attack by manipulating UEFI boot script that
allows attackers to bypass the SMM lock and modify the
SMI handler with ring 0 privilege. Fortunately, as stated in
the paper [63], the BIOS update around the end of 2014 fixed
this vulnerability. In MALT, we assume that SMM is trusted.

Butterworth et al. [64] demonstrated a buffer overflow
vulnerability in the BIOS updating process in SMM, but this
is not an architectural vulnerability and is specific to that
particular BIOS version. (Our SMM code does not contain
that vulnerable code). Since MALT adds 1,500 lines of C

TABLE 7
Breakdown of System Restoration Process (Time: s)

Steps Mean STD 95% CI

System rebooting 25.03 1.01 [24.01, 26.12]
Hard disk restoration 20.75 2.33 [17.39, 22.34]
BIOS flashing 56.23 1.34 [54.55, 57.97]

Total 102.01

1. To visualize the performance slowdown, we record a video
(https://youtu.be/NP6Bb4CdqN0) that shows MALT operating in the
instruction-stepping mode in Windows (cf. highest overhead in
Table 6).

332 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2018

https://youtu.be/NP6Bb4CdqN0

code in the SMI handler, it is possible that our code has bugs
that could be exploited. Fortunately, SMM provides a strong
isolation from other CPU modes (i.e., it has its own sealed
memory). The only inputs from a user are through serial
messages, making it difficult for malicious code to be
injected into our system. We implement MALT on a single-
core processor for compatibility with Coreboot, but SMM
also works on multi-core systems [21]. Each core has its
own set of MSR registers, which define the SMRAM region.
When an SMI is generated, all the cores will enter into SMM
with their own SMI handler. One simple way is to let one
core execute our debugging code and spin the other cores
until the first has finished. SMM-based systems such as
HyperSentry [35] and SICE [65] are implemented on multi-
core processors. In a multi-core system, MALT can debug a
process by pinning it to a specific core while allowing the
other cores to execute the rest of the system normally. This
will change thread scheduling for the debugged process by
effectively serializing its threads which may be detectable
by an adversary. Recently, Intel introduced SMM-Transfer
Monitor (STM), which virtualizes the SMM code [21]. It is
also the answer to attacks against Trust Execution Technol-
ogy (TXT) [66]. Unfortunately, the use of an STM involves
blocking SMIs, which potentially prevents our system from
executing. However, we can modify the STM code in
SMRAM, which executes in SMM, to provide the functional-
ity without affecting our system.

System Management Mode exists in all current x86 devi-
ces. There is no indication that Intel will remove SMM from
the x86 architecture. Considering the popularity of SMM in
computing systems, we believe SMM-based research is still
important and valuable. Although SMM is not designed for
debugging, SMM-like capabilities could be leveraged to aid
transparent debugging. In fact, SMM is a mechanism that
essentially provides an isolated computing fabric and the
hardware support for meeting MALT’s needs. We would
like to emphasize this as an architectural principle for
debugging. Our prototype leverages the isolation principles
currently provided by SMM, but this does not mean that the
MALT architecture must use SMM; rather, it is merely a
mechanism that implements the required security policies
for MALT. We would further argue for desirability of archi-
tectural support in aiding debugging transparency.

10 CONCLUSIONS

In this paper, we developed MALT, a bare-metal debugging
system that employs System Management Mode to trans-
parently analyze armored malware. As a hardware-
assisted debugging system, MALT has a smaller TCB than
hypervisor-based approaches. Moreover, it is immune to
hypervisor attacks and is capable of analyzing and debug-
ging hypervisor-based rootkits and OS kernels. It also
introduces minimum artifacts while achieving transpar-
ency. Through extensive experiments, we have demon-
strated that MALT remains transparent in the presence of
all tested packers, anti-debugging, anti-virtualization, and
anti-emulation techniques. Moreover, MALT provides a
novel technique that completely and reliably restores the
target system to a clean state. MALT introduces moderate
but manageable overheads on Windows and Linux, which

range from 1.46 to 1519 times slowdown, depending on
the stepping method. The complete restoration of a system
takes about 2 minutes.

REFERENCES

[1] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware
analysis via hardware virtualization extensions,” in Proc. 15th
ACM Conf. Comput. Commun. Security, 2008, pp. 51–62.

[2] Z. Deng, X. Zhang, and D. Xu, “SPIDER: Stealthy binary program
instrumentation and debugging via hardware virtualization,” in
Proc. Annu. Comput. Security Appl. Conf., 2013, pp. 289–298.

[3] A. Fattori, R. Paleari, L. Martignoni, and M. Monga, “Dynamic
and transparent analysis of commodity production systems,” in
Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2010, pp. 417–426.

[4] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin. (2012). V2E:
Combining hardware virtualization and software emulation for
transparent and extensible malware analysis. in Proc. 8th ACM
SIGPLAN/SIGOPS Conf. Virtual Execution Environ. [Online]. Avail-
able: http://doi.acm.org/10.1145/2151024.2151053

[5] (2009). Anubis. Analyzing Unknown Binaries [Online]. Available:
http://anubis.iseclab.org

[6] N. A. Quynh and K. Suzaki. (2010). “Virt-ICE: Next-generation
debugger for malware analysis,” in Black Hat USA. [Online].
Available: https://media.blackhat.com/bh-us-10/whitepapers/
Anh/BlackHat-USA-2010-Anh-Virt-ICE-wp.pdf

[7] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario,
“Towards an understanding of Anti-Virtualization and Anti-
Debugging behavior in modern malware,” in Proc. 38th Annu.
IEEE Int. Conf. Dependable Syst. Netw., 2008, pp. 177–186.

[8] R. R. Branco, G. N. Barbosa, and P. D. Neto. (2012). “Scientific but
not academical overview of malware anti-debugging, anti-disas-
sembly and Anti-VM technologies,” in Black Hat [Online]. Avail-
able: https://www.blackhat.com/docs/us-14/materials/us-14-
Branco-Prevalent-Characteristics-In-Modern-Malware.pdf

[9] N. Falliere. (2010). Windows anti-debug reference [Online].
Available: http://www.symantec.com/connect/articles/windows-
anti-debug-reference

[10] D. Quist and V. Val Smith. (2006). Detecting the presence of
virtual machines using the local data table [Online]. Available:
http://www.offensivecomputing.net

[11] E. Bachaalany. (2005). Detect if your program is running inside a
virtual machine [Online]. Available: http://www.codeproject.com/
Articles/9823/Detect-if-your-program-is-running-inside-a-Virtual

[12] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emu-
lators,” in Information Security. Berlin, Germany: Springer, 2007.

[13] T. Garfinkel, K. Adams, A.Warfield, and J. Franklin, “Compatibility
is not transparency: VMM detection myths and realities,” in Proc.
11thUSENIXWorkshopHot Topics Operating Syst., 2007. pp. 1–6.

[14] D. Kirat, G. Vigna, and C. Kruegel, “BareBox: Efficient malware
analysis on Bare-metal,” in Proc. 27th Annu. Comput. Security Appl.
Conf., 2011, pp. 403–412.

[15] C. Willems, R. Hund, A. Fobian, D. Felsch, T. Holz, and A. Vasu-
devan, “Down to the bare Metal: Using processor features for
binary analysis,” in Proc. Annu. Comput. Security Appl. Conf., 2012,
pp. 189–198.

[16] K. Kortchinsky. (2009). “CLOUDBURST: A VMware guest to host
escape story,” in Black Hat USA [Online]. Available: https://
www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/
BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf

[17] R. Wojtczuk, J. Rutkowska, and A. Tereshkin. (2008). “Xen 0wning
Trilogy,” in Black Hat USA [Online]. Available: http://
invisiblethingslab.com/resources/bh08/part3.pdf

[18] S. T. King and P. M. Chen, “SubVirt: Implementing malware with
virtual machines,” in Proc. 27th IEEE Symp. Security Privacy, May
2006, pp. 314–327.

[19] J. Rutkowska. (2006). Blue Pill [Online]. Available: http://
theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.
html

[20] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun, “Using
hardware features for increased debugging Transparency,” in
Proc. 36th IEEE Symp. Security Privacy, May 2015, pp. 55–69.

[21] (2015). Intel. 64 and IA-32 architectures software developer’smanual
[Online]. Available: http://www.intel.com/content/www/us/en/
processors/architectures-software-developer-manuals.html

[22] (2015, Jul.). Coreboot. Open-Source BIOS [Online]. Available:
http://www.coreboot.org/

ZHANG ET AL.: TOWARDS TRANSPARENT DEBUGGING 333

http://doi.acm.org/10.1145/2151024.2151053
http://anubis.iseclab.org
https://media.blackhat.com/bh-us-10/whitepapers/Anh/BlackHat-USA-2010-Anh-Virt-ICE-wp.pdf
https://media.blackhat.com/bh-us-10/whitepapers/Anh/BlackHat-USA-2010-Anh-Virt-ICE-wp.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-Characteristics-In-Modern-Malware.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Branco-Prevalent-Characteristics-In-Modern-Malware.pdf
http://www.symantec.com/connect/articles/windows-anti-debug-reference
http://www.symantec.com/connect/articles/windows-anti-debug-reference
http://www.offensivecomputing.net
http://www.codeproject.com/Articles/9823/Detect-if-your-program-is-running-inside-a-Virtual
http://www.codeproject.com/Articles/9823/Detect-if-your-program-is-running-inside-a-Virtual
https://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf
https://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf
http://invisiblethingslab.com/resources/bh08/part3.pdf
http://invisiblethingslab.com/resources/bh08/part3.pdf
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.com/2006/06/introducing-blue-pill.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.coreboot.org/

[23] (2015, Jul.). SeaBIOS [Online]. Available: http://www.coreboot.
org/SeaBIOS

[24] A. Vasudevan and R. Yerraballi, “Stealth breakpoints,” in Proc.
21st Annu. Comput. Security Appl. Conf., 2005, pp. 392–402.

[25] (2015). IDA Pro [Online]. Available: www.hex-rays.com/
products/ida/

[26] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze:
A new approach to computer security via binary analysis,”
in Proc. 4th Int. Conf. Inform. Syst. Security, 2008, pp. 1–25.

[27] J. Rutkowska. (2006). Red Pill [Online]. Available: http://www.
ouah.org/Red_Pill.html

[28] G. Pek, B. Bencsath, and L. Buttyan, “nEther: In-guest detection of
Out-of-the-guest malware analyzers,” in Proc. 4th Eur. Workshop
Syst. Security, 2011, pp. 1–6.

[29] D. Kirat, G. Vigna, and C. Kruegel, “BareCloud: Bare-metal Anal-
ysis-based evasive malware detection,” in Proc. 23rd USENIX
Security Symp., 2014, pp. 287–301.

[30] (2015, Jul.). Ohloh. Black Duck Software, Inc [Online]. Available:
http://www.ohloh.net

[31] (2015, Jul.). VMware, Inc. VMWare Workstation [Online]. Avail-
able: https://www.vmware.com/products/workstation

[32] K. Kourai, “Fast and correct performance recovery of operating sys-
tems using a virtual machinemonitor,” in Proc. 7th ACMSIGPLAN/
SIGOPS Int. Conf. Virtual Execution Environ., 2011, pp. 99–110.

[33] J. Rutkowska and R. Wojtczuk. (2008). Preventing and detecting
Xen Hypervisor subversions [Online]. Available: http://www.
invisiblethingslab.com/resources/bh08/part2-full.pdf

[34] F. Zhang, J. Wang, K. Sun, and A. Stavrou, “HyperCheck: A Hard-
ware-assisted integrity monitor,” IEEE Trans. Dependable Secure
Comput., vol. 11, no. 4, pp. 332–344, Jul./Aug. 2014.

[35] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skal-
sky, “HyperSentry: Enabling stealthy in-context measurement of
hypervisor integrity,” in Proc. 17th ACM Conf. Comput. Commun.
Security, 2010, pp. 38–49.

[36] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “SPECTRE: A
dependable introspection framework via system management
mode,” in Proc. 43rd Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw., 2013, pp. 1–12.

[37] J. Wang, F. Zhang, K. Sun, and A. Stavrou, “Firmware-assisted
memory acquisition and analysis tools for digital forensic,” in
Proc. 6th Int. Workshop Systematic Approaches Digital Forensic Eng.,
2011, pp. 1–5.

[38] A. Reina, A. Fattori, F. Pagani, L. Cavallaro, and D. Bruschi,
“When hardware meets Software: A bulletproof solution to foren-
sic memory acquisition,” in Proc. Annu. Comput. Security Appl.
Conf., 2012, pp. 79–88.

[39] L. Duflot, D. Etiemble, and O. Grumelard, “Using CPU system
management mode to circumvent operating system security
functions,” in Proc. 7th CanSecWest Conf., 2004, pp. 1–15.

[40] S. Embleton, S. Sparks, and C. Zou, “SMM rootkits: A new breed
of OS independent malware,” in Proc. 4th Int. Conf. Security
Privacy Commun. Netw., 2008, pp. 11:1–11:12.

[41] BSDaemon, coideloko, and D0nAnd0n. (2008). “System manage-
ment mode Hack: Using SMM for ‘other purposes’,” Phrack Mag.
[Online]. Available: http://phrack.org/issues/65/7.html

[42] (2013). NSA’s ANT Division Catalog of Exploits for Nearly Every
Major Software/Hardware/Firmware [Online]. Available:
http://Leaksource.wordpress.com

[43] Trusted Computing Group. (2012, Feb.). TCG PC client
specific implementation specification for conventional BIOS,
specification version 1.21 [Online]. Available: http://www.
trustedcomputinggroup.org

[44] F. Zhang, H. Wang, K. Leach, and A. Stavrou, “A framework to
secure peripherals at runtime,” in Proc. 19th Eur. Symp. Res. Com-
put. Security., 2014, pp. 219–238.

[45] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “SoK: Intro-
spections on trust and the semantic gap,” in Proc. 35th IEEE Symp.
Security Privacy, 2014, pp. 605–620.

[46] T. Garfinkel and M. Rosenblum, “A virtual machine introspection
based architecture for intrusion detection,” in Proc. 10th Annu.
Netw. Distrib. Syst. Security Symp., 2003, pp. 191–206.

[47] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
VMM-based Out-of-the-box semantic view reconstruction,” in
Proc. 14th ACMConf. Comput. Commun. Security, 2007, pp. 128–138.

[48] VIA Technologies, Inc., “VT8237R South Bridge, Revision 2.06,”
December 2005.

[49] (2006). Advanced Micro Devices, Inc.. BIOS and Kernel Developer’s
Guide for AMD Athlon 64 and AMD Opteron Processors [Online].
Available: http://support.amd.com/us/ProcessorTechDocs/
26094.PDF

[50] S. Vogl and C. Eckert, “Using hardware performance events for
instruction-level monitoring on the x86 architecture,” in Proc. Eur.
Workshop Syst. Security, 2012.

[51] (2015, Jul.). Flashrom. Firmware Flash Utility [Online]. Available:
http://www.flashrom.org/

[52] R. Wojtczuk and J. Rutkowska. (2009). Attacking SMM memory
via intel CPU cache poisoning [Online]. Available: http://
invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf

[53] Advanced Micro Devices, Inc.. (2015, Jun.). AMD64 Architecture-
Programmer Manual Volume 2: System Programming [Online].
Available: http://support.amd.com/TechDocs/24593.pdf

[54] (2013). checkvm: Scoopy doo [Online]. Available: http://www.
trapkit.de/research/vmm/scoopydoo/scoopy_doo.htm

[55] J. Xiao, Z. Xu, H. Huang, and H. Wang, “Security implications of
memory deduplication in a virtualized environment,” in Proc. 43rd
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2013, pp. 1–12.

[56] (2013). OllyDbg [Online]. Available: www.ollydbg.de
[57] (2015, Jul.). DynamoRIO. Dynamic Instrumentation Tool Platform

[Online]. Available: http://dynamorio.org/
[58] (2015, Jul.). VMware, Inc. VMWare Fusion [Online]. Available:

https://www.vmware.com/products/fusion
[59] (2015, Jul.). CLOC. Count lines of code [Online]. Available:

http://cloc.sourceforge.net/
[60] (2015, Jul.). SuperPI [Online]. Available: http://www.superpi.net/
[61] L. Duflot, O. Levillain, B. Morin, and O. Grumelard, “Getting into

the SMRAM: SMM reloaded,” in Proc. 12th CanSecWest Conf., 2009.
[62] L. Duflot, O. Levillain, B. Morin, and O. Grumelard. (2010).

System management mode design and security issues [Online].
Available: http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_
final.pdf

[63] R. Wojtczuk and C. Kallenberg. (2014). Attacking UEFI Boot
Script. 31st Chaos Communication Congress (31C3) [Online].
Available: http://events.ccc.de/congress/2014/Fahrplan/
system/attachments/2566/original/venamis_whitepaper.pdf

[64] J. Butterworth, C. Kallenberg, and X. Kovah, “BIOS Chrono-
mancy: Fixing the core root of trust for measurement,” in Proc.
20th ACM Conf. Comput. Commun. Security, 2013, pp. 25–36.

[65] A. M. Azab, P. Ning, and X. Zhang, “SICE: A hardware-level
strongly isolated computing environment for x86 multi-core
platforms,” in Proc. 18th ACM Conf. Comput. Commun. Security,
2011, pp. 375–388.

[66] R. Wojtczuk and J. Rutkowska, “Attacking intel trust execution
technologies,” 2009.

Fengwei Zhang received the PhD degree in com-
puter science from the George Mason University.
He is an assistant professor at the Department of
Computer Science at Wayne State University. His
research interests include trustworthy execution,
memory introspection, system integrity checking,
and transparent malware debugging.

Kevin Leach received the MSc degree in com-
puter science from the George Mason University
in 2013. He is currently working toward the PhD
degree in computer engineering at the Depart-
ment of Electrical and Computer Engineering and
the Department of Computer Science at the Uni-
versity of Virginia. His research interests include
system security and transparent debugging.

334 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2018

http://www.coreboot.org/SeaBIOS
http://www.coreboot.org/SeaBIOS
www.hex-rays.com/products/ida/
www.hex-rays.com/products/ida/
http://www.ouah.org/Red_Pill.html
http://www.ouah.org/Red_Pill.html
http://www.ohloh.net
https://www.vmware.com/products/workstation
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://phrack.org/issues/65/7.html
http://Leaksource.wordpress.com
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://support.amd.com/us/ProcessorTechDocs/26094.PDF
http://support.amd.com/us/ProcessorTechDocs/26094.PDF
http://www.flashrom.org/
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
http://support.amd.com/TechDocs/24593.pdf
http://www.trapkit.de/research/vmm/scoopydoo/scoopy_doo.htm
http://www.trapkit.de/research/vmm/scoopydoo/scoopy_doo.htm
www.ollydbg.de
http://dynamorio.org/
https://www.vmware.com/products/fusion
http://cloc.sourceforge.net/
http://www.superpi.net/
http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf
http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf

Angelos Stavrou received the PhD degree in
computer science from the Columbia University
in 2007. He is an associate professor at the
Department of Computer Science of George
Mason University. His research interests include
large systems security & survivability, intrusion
detection systems, privacy & anonymity, security
for MANETs and mobile devices.

Haining Wang received the PhD degree in com-
puter science and engineering from the University
of Michigan at Ann Arbor in 2003. He is a profes-
sor at the Department of Electrical and Computer
Engineering at the University of Delaware. His
research interests lie in the area of security, net-
working system, and distributed computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: TOWARDS TRANSPARENT DEBUGGING 335

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

