FlushTime:

Towards Mitigating Flush-based Cache Attacks via Collaborating Flush Instructions
and Timers on ARMv8-A

Jingquan Ge, Fengwei Zhang
Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology

9th July, 2023

O P eY

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

@ Motivation

@® Threat Model and Assumptions
© Our Solution: FlushTime

O Sccurity Analysis

@ Performance Evaluation

@® Conclusion

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology

Motivation
[]

@ Motivation

Jingquan Ge, i Research Institute of Trustworthy Autonomous Systems, Southern University of Science

FlushTime

Motivation
[Je]

@ Motivation
ARMv8-A CPU

Jingquan Ge, i Research Institute of Trustworthy Autonomous Systems, Southern University of Science

FlushTime

Motivation
oe

Why study ARMv8-A CPU?

® ARMv8-A-based devices (smart phones, tablet, vehicle systems and loT) have
flooded the market.

® ARMvV8-A cloud servers have begun to disrupt the data center market.

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

0
@ Motivation

Cache-related attack

Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Motivation
o]]

Cache-related attack

® Increasing types of cache-related attacks have been presented by researcher since
1990s.

® With the continuous emergence of Meltdown, Spectre and their variants,
cache-related attacks have become one of the biggest threats to modern
processors and operating systems.

® Flush+Reload and Flush+Flush utilize cache flush instructions to reduce the noise
and improve the resolution, called flush-based cache-related attack.

® Meltdown, Spectre and most of the discovered variants are also based on
Flush+Reload.

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology

FlushTime

Motivation
[le]

@ Motivation

Flush-based cache-related attack

Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Motivation
o]]

Why study Flush-based cache-related attack?

® Attackers only need to know target virtual addresses, physical address mapping is
not required.

® Although the flush instructions greatly reduce the threshold of cache attacks,
Prohibiting the flush instructions in user space is not feasible.

® |t is an attractive topic to ensure the availability of cache flush instructions in user
space while avoiding the security vulnerabilities posed by them.

Jingquan Ge, Fengwei Zhang
FlushTime

Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology

Motivation
[le]

@ Motivation

Hardware and software defense

Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Motivation

Defenses and their shortcomings

® Modifications to the hardware architecture cannot be deployed on existing devices.

® Software runtime defenses cannot cover all flush-based cache-related attacks and
may bring significant performance loss.

® Browser defense countermeasures disable high resolution time API, which is not
feasible in the operating system.

Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Threat Model and Assumptions
[]

@® Threat Model and Assumptions

Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Threat Model and Assumptions
[le]

@® Threat Model and Assumptions
Security Assumptions

Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Threat Model and Assumptions
o]]

Security Assumptions

Attackers can execute her code on the same machine with the victim process.

There is shared memory between the attacker process and the victim process.

Attackers do not have the root privilege and cannot use other attack methods to
tamper with the kernel code or escalate privileges to obtain sensitive system
information.

Attackers do not have the ability to design an effective eviction strategy.

Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Threat Model and Assumptions
[le]

@® Threat Model and Assumptions

Attacker capabilities

Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Threat Model and Assumptions

Attacker capabilities

® The attacker knows the source code and address layout of the victim process or
kernel.

® Attackers can rely on the flush instructions to clean up the cache lines of the
shared pages and leak information.

Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Solution: FlushTime
[]

© Our Solution: FlushTime

Jingquan Ge, i Research Institute of Trustworthy Autonomous Systems, Southern University of Science

FlushTime

Our Solution: FlushTime
000

© Our Solution: FlushTime
Overview of FlushTime

Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Our Solution: FlushTime
(o] le}

Overview of FlushTime

® FlushTime is a framework that can resist all flush-based cache-related attacks
while ensuring the availability of flush instructions and generic timers on
ARMVS-A.

® FlushTime utilizes the instruction/register trap mechanism of ARMv8-A to trap
cache flush instructions and generic timer access into the kernel interrupt handlers.

® |n the kernel space, these two handlers cooperate with each other to handle the

interrupts. When a process calls a cache flush instruction, the time resolution
obtained from the generic timer will be temporarily reduced.

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

Our Solution: FlushTime
[efe]]

Architecture of FlushTime

User
Space

victim process

trapped
¥

cntvct_read_handler

[user_cache_maint_handler]

untel LR,
Kernel 0% OCounte,
Space

Modified Unmodified -Attack

Module Module Path
Figure 1: The architecture of FlushTime on ARMv8-A Linux. LRDCounter represents the low
resolution delay counter, which counts the number of context_switch() in low resolution state.

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Our Solution: FlushTime
@00

© Our Solution: FlushTime

Design of FlushTime

Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Our Solution: FlushTime

Design of FlushTime

Modify the default configuration of Linux to trap flush instructions and generic
timer into the EL1 level (kernel space).

Modify the interrupt handler of the flush instructions.

Modify the context switch of the process.

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

Modify the interrupt handler for accessing the generic timer.

Our Solution: FlushTime

Handler Algorithms

Algorithm 2: cntvet_read_handler() in FlushTime

Algorithm 1: user_cache maint_handler() in FlushTime

Input: Virtual address to be flushed: vir_addr;
Output: Low resolution delay counter : LRDCounter;
1 Flush the cache line of vir_addr ;
2 Store NumCSLR into LDRCounter;
3 Return to ELO;

(a) Algorithm of flush instruction handler.

Input: Low resolution delay counter : LRDCounter;
Output: Time read from CNTVCT_ELO : CNTVCTime;
Read CNTVCT_ELO into CNTVCTime ;
if (LRDCounter/=0) then

‘ Reduce the resolution of CNTVCTime by NumLRMB bits;
4 end

-

8

w

else

‘ Keep the high resolution of CNTVCTime;
7 end
Return CNTVCTime to ELO;

o

o

(b) Algorithm of timer access handler

Figure 2: Algorithms of the two handlers

Jingquan Ge, Fengwei Zhang

Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolog;

FlushTime

Our Solution: FlushTime
e0

© Our Solution: FlushTime

Relationship between Flush and Timer

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolog;

FlushTime

Our Solution: FlushTime
oe

Relationship between flush instructions and generic timer

L ;

|
prodess 1 [process | [Processk [process 1 [fprocessm(
(malicious) (maliclous) (normal) (malicious) (normal)
i ; |
! Flush instruction |
Low resolution timer
High resolution timer NumCSLR * context_switch()

Figure 3: Relationship between flush instructions and generic timer when FlushTime is enabled.
NumCSLR is the number of context_switch() in low resolution state.

Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Our Solution: FlushTime
e0

© Our Solution: FlushTime

Implementation of FlushTime

Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Our Solution: FlushTime
oe

Implementation of FlushTime

® Modify Linux boot function smp_init().

® Modify the flush handler user_cache _maint_handler().
® Modify process scheduling function context_switch().
[]

Modify generic timer handler cntvct_read_handler().

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

Security Analysis
[]

O Sccurity Analysis

Jingquan Ge, i Research Institute of Trustworthy Autonomous Systems, Southern University of Science

FlushTime

Security Analysis
[ele}

O Sccurity Analysis
Selection of NumLRMB and NumCSLR

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Security Analysis
(o] lo}

Relationship between the two parameters and attack success rate

|
o Flush-based Spectre-BTB Attack
~+Flush+Reload Attack

100%

§ 80% —Optimal Value of NumLRMB é 30%

% 60% g 60%

a 0% & 0% oFiush-Based Specire-BTB Altack

20% 20% :Q;:;;’.‘S';ﬁ‘lﬁ?'ﬁikmcsm
0, 4 6 s 10 12 0 20 40 60 80 00
NumLRMB NumCSLR

(a) The relationship between the parameter (b) The relationship between the parameter
NumLRMB and attack success rate on NumCSLR and attack success rate on
TaiShan 200 server. Both the two attacks are TaiShan 200 server. Both the two attacks are
multi-process attacks that execute 100 multi-process attacks that execute 100
processes. The red line represents the optimal processes. The red line represents the optimal
value of NumLRMB. value of NumCSLR.

Figure 4: The relationship between the two parameters and attack success rate.

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technol

FlushTime

Security Analysis
ooe

Further Study on NumLRMB and NumCSLR

Table 1: Selection of NumLRMB and NumCSLR on different hardware platforms.

Platform # ARMvVS8-A cores NumLRMB NumCSLR
TaiShan 200 96 12 96
Raspberry Pi 4B 4 14 4
ZCU102 4 15 4

Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology

Jingquan Ge, Fengwei Zhang
FlushTime

Security Analysis
[leJele]

O Sccurity Analysis

Attack Results

Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Security Analysis
[e] Tele]

Flush+Reload attack results

2 064 2
® ®
kel o
e} ©
< <
g 2
5 5
5 10 15 5 10 15
Cache Line Index Cache Line Index
(a) Flush+Reload attack on (b) Flush+Reload attack when
original Linux without any flush instructions and generic
defenses. timer are trapped into EL1.

Offset Address

5 10 15
Cache Line Index

(c) Flush+Reload attack when
FlushTime is enabled
(NumCSLR==96). The
resolution of the generic timer is
reduced by 12 bits in real time
(NumLRMB==12).

Figure 5: Flush+Reload attacks on different system setups. It is a multi-process attack that
execute 100 processes. The depth of the color corresponds to the number of cache hits in 1000

AES T-Table encryptions.

Jingquan Ge, Fengwei Zhang

Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Security Analysis
[e]e] 6]

Flush+Flush attack results

g 064 4 g 064

fod 2 = 8

g g g sos

< < 990 < 6

3 3 3104 4

= = =

51564 & o0 51564 M 2
5 10 15 5 10 15 5 10 15

Cache Line Index

Cache Line Index

(a) Flush+Flush attack on (b) Flush+Flush attack when (c) Flush+Flush attack when

original Linux without any flush instructions and generic FlushTime is enabled

timer are trapped into ELL. (NumCSLR==96). The
resolution of the generic timer is
reduced by 12 bits in real time
(NumLRMB==12).

Cache Line Index

defenses.

Figure 6: Flush+Flush attacks on different system setups. It is a multi-process attack that
execute 100 processes. The depth of the color corresponds to the number of cache hits in

1,000 AES T-Table encryptions.

Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology

Jingquan Ge, Fengwei Zhang

FEFFFFFFFEEE
FFFFEF FFEFFFE

FFFFEF FFEFFFE
FFFFFEFFFEEE

(a) Spectre-BTB attack
on original Linux
without any defenses.

FFFFFFFFFFF
FFFFF FFFFF
FFFF FFFF
FFF

FF

FFF

FFFF FFFF
FFFFF FFFFF
FFFFFFFFFFF

(b) Spectre-BTB attack
when flush instructions
and general timer are
trapped into EL1.

hTime ity Analysis
[O000e

PE??PE?????F
F??2?2F?F?F?7?
22P? PUeRRR?

FF L

F?F 72
F27?2727
F??2?F?FF??F
2222 PE?

(c) Spectre-BTB attack
when FlushTime is
enabled
(NumCSLR==96). The
resolution of the generic
timer is reduced by 8
bits in real time
(NumLRMB==8).

valuation

PR
A i o o o o
PP
PR
A i o o o o
PP
PR
A i o o o o
PP

(d) Spectre-BTB attack
when FlushTime is
enabled
(NumCSLR==96). The
resolution of the generic
timer is reduced by 12
bits in real time
(NumLRMB==12).

Figure 7: Spectre-BTB attacks on different system setups. It is a multi-process attack that execute
100 processes. ‘7' represents a character that has not been cracked.

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology

FlushTime

Performance Evaluation
[]

@ Performance Evaluation

Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Performance Evaluation
L o]

@ Performance Evaluation
Performance of instructions and APls

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Performance Evaluation

Flush Instructions, Generic Timer and Time API

Table 2: Average time delay of calling flush instructions, calling API and accessing generic

timer.

Instruction, APl or | Original Linux time | FlushTime enabled
timer delay (cycle) time delay (cycle)
CNTVCT_ELO 12.14 27.73 (127%)
clock_gettime() 103.02 115.29 (19%)

DC CIVAC 38.21 28.15 (-26%)

DC CVAU 69.33 26.98 (-61%)

DC CVAC 69.58 28.11 (-60%)

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology

FlushTime 38 / 45

Performance Evaluation
L o]

@ Performance Evaluation

System Performance (UnixBench)

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Performance Evaluation

UnixBench results

[_JOriginal Linux

L A 3 7777777 IlFlushTime Enabled
| [CIKPTI Enabled
14— ’ -l Spectre-BTB Mitigation

-
N

RS S S S
|
|
|
|
|
|
|
B S e |
i
|
|
|
|
|
|
e RN Antebeiutel St
|
|
|
|
|
|
I

Normalized Overhead

Figure 8: Evaluation results of UnixBench.

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolog;

FlushTime

Performance Evaluation
L 1)

@ Performance Evaluation

User Application Performance (SPEC_CPU 2017)

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technol

FlushTime

Performance Evaluation

SPEC_CPU 2017 results

|:|Or|g|nal L|nux

Il FlushTime Enabled
[IKPTI Enabled

[l Spectre-BTB Mitigation
[Spectre-STL Mitigation

-

o

(&)
T

Normalized Overhead

©
©
a
T
L

i i

& RS 6(\0 \QQ\O((\ Q@: eo%e ge'L « @Q,gg\‘\ ,b«\ @% @ o \ﬂ* R’ ,b«\ o° (\'80 Ney o
X \'b (%) c,

& R & o

0.

©

Figure 9: SPEC2017 benchmark results.

Jingquan Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolog;

FlushTime

@® Conclusion

Jingquan Ge, i Research Institute of Trustworthy Autonomous Systems, Southern University of Science

FlushTime

Conclusion
oeo

Conclusion

® FlushTime does not need to modify the hardware, which is easy to deploy on
existing devices.

® FlushTime not only partially prevents instructions and timers from being
maliciously exploited by flush-based cache-related attacks, but also ensures their
availability in a normal system.

® Security and performance evaluation on the real hardware platform shows that
FlushTime is not only more secure than other software solutions, but also has the
lowest performance overhead.

Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime

Jingquan Ge, i Research Institute of Trustworthy Autonomous Systems, Southern University of Science

FlushTime

	Motivation
	ARMv8-A CPU
	Cache-related attack
	Flush-based cache-related attack
	Hardware and software defense

	Threat Model and Assumptions
	Security Assumptions
	Attacker capabilities

	Our Solution: FlushTime
	Overview of FlushTime
	Design of FlushTime
	Relationship between Flush and Timer
	Implementation of FlushTime

	Security Analysis
	Selection of NumLRMB and NumCSLR
	Attack Results

	Performance Evaluation
	Performance of instructions and APIs
	System Performance (UnixBench)
	User Application Performance (SPEC_CPU 2017)

	Conclusion

