
ESem: To Harden Process Synchronization
for Servers

Zhanbo Wang1,2 , Jiaxin Zhan1,3 , Xuhua Ding4 , Fengwei Zhang3,1,* , Ning Hu2

1 Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, China
2 Peng Cheng Laboratory, China

3 Department of Computer Science and Engineering, Southern University of Science and Technology, China

4Singapore Management University, Singapore

Motivation

l For the server, there is no trusted process synchronization mechanism (even TEE and TEE
LibOS do not have it)

l This will lead to a situation where process synchronization is completely dependent on the
legacy implementation provided by the kernel

l However, the legacy process synchronization may have security issues of view consistency
because it is not protected

2

Motivation

l Attacks that break view consistency
Ø The producer and consumer in the enclave have mutually exclusive access to the buffer
Ø An attacker may release the lock before the consumer gets the data
Ø The view seen by the consumer does not match the actual view, which may cause execution flow
errors inside the enclave

3

View Inconsistency!

Producer

Enclave

Consumer

Enclave

Memory Buffer

ü The lock () is a process synchronization lock, not encryption

unlock();

Consumer

read_buffer();

Producer

wait_lock(); lock();

lock();
write_buffer();
unlock();

unlock();

Motivation

l The problem of process synchronization has also been widely studied
Ø e.g., TCLocks (OSDI’23), SynCord (OSDI’22), Trātr (Security'22), CLoF (SOSP ’21), LockDoc
(EuroSys '19), BRAVO (ATC’19), wPerf (OSDI ’18), SyncPerf (EuroSys ’17), SyncProf (ISSTA’16) ...

l In summary
Ø The security of process synchronisation is fragile, important and worth studying

4

ESem -- Attack Model

l An attacker can manipulate synchronization objects to disrupt processes and induce errors
in victim applications

l The secure communication channel between the application and ESem cannot be
intercepted

l Denial-of-service attacks and protection of application code and data are out of scope

5

ESem -- Overview

l How to protect process synchronization?
Ø We propose a mechanism to use Intel SGX to harden process synchronization
Ø We choose semaphore as the prototype because it is semantically rich and frequently used

6

user

glibc

app

value

lock

object
open

close

post

wait

unlink

operators

semaphore

kernel
semaphore

app

ü The application uses the legacy semaphore in the kernel by calling the glibc interface

ESem -- Overview

l In the ESem architecture, includes s-enclave, ESem glue code and ESem Manager. The s-
enclave stores semaphore object and operations. It also contains Authenticator and TCS
Allocator

7

kernel

app

ESem Manager

user

glibc ESem glue code

s-enclave

app

e-semaphore

Authenticator TCS Allocator

unlink

operators

open

close

wait

post

object

value

lock

ESem --

ESem -- Overview

l Main challenge
Ø Securing process synchronization stems from the conflict between intro-process isolation and
inter-process sharing. No existing hardware-assisted isolation technique has the built-in support for
both needs

8

app

app
enclave

app

app
enclave

ü Enclave only serves one process at a time

ESem -- Enclave Management

l To address that main challenge, we propose the enclave roaming mechanism
Ø The ESem manager copies the PDPT page entry for the s-enclave to the PDPT page for the
process. All processes accessing the e-semaphore share the same enclave mapping. When the
process closes its e-semaphore, the ESem manager removes the mapping from its PDPT page entry

9

app

app
s-enclave

ü s-enclave can serve multiple
processes at a time through
enclave-roaming

ESem -- Access Control

l Since the s-enclave is shared across multiple processes, a rogue process may invoke the
enclave to operate semaphores not allocated to it

l ESem relies on the Authenticator inside the s-enclave to check the request. It maintains a
semaphore metadata table to ensure that only authenticated processes can access the e-
semaphore
Ø During e-semaphore creation, if the owner process has an application enclave, it can share the
key securely with the s-enclave. And by modifying the semaphore metadata table, the access rights
of the e-semaphore are granted to the process. Otherwise, it is authenticated only by pid

10

Semaphore PID Key TCS

x 30000 0xFE...23 ...

y 30001 - ...

ESem -- Thread Management

Since context switching is required for external processes to enter the enclave, a mechanism is
needed to manage the correspondence between external processes and internal threads. The
Authenticator also checks the TCS that the process will use

l Thread-Semaphore Binding
Ø Lockless Access

l Thread-Process Binding
Ø Atomic Exchange with Spin Lock
Ø Supports SGX Switchless Mode

11

ESem -- Workflow

l The application calls the ESem Manager in the kernel by calling the interface in glibc
l The ESem Manager is responsible for initializing the s-enclave and mapping the s-enclave

to the process page table so that the s-semphore can be opened
l After the application opens the s-semphore, it can call the P/V operation in the s-enclave

through interfaces in glibc

12

ESem glue code
glibc

app

kernel
ESem Manager

s-enclave①
②

③

app

Implementation

l Platform
Ø Intel i7-9700k CPU
Ø 16 Gigabytes RAM
Ø Linux Ubuntu 22.04
Ø Intel SGX SDK 2.18
Ø GLibC 2.36

l ESem Component Codebase Sizes

13

Module Line of Code

Enclave 1350

Lib-C 452

Kernel Module 1020

Performance Evaluation

l Micro Evaluation
Ø Most operations complete in 15 microseconds

Operation Esem (μs) Legacy (μs) Difference (μs)

Open 17.02 9.87 7.15

Close 12.45 10.73 1.72

Post 7.02 5.3 1.72

Wait 7.39 6.2 1.19

Post - lockless 6.78 0.014 6.77

Wait - lockless 6.23 0.012 6.22

Unlink 10.05 9.03 1.02

14

Performance Evaluation

l Macro Evaluation
Ø PTS-NG Semaphore Benchmark

Metric Legacy Esem Esem - Switchless

PTS – NG (Op/s) 11,488,876 9,533,037 9,125,001

Difference
(Op/s, %)

-
-

-1,955,839
-17.02%

-2,363,875
-20.58%

15

Performance Evaluation

l Macro Evaluation
Ø LMBench Semaphore Benchmark

ü ESem does not result in a substantial slowdown in the entire workflow 16

Performance Evaluation

l Real-World Application Workload
Ø All relative differences are below 3% compared to legacy

Application Legacy Esem Difference

PostgreSQL (tps) 1,088.49 1,112.79 +24.30 (+2.23%)

Redis (rps) 62,847.97 61,097.82 -1,750.15 (-2.79%)

Apache (tpr) 9,208.09 9,427.83 +219.74 (+2.39%)

17

Application of Esem -- File Vault

l Why File Vault?
Ø Confidential file data is protected by SGX
Ø Synchronization of concurrent operations is not protected

18

Application of Esem -- File Vault

l Composition
Ø Service Threads: The File Vault application requires user authentication in the Service Thread. Once
started, the application will establish a TLS connection with the user
Ø File Vault Enclave: Encrypt and decrypt user files. The user needs to pass the sealed key along with
the file to the SGX enclave

19

Application of Esem -- File Vault

l Attacks on Synchronization
Ø File tree race: The attack causes corruption of the file tree structure

20

user (File Vault Threads)

glibc

Thread 0

kernel

Thread 1

value

lock

Sem-Obj

tree.insert tree.insert

request
sem

get
sem

request
sem

get
sem

ignore value

race condition!

Enclave

Application of Esem -- File Vault

l Attacks on Synchronization
Ø Service thread blocking: The attack causes the semaphore that manages service threads to appear
perpetually busy, effectively hogging the system, leading to reduced performance

21

user (File Vault Threads)

glibc

Thread 0

kernel

Thread m

value

lock

Sem-Obj

eenter

request
sem

get
sem

request
sem

get
sem

ignore value

Enclave

Enclave

TCS 0
TCS 1

...
TCS n

Thread 0
Thread 1

Thread m
Thread n

...

ü Since the sem value is invalid, m
external threads accessing n threads
inside the enclave (m>>n) will cause
blocking

blocking!

Application of Esem -- File Vault

l ESem Hardened Version
Ø Ensuring the consistency and reliability of services in the face of synchronization attacks

22

user

Thread

kernel

Enclave

S-enclave

value
Sem-Obj

lock

glibc ESem glue code

ESem Manager

File Vault

Thread

Conclusion

l ESem protects process synchronization from kernel privilege attacks through hardware-
assisted isolation technology
Ø Balanced security and performance
Ø POSIX APIs compliant
Ø Suitable for real-world applications

l Future Work
Ø Exploring authorized synchronization mechanisms, protection of shared resources within
enclaves, and comparison with other TEE-based solutions to further enhance ESem security and
applicability

23

Thanks for listening!
Q & A

zhanjx@mail.sustech.edu.cn

24

mailto:zhanjx@mail.sustech.edu.cn

