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Why study ARMv8-A CPU?

® ARMv8-A-based devices (smart phones, tablet, vehicle systems and loT ) have
flooded the market.

® ARMvV8-A cloud servers have begun to disrupt the data center market.
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Cache-related attack

® Increasing types of cache-related attacks have been presented by researcher since
1990s.

® With the continuous emergence of Meltdown, Spectre and their variants,
cache-related attacks have become one of the biggest threats to modern
processors and operating systems.

® Flush+Reload and Flush+Flush utilize cache flush instructions to reduce the noise
and improve the resolution, called flush-based cache-related attack.

® Meltdown, Spectre and most of the discovered variants are also based on
Flush+Reload.
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Why study Flush-based cache-related attack?

® Attackers only need to know target virtual addresses, physical address mapping is
not required.

® Although the flush instructions greatly reduce the threshold of cache attacks,
Prohibiting the flush instructions in user space is not feasible.

® |t is an attractive topic to ensure the availability of cache flush instructions in user
space while avoiding the security vulnerabilities posed by them.

Jingquan Ge, Fengwei Zhang
FlushTime

Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology




Motivation
[ le]

@ Motivation

Hardware and software defense

Ge, Fengwei Zhang Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technolo

FlushTime



Motivation

Defenses and their shortcomings

® Modifications to the hardware architecture cannot be deployed on existing devices.

® Software runtime defenses cannot cover all flush-based cache-related attacks and
may bring significant performance loss.

® Browser defense countermeasures disable high resolution time API, which is not
feasible in the operating system.
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Security Assumptions

Attackers can execute her code on the same machine with the victim process.

There is shared memory between the attacker process and the victim process.

Attackers do not have the root privilege and cannot use other attack methods to
tamper with the kernel code or escalate privileges to obtain sensitive system
information.

Attackers do not have the ability to design an effective eviction strategy.
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Attacker capabilities

® The attacker knows the source code and address layout of the victim process or
kernel.

® Attackers can rely on the flush instructions to clean up the cache lines of the
shared pages and leak information.
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Overview of FlushTime

® FlushTime is a framework that can resist all flush-based cache-related attacks
while ensuring the availability of flush instructions and generic timers on
ARMVS-A.

® FlushTime utilizes the instruction/register trap mechanism of ARMv8-A to trap
cache flush instructions and generic timer access into the kernel interrupt handlers.

® |n the kernel space, these two handlers cooperate with each other to handle the

interrupts. When a process calls a cache flush instruction, the time resolution
obtained from the generic timer will be temporarily reduced.
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Architecture of FlushTime
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Figure 1: The architecture of FlushTime on ARMv8-A Linux. LRDCounter represents the low
resolution delay counter, which counts the number of context_switch() in low resolution state.
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Design of FlushTime

Modify the default configuration of Linux to trap flush instructions and generic
timer into the EL1 level (kernel space).

Modify the interrupt handler of the flush instructions.

Modify the context switch of the process.
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Handler Algorithms

Algorithm 2: cntvet_read_handler() in FlushTime

Algorithm 1: user_cache maint_handler() in FlushTime

Input: Virtual address to be flushed: vir_addr;
Output: Low resolution delay counter : LRDCounter;
1 Flush the cache line of vir_addr ;
2 Store NumCSLR into LDRCounter;
3 Return to ELO;

(a) Algorithm of flush instruction handler.

Input: Low resolution delay counter : LRDCounter;
Output: Time read from CNTVCT_ELO : CNTVCTime;
Read CNTVCT_ELO into CNTVCTime ;
if (LRDCounter/=0) then

‘ Reduce the resolution of CNTVCTime by NumLRMB bits;
4 end

-

8

w

else

‘ Keep the high resolution of CNTVCTime;
7 end
Return CNTVCTime to ELO;

o

o

(b) Algorithm of timer access handler

Figure 2: Algorithms of the two handlers
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Relationship between flush instructions and generic timer

L ;

|
prodess 1 [ process | [Processk [ process 1 [ fprocessm(
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i ; |
! Flush instruction |
Low resolution timer
High resolution timer NumCSLR * context_switch()

Figure 3: Relationship between flush instructions and generic timer when FlushTime is enabled.
NumCSLR is the number of context_switch() in low resolution state.
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Implementation of FlushTime

® Modify Linux boot function smp_init().

® Modify the flush handler user_cache _maint_handler().
® Modify process scheduling function context_switch().
[ ]

Modify generic timer handler cntvct_read_handler().
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Relationship between the two parameters and attack success rate

|
o Flush-based Spectre-BTB Attack
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(a) The relationship between the parameter (b) The relationship between the parameter
NumLRMB and attack success rate on NumCSLR and attack success rate on
TaiShan 200 server. Both the two attacks are TaiShan 200 server. Both the two attacks are
multi-process attacks that execute 100 multi-process attacks that execute 100
processes. The red line represents the optimal processes. The red line represents the optimal
value of NumLRMB. value of NumCSLR.

Figure 4: The relationship between the two parameters and attack success rate.
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Further Study on NumLRMB and NumCSLR

Table 1: Selection of NumLRMB and NumCSLR on different hardware platforms.

Platform # ARMvVS8-A cores NumLRMB NumCSLR
TaiShan 200 96 12 96
Raspberry Pi 4B 4 14 4
ZCU102 4 15 4
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Flush+Reload attack results
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(a) Flush+Reload attack on (b) Flush+Reload attack when
original Linux without any flush instructions and generic
defenses. timer are trapped into EL1.
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(c) Flush+Reload attack when
FlushTime is enabled
(NumCSLR==96). The
resolution of the generic timer is
reduced by 12 bits in real time
(NumLRMB==12).

Figure 5: Flush+Reload attacks on different system setups. It is a multi-process attack that
execute 100 processes. The depth of the color corresponds to the number of cache hits in 1000

AES T-Table encryptions.
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Flush+Flush attack results
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(a) Flush+Flush attack on (b) Flush+Flush attack when (c) Flush+Flush attack when

original Linux without any flush instructions and generic FlushTime is enabled

timer are trapped into ELL. (NumCSLR==96). The
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reduced by 12 bits in real time
(NumLRMB==12).
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defenses.

Figure 6: Flush+Flush attacks on different system setups. It is a multi-process attack that
execute 100 processes. The depth of the color corresponds to the number of cache hits in

1,000 AES T-Table encryptions.
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(d) Spectre-BTB attack
when FlushTime is
enabled
(NumCSLR==96). The
resolution of the generic
timer is reduced by 12
bits in real time
(NumLRMB==12).

Figure 7: Spectre-BTB attacks on different system setups. It is a multi-process attack that execute
100 processes. ‘7' represents a character that has not been cracked.
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Flush Instructions, Generic Timer and Time API

Table 2: Average time delay of calling flush instructions, calling API and accessing generic

timer.

Instruction, APl or | Original Linux time | FlushTime enabled
timer delay (cycle) time delay (cycle)
CNTVCT_ELO 12.14 27.73 (127%)
clock_gettime() 103.02 115.29 (19%)

DC CIVAC 38.21 28.15 (-26%)

DC CVAU 69.33 26.98 (-61%)

DC CVAC 69.58 28.11 (-60%)
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UnixBench results
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Figure 8: Evaluation results of UnixBench.
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User Application Performance (SPEC_CPU 2017)
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SPEC_CPU 2017 results
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Figure 9: SPEC2017 benchmark results.
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Conclusion

® FlushTime does not need to modify the hardware, which is easy to deploy on
existing devices.

® FlushTime not only partially prevents instructions and timers from being
maliciously exploited by flush-based cache-related attacks, but also ensures their
availability in a normal system.

® Security and performance evaluation on the real hardware platform shows that
FlushTime is not only more secure than other software solutions, but also has the
lowest performance overhead.
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