Understanding Security Issues in the DAO
Governance Process

Junjie Maf*, Muhui Jiang?, Jinan Jiang?, Xiapu Luo®*, Yufeng Hu¥, Yajin Zhou¥, Qi Wang?*, Fengwei Zhang*
fResearch Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, China
SComputer Science and Engineering, Southern University of Science and Technology, China
!Department of Computing, The Hong Kong Polytechnic University, China
YDepartment of Computer Science and Technology, Zhejiang University, China

Abstract—The Decentralized Autonomous Organization (DAQO)
has emerged as a popular governance solution for decentralized
applications (dApps), enabling them to manage their members
across world. This structure ensures that no single entity can
arbitrarily control the dApp without approval from the majority
of members. However, despite its advantages, DAOs face several
challenges within their governance processes that can compro-
mise their integrity and potentially lead to the loss of dApp assets.

In this paper, we first provided an overview of the DAO
governance process within the blockchain. Next, we identified
issues within 3 key components of the governance process: the
Governance Contract, Documentation, and Proposal. Regarding
the Governance Contract, malicious developers could embed
backdoors or malicious code to manipulate the governance
process. In terms of Documentation, inadequate or unclear
documentation from developers may prevent members from
effectively participating, increasing the risk of undetected gov-
ernance attacks or enabling a small group of members to
dominate the process. Lastly, with Proposals, members could
submit malicious proposals with embedded malicious code in an
attempt to gain control of the DAO. To address these issues,
we developed automated methods to detect such vulnerabilities.
To investigate the prevalence of these issues within the current
DAO ecosystem, we constructed a state-of-the-art dataset that
includes 3,348 DAQOs, 144 documentation, and 65,436 proposals
across 9 different blockchains. Qur analysis reveals that many
DAO developers and members have not given sufficient attention
to these issues. For the Governance Contract, 176 DAOs allow
external entities to control their governance contracts, while one
DAO permits developers to arbitrarily change the contract’s logic.
In terms of Documentation, only 71 DAOs provide adequate
guidance for their members on governance processes. As for
Proposals, over 90% of the examined proposals (32,500) fail
to provide consistent descriptions and code for their members,
highlighting a significant gap in transparency within the DAO
governance process. For a better DAO governance ecosystem,
DAO developers and members can utilize the methods to identify
and address issues within governance process.

Index Terms—Decentralized Governance, Program Analysis,
Smart Contracts, Language Models.

I. INTRODUCTION

ECENTRALIZED Autonomous Organization (DAO) is

a governance method constructed based on blockchain
smart contracts [1]. The DAO ensures that all privileged ac-
tions require majority consensus from its members, effectively
preventing any single member from taking arbitrary actions.

* Xiapu Luo, Qi Wang, and Fengwei Zhang are the corresponding
authors.

Recently, a growing number of decentralized applications
(dApps) have adopted DAO as their governance method. For
example, Uniswap [2], one of the most valuable Decentralized
Exchange (DEX), with a daily trading volume exceeding 500
million dollars [3], employs DAO for its asset management.
Additionally, DAO platforms such as XDAO [4], Aragon [5],
and DAOhaus [6], which help developers to deploy DAO in
minutes, have attracted the interest of thousands of organiza-
tions [7]. In particular, XDAO has facilitated the setup of over
16,000 DAOs across various blockchains [4]. According to
the analysis [8], the total treasury governed by DAOs exceeds
18.8 billion dollars, with over 2.5 million users. This trend
highlights that DAO has become a widely adopted governance
method among blockchain developers.

However, the rapid rise in DAOs has brought with it several
challenges. Many DAO developers and members fail to pay
adequate attention to the issues in the governance process,
leading to an increase in attacks targeting DAOs [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18]. For instance, a
DAO can be attacked through malicious code hidden within
a proposal. A notable example is the Beanstalk attack, which
resulted in a loss of 182 million dollars [18]. The attacker
deceived members into trusting the malicious code in the
proposal was benign. Moreover, DAO governance process
can be manipulated by developers through hidden backdoor
functions controlled by an external entity rather than the
governance contract itself. This allows developers to bypass
the governance process and take control of DAO assets. An
example of this is the VPANDA DAO Rug Pull [19], where
a developer illegally transferred over 1 million locked tokens
from the contract, gaining over 265 thousand dollars.

Previous studies within the field of DAOs have primarily
focused on analyzing DAO activities and issues related to
voting in the governance process [20], [21], [22], [23], [24],
[25], [26], [27], [28], such as centralized voting power. To
the best of our knowledge, no previous work has focused
on the issues affecting the entire DAO governance process.
Our work fills this gap by conducting a comprehensive study
towards the issue within the DAO governance process com-
ponent Governance Contract, Documentation and Proposal
as identified in the section III. The Governance Contract
governs the entire process, so its integrity must be safe-
guarded by developers. If not, developers could manipulate
the outcome by controlling proposals or altering the contract’s

logic. In terms of Documentation, DAOs should provide
clear and comprehensive instructions to guide members on
how to engage in the governance process. A lack of proper
documentation may hinder member participation and create
opportunities for attackers to push through malicious propos-
als. For Proposal, especially those that involve transferring
DAO assets or modifying ownership, the code logic must
be clearly defined and fully explained to DAO members.
Failure to do so could allow attackers to hide malicious code,
resulting in unauthorized control of DAO assets without the
members’ awareness. To investigate the issues within these
components, we address the following 3 research questions,
each corresponding to a aspect of the governance process.
RQ1: Does DAO achieve impartial decentralized governance?
RQ2: Does DAO offer sufficient governance process docu-
mentation for their members?

RQ3: Does Proposal ensure consistency between descriptions
and code?

For RQI1, we verify whether the DAO achieves impar-
tial decentralized governance, ensuring that developers can-
not compromise the governance process. First, we perform
static analysis of the governance contract to confirm that
it correctly implements decentralized governance. Next, we
extract the controller addresses of privileged functions to
determine whether the contract is self-governed or controlled
by developers. Finally, we trace the creation process of the
governance contract to ensure developers cannot arbitrarily
modify the contract’s logic. For RQ2, we investigate whether
the DAO provides sufficient guidance to its members for
participating in the governance process, thereby encouraging
member engagement. We leverage Large Language Models
(LLM) with Chain of Thought (CoT) [29] to evaluate if the
DAO documentation complies with the 6 requirements out-
lined in the DAO Model Law [30]. In RQ3, we assess whether
the proposals submitted by members exhibit consistent and
immutable code behavior that aligns with their descriptions,
ensuring that attackers cannot hide malicious code within a
normal proposal description. First, we trace the proposal code
to verify its immutability. Then, we use a combination of
Natural Language Processing (NLP) and LLM to ensure that
the actions described by the code are accurately reflected in
the proposal descriptions.

The issues we address in this study have not been ex-
plored in prior research. Moreover, our investigation covers
an extensive dataset of over 3,000 DAOs across 5 platforms
and 9 blockchains. Our results show that many DAOs exhibit
issues within their governance processes. For the Governance
Contract, we found that 176 DAOs allow external entities
to control their governance contracts, and we identified 1
DAO where the developer can arbitrarily modify the contract’s
code logic. Regarding the provision of Documentation to
assist members in participating in governance, only 144 out
of 3,348 DAOs provided documentation for their members.
Among these, only 71 DAOs offered guidance specifically for
their governance process. Given that such documentation is
crucial for equipping members with the necessary information
to engage in governance, we found that its absence correlates
with a significant decline in participation. The average number

of proposals decreased from 34 to 9, while the average voting
participation drops from 3,342 to just 33. For Proposal, we
found that only 3,018 out of 35,518 proposals do mention all
their code actions in the proposal, such as which functions
will be invoked and how many tokens will be transferred. To
assess the effectiveness of our approach in detecting real-world
malicious proposals, we tested it against 13 malicious pro-
posals from recent governance attack incidents. Our method
successfully detected all of these attacks.

We hope that our paper can guide developers in deploying
and maintaining their DAOs in a more secure and comprehen-
sive manner, while also raising awareness among members
about potential risks within DAO governance.

Our contributions can be summarized as follows.

Public Dataset. We collected 3,348 actively used DAO
implementations, 144 documentation, and 35,518 proposals
across 9 popular blockchains. Our dataset included famous
DAOs such as Uniswap [2] and Compound [31], as well as
DAOs from platforms like Aragon [5]. The collected data will
be released for further research.

Comprehensive Study. We conducted an in-depth study of
DAO implementations, addressing 3 key research questions
related to each component of DAO governance processes.

Insightful Findings. Our study revealed significant security
issues in current DAO implementations. We found that around
5% of DAOs are controlled by unknown entities, over 94%
lack any documentation, and more than 92% of proposals fail
to explain the actions their code will execute.

II. BACKGROUND
A. Decentralized Autonomous Organization

Decentralized Autonomous Organization (DAO) is first in-
troduced by Ethereum white paper [1]. DAO utilizes smart
contracts to enable collective control of the organization by
all its members. Currently, there are two types of DAO
governance [32], [33]: on-chain governance and off-chain
governance. On-chain governance requires all the governance
processes to be conducted on the blockchain by smart con-
tracts, including proposing proposals, voting, and executing.
On the contrary, in off-chain governance, the decision-making
process (e.g., proposing proposals or voting) is performed
outside the blockchain. The execution process is carried out
manually by the DAO developer, granting it complete control
over the DAO contracts. We exclude off-chain governance
from our scope as it contravenes the requirements in the DAO
definition [1] and the DAO Model Law [30], which mandate
governance process to be executed on the blockchain.

B. DAO Platform

The DAO platform is designed to provide DAO developers
with the tools to easily create their own DAOs. Developing a
DAO requires advanced programming and blockchain knowl-
edge. Current DAO platforms such as XDAO [4], Aragon [5],
DAOhaus [6], and DAOstack [6] offer comprehensive assis-
tance in DAO creation. This support ranges from deploying
contracts to building websites. With these platforms, develop-
ers can create their own DAO in minutes.

Q) ® Monitor @ Deploy (1) @ Create
m governance Contract Documentation
Guardian Developeﬁ
@ Execute YA, -
proposal code " - AN
Proposal — | Documentation
@ F ® Learn the
_— overnance process
Governance u»
Contract @ Submit proposal
Blockchain ® Vote proposal

Member

Fig. 1: The DAO Governance Process.

C. DAO Model Law

The DAO Model Law [30], a type of Model Law [34], aims
to bridge the gap between DAOs and traditional regulatory
frameworks, which have yet to adapt to the new organizational
structures enabled by blockchain. The DAO Model Law stipu-
lates rules applicable to both on-chain smart contracts and off-
chain documentation. Once these rules are adhered to, DAOs
and their members can achieve legal certainty.

III. DAO GOVERNANCE PROCESS

We provide a comprehensive overview of the DAO gover-
nance process, as shown in Figure 1.

Participants. The participants in the DAO governance
process fall into one of three roles: developer, member, and
guardian. The first role, developer, is involved in the devel-
opment of the DAO’s smart contracts and interface. He is
responsible for @ deploying the governance contracts to the
blockchain network, as well as @ creating the documentation
for the DAO. The second role, member, is a blockchain
user who learns the governance process by @ reading the
documentation. He can participate in DAO governance by @
submitting or ® voting for a proposal via the DAO gover-
nance contract [31]. The last role is the guardian, a specific
blockchain user tasked with ® monitoring the DAO gover-
nance process. If the guardian detects malicious proposals
targeting DAO governance, he has the authority within the
governance contract to cancel such proposals.

Governance contract. The governance contract controls
the governance process, storing all the proposals and votes
from members. It provides functions that allow members to
submit new proposals, vote on these proposals, and execute
the code within the proposals. The governance contract should
be configured as the only way to change the DAO contracts.

Proposal. Proposal refers to a formal submission to the gov-
ernance contract made by a member to suggest changes to the
DAO (i.e., funding request, contract parameters configuration).
Typically, as shown in Figure 14, the proposal encompasses
two elements: description and code. The description, penned
in natural language, outlines the intent of the proposal. It
provides members with information regarding the proposal
code and its reason. The code contains the code the governance
contract will execute if the proposal passes. It refers to the
technical implementation of the proposal.

modifier onlyGovernance() {
require(msg.sender == address(this), "Governor:onlyGovernance");

—>

}

/// @notice Sets the voting delay

/// @param newVotingDelay New voting delay

function setVotingDelay(uint256 newVotingDelay) public onlyGovernance {
uint256 oldVotingDelay = _votingDelay;
_votingDelay = newVotingDelay;
emit VotingDelayUpdated(oldVotingDelay, newVotingDelay);

}
Fig. 2: A simplified privilege function restriction requires the
function caller to be the governance contract.

Governance process. Managing and implementing changes
within a DAO relies on the governance process. This is
achieved by submitting proposals to the governance contract
and conducting votes on these proposals. If a proposal passes
the voting process, the code within it is executed by the
governance contract to implement the changes towards the
DAO. This ensures that the majority of the DAO members
approve all the changes. The governance process begins at a
member @ submitting a proposal to the governance contract.
Then, a member can ® cast a vote for the newly submitted
proposal. A proposal is passed when it has received sufficient
voting power in support from members. If the guardian does
not identify the proposal as a malicious one ®, the code within
the proposal will be executed by the governance contract @.

Documentation. Considering the complexity of the gov-
ernance process, the documentation should provide complete
guidance on the governance process. This encompasses de-
livering detailed information on becoming a DAO member,
providing step-by-step guides to participate in the governance
process, and outlining the existence of guardian.

IV. APPROACH
A. Research Questions

We examine the issues within each component of the
governance process - Governance Contract, Documentation,
and Proposal - with the following research questions.

The Governance Contract controls the entire governance
process. According to the definition [1], it is essential for
achieving impartial and immutable in decentralized gover-
nance, preventing developers from arbitrarily manipulating the
results. As shown in Figure 2, the setV otingDelay function,
which is designed to adjust the voting duration, includes a
modifier named onlyGovernance. This modifier ensures that
the function can only be invoked when the caller’s address
(msg.sender) matches the address of the governance contract
itself. This restriction indicates that the function operates under
the authority of the governance contract. However, if such
functions are controlled by developers, they could potentially
manipulate parameters such as the voting duration and the
required voting power for proposals, thereby influencing the
governance process results.

Thus, we propose RQ1 to examine whether the Governance
Contract achieve impartial decentralized governance.

RQ1: Does DAO achieve impartial decentralized gover-
nance?

As for the Documentation, each DAO should provide de-
tailed instructions for its members on how to participate in the
governance process, with an emphasis on disclosing its critical
aspects. The absence of proper governance documentation can
discourage members from participating, as they would need
to rely on reading the governance source code to understand
the process. This scenario can lead to governance outcomes
being controlled by only a small group of members. For
instance, in the Synthetify DAO governance attack on October
17, 2023 [35], an attacker submitted a malicious proposal
aimed at seizing control of the DAQO’s assets. Due to the lack
of governance documentation, none of the members actively
participated in the process, and as a result, no one vetoed the
malicious proposal during the 7-day voting period, leading to
a loss of 230 thousand dollars.

In RQ2, we assess whether DAOs provide sufficient docu-
mentation to guide members in participating in the governance.

RQ2: Does DAO offer sufficient governance process docu-
mentation for their members?

As for the Proposal, attackers can submit malicious pro-
posals to gain control of the DAO or misappropriate its assets
by embedding malicious code within the proposal. They may
deceive members by providing misleading descriptions that
make the code appear legitimate.

In RQ3, we investigate the consistency between proposal
descriptions and the underlying code to prevent malicious
members from submitting deceptive proposals that disguise
harmful actions as legitimate ones.

RQ3: Does Proposal ensure consistency between descrip-
tions and code?

B. Data Collection

In this section, we aim to collect and construct a com-
prehensive DAO dataset for our analysis, which includes the
DAO name, governance contract, website, documentation, and
proposals related to the DAO governance process. However,
gathering this data presents several challenges.

First, there is no existing comprehensive dataset that encom-
passes all relevant DAO information. Second, current DAO
data platforms fail to provide documentation and include
only a limited number of DAO websites. Third, not all DAO
platforms offer APIs for retrieving proposals.

To address these challenges, we outline our data collection
methods for each type of data as follows:

DAO Name and Governance Contract. To gather as com-
prehensive a list of DAOs as possible, we collect DAO names
and corresponding governance contract addresses from plat-
forms mentioned in previous studies [36], such as Aragon [5],
DAOhaus [6], and DAOstack [37]. Additionally, we include
DAOs from two currently popular platforms, XDAO [4] and
Tally [38]. To account for self-developed DAOs that do not
belong to these platforms, we also collect DAO information
from the DAO analytics website DeepDAO [8].

Using the APIs provided by these platforms, we collect
DAO names and governance contract addresses. Since the data
from DeepDAO may include DAOs from other platforms, we
remove duplicates, treating two DAOs with identical contract
addresses as the same entity.

TABLE I: Types of DAOs, along with their corresponding
quantity, website, documentation, and proposal in the database.

DAO Type DAO (original) ~ DAO (filtered) || Website ~Documentation || Proposal
XDAO 16,018 2,357 105 52 29,586
Aragon 2,939 630 51 24 21,023
Tally 1,256 266 69 55 8,999
DAOhaus 278 62 8 5 1,827
DAOstack 41 30 8 5 2,419
Self-developed 3 3 3 3 1,582
Total 20,535 3,348 || 244 144 || 65436

Our dataset focuses on DAOs operating on EVM-compatible
chains with a Total Value Locked (TVL) exceeding 50 mil-
lion dollars. These chains include Ethereum [39], BSC [40],
Polygon [41], Fantom [42], Gnosis [43], Avalanche [44],
Arbitrum [45], Cronos [46], and Optimism [47]. We collected
data from these sources until September 1, 2024. The results
are shown in Table I. In total, we gathered data on 30,535
DAOs. To remove unused or experimental DAOs that might
introduce bias into the results, we filtered the dataset by
selecting those DAOs with at least four proposals and eight
voting records from at least two different members. This
process resulted in a final dataset of 3,348 actively used DAO:s.

To ensure the completeness of our dataset, we cross-checked
it with the top 20 DAOs listed on CoinMarketCap [3]. The
results confirm that all top 20 DAOs, including Uniswap [2]
and Compound [31] from Tally, as well as Curve [48] and
MakerDAO [49] from DeepDAO, are included in our dataset.

Documentation. To collect the documentation, we first
gathered DAO websites using platform APIs and data from
DeepDAO. For DAOs without a listed website, we queried
their public name tag [50] from blockchain scanners to deter-
mine if the governance contract was linked to a DAO website.
We then used Selenium [51] to crawl through the DAO
websites to retrieve documentation. Specifically, we focused
on links containing keywords such as “whitepaper” or “doc.”
If no such specific links were found, we archived the entire
website for further analysis. As shown in Table I, we found
that only a small proportion of DAOs, specifically 244 out of
3,348, provide a website. However, we discovered that 100
of these websites were either offline or had expired domain
names, leaving only 144 operational DAO websites.

We hypothesize that this may be due to the lack of website
maintenance, with only popular DAOs able to create and
sustain their websites. To validate this, we examined DAQOs
with a Total Value Locked (TVL) exceeding 20 million dollars,
based on data from CoinMarketCap [3]. We found that all 11
DAO:s in this category still maintain their websites.

Next, we analyzed whether the low rate of online websites
could be due to DAOs being out of service. We defined
a DAO as out-of-service if it had not submitted any new
proposals within a year. Our findings revealed that 2,477 out
of 3,348 DAOs are still active, while 871 are no longer active.
Interestingly, 54 out of the 871 inactive DAOs still maintain
their websites, whereas only 90 out of the 2,477 active DAOs
have maintained their websites.

Proposal. To retrieve the proposals, for platforms such
as Aragon, DAOhaus, and DAOstack that provide APIs, we
utilized these APIs to download all the proposals associated
with each DAO. For other DAOs that do not provide an
API, we extracted proposal creation event logs [52] from

All assigned permissions Entity
ACTION onapp ASSIGNED TO ENTITY

MANAGED BY

Manage apps Kernel
Create permissions ACL

Add executors EVM Script Registry

Enable and disable executors EVM Script Registry

Fig. 3: The DAO from Aragon, despite its claims of being
governed by DAO, does not provide functionality for its
members to propose or vote on proposals.

the governance contract addresses and retrieved the proposal
information directly from these logs.

V. DOES DAO ACHIEVE IMPARTIAL DECENTRALIZED
GOVERNANCE?(RQ1)

In this section, we examine whether existing governance
contracts implement impartiality in decentralized governance.
Specifically, we assess 3 key aspects of the governance con-
tract: correctness, self-governance, and immutability. First, for
correctness, we evaluate whether the governance contract is
capable of facilitating a decentralized governance process. A
failure in this capability would violate the core principles of a
DAO. Second, we assess self-governance to ensure that devel-
opers cannot compromise governance outcomes by invoking
privileged functions, which would undermine decentralized
control. Finally, for immutability, we investigate whether the
governance contract’s code can be altered by developers, as
this could allow manipulation of the governance process.

A. Correctness of Governance Contract

As stipulated by the DAO definition [1], [30], a DAO’s gov-
ernance must be decentralized. This requires the governance
contract to effectively facilitate decentralized governance. If
the governance contract lacks the ability to ensure this, it
would violate the core principles of a DAO. As illustrated
in Figure 3, the DAO 0x022f..528a from Aragon claims to
be a DAO. However, it does not include the necessary voting
functionality, preventing members from proposing or voting
on proposals. Consequently, all DAO assets and privileges are
controlled solely by the DAO developers, undermining the
principles of decentralization.

Approach. To evaluate whether a DAO has correctly im-
plemented decentralized governance within its Governance
Contract, we employ different methods depending on the type
of DAO. For DAOs from platforms XDAO, Aragon, DAOhaus,
and DAOstack, it is mandatory for them to use the template
governance contracts provided by their platforms [21]. We
first conduct a manual analysis to verify whether the template
governance contracts from these platforms correctly imple-
ment decentralized governance. Next, we confirm whether
each DAO has adopted the provided template governance
contract. To verify whether a DAO’s governance contract
matches the template, we trace the creator of the governance
contract and compare it to the deployer address listed in the
platform’s deployment guide. For governance contracts with
different creator addresses, we check whether the bytecode of

the DAO’s governance contract matches the template contract.
If either of these checks passes, we determine that the DAO
has correctly implemented decentralized governance.

For DAOs from Tally, the developers are allowed to add
new functions based on the template contract provided by
OpenZeppelin [53] or Compound [31]. We can not directly
compare the bytecode of these contracts to ascertain if it is
the same as the template contract. Thus, we check whether the
governance contract includes the three governance functions
from the template contract (i.e., Propose, Vote, and Execute) as
required by the DAO Model Law [30] as well as the template
contract from OpenZeppelin and Compound. (1)Propose. A
member can submit a proposal by invoking this function.
(2)Vote. For a proposal recorded in the contract, members have
the ability to cast their votes using this function. (3)Execute.
The function can execute the code of the proposal. If a DAO’s
governance contract includes all 3 required functions, we
conclude that it adheres to the template contract. We use EVM
CFG BUILDER [54] to extract the bytecode of each function
from the governance contract. We then compute the similarity
of bytecode between the governance contract’s functions and
the template functions by calculating hypervectors of n-grams
(n=5) of opcodes and comparing them using the Jaccard
similarity [55]. If the similarity score exceeds 0.8 [56], we
consider the functions to be equivalent. To account for dis-
crepancies caused by different versions of Solidity compiler,
we recompile the contracts using each major Solidity version.
If the target function matches any version of the template
contract function, we conclude that the DAO’s governance
contract includes the required function.

For other DAOs, if the governance contract is open-source,
supported by documentation, and aligns with decentralized
governance principles, we infer that the DAO has achieved
decentralized governance. Otherwise, we check whether the
governance contract is similar to the contract provided by the
platform or includes functions similar to those in the template
contract, using the same approach outlined above.

Result. The results, as shown in Table 11, indicate that all the
analyzed DAOs implement decentralized governance. How-
ever, during the evaluation of our method (Appendix A), we
detected that some DAOs on certain platforms do not enforce
decentralized governance in their governance contracts. This
is due to platforms giving developers the discretion to either
include or exclude decentralized governance during DAO cre-
ation. To uphold the principles of decentralization, platforms
may want to consider making decentralized governance a
mandatory feature for developers.

B. Self-governance of Governance Contract

All privileged functions within the governance contract
should be controlled by the governance contract itself to pre-
vent any potential violations from developers. The privileged
function is defined as a function that can be executed only
by a privileged address [57], [58]. However, if the governance
contract does not govern certain DAO functions, this could
lead to security vulnerabilities. In the case of the governance
contract 0x41E®6......7a42 from the DAO “mini dao,” shown

TABLE II: Numbers of DAOs that achieve decentralized
governance (DG@), along with those where privileged functions
are controlled by the governance contract or other entities.

DAO Type With DG Without DG || Governance Other
XDAO 2,357 0 2,286 71
Aragon 630 0 612 18
Tally 266 0 179 87
DAOhaus 62 0 62 0
DAOstack 30 0 30 0
Self-developed 3 0 3 0
Total 3,348 0] 3,172 176

function _setVotingPeriod(uint256 newVotingPeriod) public nonPayable {
require(msg.sender == _admin, Error('GovernorBravo::_setVotingPeriod: admin only'));
_votingPeriod = newVotingPeriod;

}
function _setProposalThreshold(uint256 newProposalThreshold) public nonPayable {

require(msg.sender == _admin, Error('GovernorBravo::_setProposalThreshold: admin only'));
_proposalThreshold = newProposalThreshold;

}
Fig. 4: The decompiled governance contract from mini dao
shows that the developer controls privileged functions (setVot-
ingPeriod and setProposalThreshold), enabling him to control
proposal voting duration and required voting power.

in Figure 4, these functions are controlled by an admin, an
Externally Owned Account (EQA) choosed by the developer,
rather than by the governance contract itself. As a result,
the developer could manipulate the process by adjusting the
voting delay to ensure only they can vote, or by setting an
unreasonably high proposal threshold to cancel any unwanted
proposals.

Approach. Thus, we examine whether there are privileged
functions within the governance contract that are controlled
by external entities instead of the governance contract itself.

For DAOs from platforms XDAO and Aragon, these DAOs
use a standardized contract for both governance logic and
access control. Additionally, these platforms provide official
APIs [4][5] to query the governor of the privileged functions.
By using these APIs, we can determine whether the gover-
nance contract controls all privileged functions.

For other DAOs, inspired by previous studies [57][58],
we apply static analysis of the governance contract bytecode
to identify privileged functions and extract the privileged
addresses associated with these functions. Specifically, to
identify privileged functions, we analyze whether a function
checks the caller’s address, obtained via the CALLER op-
code, against a specific address from contract storage using
the EQ opcode. This comparison is used to determine the
Jump target. We then extract the address and compare it with
the governance contract address to ascertain if they match.

Result. As demonstrated in Table II, the majority of DAOs,
particularly those on platforms DAOhaus and DAOstack,
strictly follow the requirement that all functions within the
governance contract should be governed by the governance
contract itself. However, 176 governance contracts retain cer-
tain privileged functions that are not governed by themselves.
As indicated in Section VI, most DAOs fail to explain the
existence of guardians. Thus, it is hard for members to
classify whether these functions are potentially backdoors or
designated for guardians to protect the governance process.

function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal {

_functionDelegateCall (newImplementation, data);
}
function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) {
require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract");
(bool success, bytes memory returndata) = target.delegatecall(data);
return AddressUpgradeable.verifyCallResult(success, returndata, “Address: low-level delegate
call failed");
}

Fig. 5: The governance contract of DAO based on OpenZep-
pelin, created using the CREATE? chain. The contract allows
developers to indirectly destroy it by executing a delegate call
to another contract that contains the SELFDESTRUCT.

C. Immutability of Governance Contract

After the Constantinople update [59], the EVM introduced
a new opcode, CREATFE?2, which allows a smart contract
to be deployed at a predetermined address [60]. This can be
exploited as an attack vector, as it enables contract developers
to modify the contract code after deployment while keeping
the contract’s address unchanged [13], [61], as demonstrated in
Appendix B. Unlike traditional proxy contracts [62], where a
developer must first deploy an intermediary contract that stores
the governance contract’s address if they wish to make the
contract upgradeable, they can later deploy a new governance
contract and update the proxy contract’s address through a
transaction. As a result, any changes or upgrades to the gov-
ernance contract can be tracked through the proxy contract’s
transaction history. In this case, while the proxy contract’s ad-
dress remains the same, the actual governance contract address
changes with each update. However, with the CREAT E?2
method, as discussed in Appendix B, developers can secretly
re-deploy the governance contract by first destroying the
contract and then redeploying it at the same address. This
allows the governance contract’s address to remain unchanged,
making it difficult for regular blockchain users to detect that
the contract code has been altered or upgraded unless they
thoroughly trace all related transactions. In contrast to the
proxy contract approach, CREATFE2 maintains the same
address despite any changes to its logic. As illustrated in
Figure 5, the governance contract of DAO Oxfbac...41b6, built
on OpenZeppelin and deployed via the CREATE?2 chain, con-
tains a function named _functionDelegateCall. This function
allows developers to delegate calls to external contracts. By
exploiting this functionality, developers can indirectly destroy
the governance contract to invoke a SELFDESTRUCT opcode
hidden within an another contract.

Approach. We first define the Contract Creation Chain
(CCC) of a governance contract as follows: Given a gover-
nance contract address (G, we trace its contract deployment
transaction. If it is deployed by a contract Cj, we add it to the
CCC. We then trace the creator of Cj, designated as C, and
continue this process until we find a contract that is created by
an EOA address E. The CCC(G) =< G,Cy,C4, JE >
shows the governance contract G is created from a chain of
contracts that extend from Cj to E.

To determine whether a given governance contract ad-
dress GG is at risk from CREATE?2,, we first construct its
Contract Creation Chain (CCC). For each contract C; in
CCC(G), we check whether the contract can self-destruct

using the SELFDESTRUCT opcode to erase its own
code. However, a potential attacker could conceal the opcode
within a different contract and indirectly execute it using the
DELEGATECALL to destroy the original contract. Hence,
if a contract contains the opcode SELFDESTRUCT or
DELEGATECALL, we infer that it can destruct itself.
Subsequently, in order to check whether contract C; is created
by CREATE?2, we trace the opcodes used during the contract
deployment transaction. If the CREAT E2 opcode is used
to create C;, we deem that C; is created by CREATE2.
We adopt Tenderly API [63] to access the executed opcodes
from the deployment transaction of contract C;. Finally, if we
determine that contract C; was created by CREATFE?2 and
that all preceding contracts in the chain can self-destruct, we
conclude that contract C; is under the threat of CREATE2.

Result. We identified one DAO from Tally, associ-
ated with the governance contract Oz fba...b6, which was
created using the CREATE2 opcode and utilizes the
DELEGATECALL opcode to interface with external con-
tracts. Notably, contracts deployed via CREATFE2 can be
destroyed by developers and redeployed at the same address.

After analyzing the governance contract, we find that the
vulnerability might have been introduced accidentally by the
developer. The governance contract includes an internal func-
tion, functionDelegateCall, which allows external contracts
to be called with a DELEGATECALL. Thus, a passed pro-
posal containing the SELFDESTRUCT opcode can lead to the
contract’s destruction. This would then allow the developer
to redeploy the governance contract using CREATFE?2 and
CREATE. While this issue could be unintentional, we cannot
ignore the possibility that a malicious DAO developer could
exploit it to execute an attack.

(\

Answer to RQ1: Among the 3,348 DAOs analyzed, we
found that 176 could potentially be manipulated by devel-
opers, and one DAQO’s governance contract code logic can
be directly altered by its developer. This indicates that not
all currently active DAOs can be trusted to achieve impartial
decentralized governance.

VI. DOES DAO OFFER SUFFICIENT GOVERNANCE PROCESS
DOCUMENTATION FOR THEIR MEMBERS?(RQ2)

The documentation is expected to provide a comprehensive
overview of the DAO, detailing the governance process and
how members can interact with it. Given that the DAO Model
Law [34], as referenced in Section II-C, is the only harmonized
regulatory framework prescribing specific rules for DAO doc-
umentation and its participants [64], we thoroughly reviewed
the DAO Model Law and extracted all relevant requirements
concerning DAO documentation, which we summarized into
six key rules. 1) Member Participation. The documentation
should provide guidelines on how blockchain users can be-
come DAO members and participate in governance, as well as
the participation rights in the governance process. 2) Member
Exit. Apart from participating in DAO, the documentation
should also describe the steps a member needs to follow to
exit the DAO, whether in a voluntary or involuntary way. 3)

Cast Vote

Cast a vote on a proposal. The account’s voting weight is determined by the number of votes the account had
delegated to it at the time the proposal state became active.

Governor Bravo

function

proposalld: ID of a proposal in which to cast a vote.
support: An integer of O for against, 1 for in-favor, and 2 for abstain
ReTURN: No return, reverts on error.

Fig. 6: The Compound governance documentation provides
DAO members with guidance on how to vote for proposals.

Voting Power. The documentation should clearly explain how
voting power is calculated and distributed among members,
as voting power determines the weight of a member’s vote.
Failing to explain voting power could discourage member
participation in voting or, conversely, enable a member to ac-
cumulate excessive voting power, potentially allowing him to
arbitrarily control the result of voting. 4) Minority Protection.
The documentation should explicitly state if it includes any
provisions for protecting the minority rights of its members.
This is crucial because minority members may need to raise
disputes against specific decisions, particularly in situations
where a single member controls the majority of voting power.
5) Governance Process Guide. A detailed guide to the gover-
nance process is necessary for members. For instance, the step-
by-step instructions for submitting proposals and casting votes.
6) Appointment of Guardian. The appointment of a guardian
is crucial to alleviating security concerns among members.
Given the significant privileges the guardian holds, such as
controlling the privilege functions in the governance contract,
their role should be disclosed in the documentation.

Considering most of the members are not able to reliably
and accurately extract information from the on-chain DAO
contract code, it’s vital that the DAO presents this information
in the transparent, publicly accessible document. For example,
as illustrated in Figure 6, the Compound DAO offers compre-
hensive documentation, guiding members on how to engage
in governance effectively. The absence of such transparency
may erode members’ trust, thereby discouraging their active
participation in DAO governance.

Approach. However, simply adopting basic text searching
to check rule satisfaction might introduce false positives, as
some documentation may only include keywords as headings
without actual content. For example, a DAO from Aragon only
mentions, “Governance Proposal This is the last step of the
Governance process and is the only one that is binding.” In
such instances, a basic text search for "Governance process”
could result in a false positive. To address this issue, we
employ ChatGPT [65] as a question-answering system to de-
termine whether the six rules are truly present in the DAO doc-
umentation. Based on recent studies [66][67][68][69], Chat-
GPT outperforms existing Large Language Models (LLMs) in
question-answering tasks. Additionally, it demonstrates supe-
rior robustness in question comprehension when compared to
state-of-the-art question-answering systems.

Querying a Large Language Model (LLM) with a single
complex question can lead to incorrect responses [70]. A

Existence of Governance have Appointment of
—> :)
governance Guardian Guardian
A7
RUECKITICSCorely) 5 Exit DAO Member Exit
member p,
Can member Member
participate Participation,
> Protect minority Minori.ty
Protection | /
\ 4
Can member vote Governance
X How to vote .
in governance Process Guidg /

Voting power
calculation

'/

Fig. 7: The abbreviated question chain to query whether
the 6 rules are mentioned in the documentation. Each arrow
represents a Yes response from ChatGPT.

TABLE III: Evaluation of checking whether the rule is men-
tioned in the documentation.

Rule Name ChatGPT [65] i Claude [71]

Recall ~ Precision Fl-score H Recall ~ Precision Fl-score
Member Participation 0.69 0.95 0.80 0.74 0.95 0.83
Member Exit 0.00 0.00 0.00 0.00 0.00 0.00
Voting Power 0.81 0.87 0.84 0.78 0.48 0.59
Minority Protection 1.00 1.00 1.00 1.00 0.50 0.66
Governance Process Guide 0.68 0.90 0.77 0.92 0.80 0.86
Appointment of Guardian 0.89 1.00 0.94 0.89 0.73 0.80

related study [29] suggests that the Chain of Thought (CoT)
reasoning method improves LLM comprehension of complex
questions. Therefore, we adopt prompt optimization by break-
ing down the documentation rules into a series of intermediate
questions. As shown in Figure 8, to check Rule 1 (i.e., Member
Participation), we ask three questions: Does the DAO support
governance?, Who can become a member of the DAO?, and
Can members participate in governance?. If all three questions
are confirmed in the documentation, we conclude that the rule
is satisfied. For all six rules, we address them with a series
of detailed questions derived from the DAO Model Law and
merge similar queries to form a question chain, as depicted in
Figure 7. We utilize the ChatGPT model gpt-3.5-turbo-16k-
0613 for classification. The prompt for each query is shown in
the first box of Figure 8. To cross-verify the results, we use the
following prompt to recheck the result: ”’Your task is to check if
the sentence content is mentioned in the document. Here is the
sentence: [REASON]. Your answer format should be: Result:
Yes/No. The document is provided below: [DOCUMENT].”
If the two results are inconsistent, we rerun both questions.
If the inconsistency persists, we set the final result as ”No.”
If the document exceeds the token limit, we partition it into
segments of 12,000 tokens each, with an overlap of 2,000
tokens between segments. The detailed question chain for
checking each rule is provided in Appendix C.

Result. To evaluate the effectiveness of ChatGPT, we
randomly selected 100 documentation samples and manually
analyzed whether each satisfied the specified rules. The results
are presented in Table III. The findings demonstrate that Chat-
GPT, when used with the Chain of Thought (CoT) reasoning
method, performs well in determining whether a certain rule
is mentioned in the documentation. In addition to ChatGPT,

(You are asked to check whether the question content is mentioned in the document.)
You should thoroughly review the document in detail. The question content begins
with 'Question:'. Your answer format should be 'Result: Yes/No. Reason: a concise
explanation in one sentence'. Please avoid repeating 'The document mentions that'

\ in your answer. Here is the document: {DOCUMENT}.

Does the document mention whether the DAO supports governance or adopts a ‘
. corresponding governance system?

Result: Yes. Reason: Lil Nouns DAO is the main governing body of the Lil Nouns
ecosystem and that it utilizes Nouns DAQO's fork of Compound Governance.
\ Question: Does the document specify who can become a member of the DAO? \

Result: Yes.
Reason: Each Lil Noun is an irrevocable member of Lil Nouns DAO.

[Question: Do members have the ability to participate in governance or possess the ‘
| corresponding governance rights?

Result: Yes.

Reason: Each Lil Noun is an irrevocable member of Lil Nouns DAO and entitled to

one vote in all governance matters.
Fig. 8: An example of querying ChatGPT with a chain of ques-
tions to check the Rulel Member Participation is mentioned.
We remove the cross-verify query for clarity.
TABLE IV: Number of Documentation Satisfying Each Rule

DAO Type Rulel Rule2 Rule3 Rule4 Rule5 Rule6
XDAO 10 1 12 0 7 1
Aragon 9 2 9 0 14 4
Tally 21 2 17 0 17 6
DAOhaus 1 0 0 1 1 0
DAOstack 4 0 3 0 2 0
Self-developed 3 0 3 0 3 2
Total 48 5 44 1 44 13

we also evaluated another LLM, Claude [71], for comparison.
The results show that Claude can achieve recall rates similar
to or even higher than ChatGPT for these queries, suggesting
that both LLMs provide sufficiently accurate results. How-
ever, Claude produced more false positives than ChatGPT.
This higher false positive rate may be due to differences in
training data or the possibility that Claude requires a different
prompt structure compared to ChatGPT. As a result, we chose
ChatGPT to measure the integrity of DAO documentation.

The results of each DAO’s documentation and how they
align with the rules set by the DAO Model Law are illustrated
in Table IV. Our findings reveal that none of the DAO
documentation fully complies with all six rules. We found
that only five DAOs mentioned Rule 2, Member Exit, in
their documentation. Further analysis of the DAO Model Law
suggests that this rule functions more as a compliance standard
rather than a practical guideline for DAOs. In practice, the
removal of all tokens belonging to a member is typically
considered the default method for member exit from the DAO.
As for Rule 4, Minority Protection, only one DAO, which
belongs to DAOhaus, mentioned it in its documentation. Upon
further analysis of the DAOhaus [6] platform, we found that it
integrates the rage quit procedure into its governance model,
ensuring protection for members with less voting power.

To evaluate the concept that well-documented DAOs en-
courage greater member participation in the governance pro-
cess, we compare the number of documentation provided by
DAOs with their corresponding proposal and voting statistics,
as shown in Figure 9 and Figure 10. The results indicate
that DAOs with better documentation see significantly higher
engagement. Specifically, the average number of proposals
drops from 34 to 9, and the average number of voting

400

w
8
<]

Proposal Number
o
15
g

S
8

-bde

o = =

; —
=

==

None 0 1 2 3 a 5 6
Number of Rules Mentioned in DAO Documentation

Fig. 9: The number distribution of DAO proposal numbers
based on the number of rules satisfied by their documentation

800
600

400

L

None 4 1 2 3 4 5
Number of Rules Mentioned in DAO Documentation

Veoting Number

6

Fig. 10: The number distribution of DAO voting numbers
based on the number of rules satisfied by their documentation.

participants declines from 3,342 to just 33 in DAOs without
documentation.

Answer to RQ2: Although only 71 out of 3,348 DAOs
provide documentation for their members, and none offer
complete documentation, more comprehensive documenta-
tion significantly helps members actively participate in the
DAO governance process.

VII. DOES PROPOSAL ENSURE CONSISTENCY BETWEEN
DESCRIPTIONS AND CODE?(RQ3)

Proposal has become a primary target for attackers because
the proposal’s creator can control its actions. This allows
attackers to embed malicious code within proposals, aiming to
either gain control over the DAO or transfer its assets. In recent
years, numerous governance attacks on DAOs have resulted
in the loss of millions of dollars [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18]. To investigate the security issues
in proposals, we first verify the immutability of the proposal
code by ensuring that the farget address in the proposal
is open-source and was not created using the CREATE?2
opcode. Next, we check the consistency between the proposal
description and the code by verifying that all actions specified
in the code are clearly mentioned in the proposal description.

A. Immutability of Proposal Code

To assess the immutability of the proposal code, we analyze
the target address within the proposal. The target address
refers to the contract to be called in the proposal code. It
should be open-source so that members can examine the code

CREATE2 CREATE
0x7dc8...353d 0xc5083...752d
1. Deploy with creation) 2. Deploy with
code A \ A normal code A
Oxaf54. bach |---3:SelfDestuctalithe & i
contracts H H
4. Deploy with same v . 5. Deploy with v
code A

CREATE2

malicious code
0x7dc8...353d 0xc5083...752d
\ CREATE

Fig. 11: The example of Tornado cash governance attack. The
contract Oxc503...752d contains proposal code. The attacker
uses the CREATE? to replace the original code with malicious
code before the proposal executed.

logic within the target address. Apart from being open-source,
the code logic in the target address must also be immutable.
As discussed in Section V-C, the EVM opcode CREATE?2
allows arbitrary change to the code logic inside the rarget
address while maintaining the same address. If the proposal
code lacks immutability, an attacker can arbitrarily modify the
code even after the proposal has been approved. For instance,
in the Tornado Cash Governance Attack [13], as illustrated
in Figure 11, the attacker first used the CREATE2 opcode to
deploy a contract with the address 0x7dc8...353d. This contract
then deployed another contract, using the CREATE opcode,
with the address Oxc503...752d, which contained a normal
version of the proposal code. Once the proposal passed but
before its execution, the attacker invoked the SELFDESTRUCT
opcode to destroy both 0x7dc8...353d and 0xc503...752d. Sub-
sequently, the attacker redeployed a contract at Ox7dc$...353d
using CREATE2 with the same creation code, ensuring the
redeployed contract retained the same address. Finally, the
attacker used this redeployed contract to redeploy the proposal
code contract at Oxc503...752d, this time containing malicious
code.

Approach. To assess whether the target address in the
proposal code is open-source, we follow the approach used in
the previous study [72]. We use APIs provided by blockchain
scanners to check if the source code has been verified. We
use the same method used in Section V-C to check the target
address is under the threat of the opcode C REAT E2. We skip
the trarget address that belongs to the governance contract, as
it has been evaluated in Section V-C.

Result. The results of the immutability of the proposal
code are shown in Table V. We discover that more than 90%
(54,108) of the target address in the proposal code are open-
source. This suggests that the majority of proposals maintain
the clarity of their proposal codes. Among the 5,571 closed-
source contracts, we identify 32 addresses that have been
used by members, as indicated by more than 500 transactions
associated with these specific addresses. This implies that
some members place their trust in these contracts despite
the noticeable lack of transparency. Regarding CREATE?2,
although we do find some target addresses created in the
CRE AT E?2 chains, they can not destruct themselves and thus
are not at risk of being mutated. However, the attacker can
insert the SELFDESTRUCT or DELEGATECALL into
the target address’s code to make this potential threat feasible.

TABLE V: Result of the immutability of target address within
proposal code.

DAO Type Open-source Close-source || By CREATE2 Can SELFDESTRUCT
XDAO 28,802 784 8 0
Aragon 17,943 3,080 2 0
Tally 7,384 1,615 97 0
DAOhaus 1,749 78 3 0
DAOstack 2,419 0 0 0
Self-developed 1,382 14 0 0
Total 59,679 5,571 || 110 0
2
0x9799086938350a58A281636296D28f02787DEA17
° Malicious Proposal Code: Change

|_setpendingGov(address] the admin of Governance Contract
©000000000000000000000000000000065EF 7CEB1909F 3D46F 8BDA3BED635BEAG20DDF 89
15107484

— Normal Proposal Description: Previous proposal description

Contributors comps for May, backpay for VDM, settling synths tokens and success tokens, sending settled rewards
tokens to reserves, sending and withdrawing test uma and claiming sushi for reserves.

Fig. 12: The malicious proposal in the YAM governance attack
deceived members with the description from previous pro-
posal, claiming it would return rewards to the DAO. However,
the actual code was to take control of the governance contract.

B. Consistency between Description and Code

The proposal description must fully detail all aspects of
the proposal code to ensure that members are well-informed.
Otherwise, attackers may hide malicious code within an
otherwise normal proposal description. For instance, during
the YAM DAO governance attack on July 9, 2022 [9], the
attacker submitted a proposal (as shown in Figure 12) with a
description copied from a previous proposal, falsely claiming
to return rewards to the DAO. In reality, the code transferred
ownership of the governance contract to the attacker, resulting
in a loss of 3.1 million dollars once the proposal was passed.

Approach. To verify the consistency between the proposal
description and code, we first extract the description inten-
tion from the proposal description and the code action from
the proposal code. We then check whether the description
intention and code action are consistent. The description
intention—identified as (action, target object, parameter)—is
derived from the proposal description, outlining the functions
intended to be called or not called in the proposal code. The
code action is extracted from the proposal code, which shows
the actual functions to be executed.

1) Description Intention Extractor: The description inten-
tion is represented as a tuple (action, target object, parameter).
The action refers to the function name to be performed by the
proposal code (e.g., transfer, update, approve), target object
is the target of the function call, and parameter denotes the
detailed parameters used by the action. We adopt a two-step
process to extract the description intention from the proposal
description. First, We identify all the code-related sentences
that describe the function calls in the proposal code. After
that, we extract the description intention from these code-
related sentences based on their grammatical structures. The
example procedure of the description intention extractor is
shown in Figure 13. The sentence in the red box is identified
as code-related. Subsequently, during the intention extraction,
the code-related sentence undergoes parsing to form the cor-
responding semantic dependency parse tree. The description
intention is then extracted based on the part-of-speech tags
and syntactic dependencies in the parse tree.

lUpdate y pool A to 1000.‘It will allow for a greater % of DAI in the pool

PIp Sentence
Identification
Intention

compound
pobj Extraction

1000

y pool A to
X INOUN |NOUN | ADP

ROOT

Description Intention

Action: Update, A

Target object: y, pool
Update

NOUN

Parameter: 1000

NUM

Fig. 13: Example of extracting the description intention from
the proposal description.

Sentence identification. We apply the NLTK [73] to split
the proposal description into individual sentences. In order to
identify code-related sentences that describe the code, we use a
fine-tuned BERT [74] for the sentence classification task. Due
to the absence of a dataset for code-related sentences in DAO
proposals, we created a dataset comprising 2,200 sentences
randomly extracted from proposals. We select 2,000 sentences
from this dataset to fine-tune the BERT model. The remaining
200 sentences are used to evaluate the performance of the find-
tuned BERT. We manually annotate each sentence to indicate
whether it describes the proposal code. The evaluation of
sentence identification is shown in Appendix D.

Intention extraction. To extract the description intention from
code-related sentences, we first use Spacy [75] to generate
a syntactic dependency parse tree and assign part-of-speech
(PoS) tags to each token within the sentence. The action is
identified by the token that is labeled as Root in the PoS
tag. Its lemma either exists in our verb list!, or it aligns with
synonyms of words within our verb list, as determined by the
synonyms database [76]. Additionally, the token that has a
direct object (dobj) relationship with the Root token is also
identified in the action. The target object is identified by
tokens that have a compound relationship with the action
tokens. Lastly, the parameter is identified by the rest tokens
with PoS tags such as NOUN, NUM, PROPN, or X. As
shown in Figure 13, the action is highlighted in the blue
box, the target object in the yellow box, and the parameter
in the green box. We also identify whether the description
intention originates from negative or positive sentences. To
identify these negative sentences, we utilize the BERT to
determine whether the code-related sentence is positive or
negative. When extracting from these negative sentences, we
assign a Negative tag to the description intention.

2) Code Action Extractor: The code action extractor’s
purpose is to extract the proposal code and enrich its content,
resulting in the code action as illustrated in Table VI. Given
that the proposal code is in bytecode format, verifying its
consistency with the description intention could result in false
negatives. For instance, in Figure 14, the proposal description
outlines its object as transfer of ARENA tokens. It is challeng-
ing to determine if the code matches the description directly
from the bytecode. To address this, we transform the proposal
code into code action to add natural language information.

Since the proposal code only contains the target address,

Uhttps://drive.google.com/file/d/111mPkZMohjC8vVINLIJvISoN8SoymDT
RO

Proposal Description: This proposal transfers 1,000,001 SARENA
tokens to Code4 Corporation to

Target Address: 0x6847d3a4c80a82e1fb26f1fc6f09f3ad5beb5222
Value: 0

Function Signature: 0xa9059cbb

Calldata: 0000000000000000000000007f0049597056e37b4b1f88
7196e44cac050d486300000000000000000000000000000000000
000000000d3c229af83a148640000

<>

Target Address: 0x6847d3a4c80a82e1fb26f1fc6f09f3ad5beb5222
Target Address Symbol: ARENA

Value: 0

Function Signature: 0xa9059cbb

Function Name:Transfer

Function Parameter: 0x7f0049597056E37B4B1f887196E44CAc05
0D4863

Function Parameter: 1000001

Fig. 14: The example illustrating the extraction and enhance-
ment of proposal code into code action.

TABLE VI: Component of code action.

Name Explanation

Contract address to be called

Contract address name in natural language
Value to transfer

4 bytes of function ID

Function name in natural language
Parameter of the function

Target Address

Target Address symbol
Value

Function Signature
Function Name
Function Parameter

value, function signature, and calldata from the proposal
code, the rest part of code action needs to be enhanced based
on these data. The target address symbol can be determined
by checking the contract address in the public name tag or
the function named symbol() in the contract. To determine the
function name, we attempt to find it either from the contract
ABI [77] of the target address or from the Ethereum Signature
Database [78]. We obtain the contract ABI from the source
code of the target address via blockchain scanner. If the target
address is closed-source, we turn to the Ethereum Signature
Database [78]—the largest database mapping function signa-
ture back to function name—for querying the function name.
Once the function name is extracted, we can decode the
calldata into function parameter, due to the function name
containing the sequence and types of each parameter. If we
are unable to locate the information, we will leave it empty.
3) Inconsistency Detector: We determine 5 types of incon-
sistency between the description intention and code action.
Lack of description intention. We extract the code action
from the proposal code, but if we are unable to find any
corresponding description intention, we classify the proposal
as lacking description intention. Specifically, if we fail to
extract the description intention from the proposal description
or if the description is missing altogether, we determine that
the proposal lacks description intention.
Lack of code action. We extract the description intention from
the proposal description but fail to find any corresponding code
action. We check whether the proposal contains the proposal
code. If it does not, we determine the lack of code action.
Incomplete function. In this type of inconsistency, the func-
tion present in the code action is not mentioned in the
description intention. To address this, we compare the se-
mantic similarity between the code action and the description
intention. We first extract the Target Address Symbol and
Function Name from the code action, and the Target Object

TABLE VII: Evaluation results for Inconsistency Detector.

Incomplete Type Precision Recall F-1
Incomplete Code Action Function 0.81 0.87 0.84
Incomplete Code Action Parameter 0.83 0.88 0.85

and Action from the description intention. Then, we use
the Sentence-BERT model [79] to encode the corresponding
sets into semantic vectors. We calculate the cosine similarity
between these vectors. If the semantic similarity score exceeds
the threshold, we conclude that the function is mentioned in
the description, as the description conveys a similar semantic
meaning. The threshold value is set at 0.75, following the
official examples from Sentence-BERT [80].

Incomplete parameter. For this type of inconsistency, we ver-
ify that every Function Parameter listed in the code action is
described in the Parameter section of the description intention.
We assess parameters of the following types: address, number,
and byte, as well as their corresponding lists. For the address
type, we first retrieve its name using the method described
in the information enhancement section. If we can extract the
name, we check whether it appears in the Parameter section
of the description intention. If the name is not found, we
directly verify whether the address, in hexadecimal format,
is mentioned. For the number type, we check if the number
is present in the description intention. If the target contract
is an ERC-20, we adjust the value by dividing it by its
decimals, following the ERC-20 standard [81]. For the byte
type, since it can represent text in hexadecimal form, we check
whether both the original content and its decoded text appear
in the description intention. we determine that the parameter
is incomplete if is not mentioned in the description intention.
Incorrect proposal. The incorrect proposal is determined by
identifying whether a function in the code action is mentioned
by a description intention tagged as Negative. We use the same
method applied in detecting incomplete functions by checking
whether the semantic similarity between the function in the
code action and the description intention (tagged as Negative
by Intention extraction) exceeds the threshold.

To evaluate the performance of our Inconsistency Detector,
we randomly selected 1,500 functions, containing 3,122 pa-
rameters. We manually labeled the results for each function
and parameter. The evaluation results are shown in Table VII.
For incomplete functions, the detector achieved a precision
of 0.81 and a recall of 0.87. False positives occurred be-
cause BERT struggled to correctly interpret the relationships
between words with similar semantic meanings, particularly
when descriptions contained only a few nouns. False negatives
arose due to differences in word meanings between the real
world and the blockchain context. For incomplete parameters,
we achieved a precision of 0.83 and a recall of 0.88. False
positives were caused when proposal descriptions used URLs
to describe function parameters, while false negatives occurred
due to misleading parameter names.

Result. The results of the 5 types of inconsistency are
shown in Table VIII. We excluded proposals from platform
XDAO and the self-developed MakerDAO, as these 2 types
of DAOs do not support proposals that include descriptions.
Instead, they require members to submit code directly to the

TABLE VIII: Result of consistency between description and
code. The description intention is short for DI and code action
is short for C' A.

Consistency Type Aragon Tally DAOhaus DAOstack Self-developed || Total
Normal 968 1,328 12 671 39 3,018
Lack of DI 18,581 2,401 698 29 333 22,042
Lack of CA 893 38 0 1,453 0 2,384
Incomplete 581 5,232 1,117 266 1,072 8,268
— Function 659 7,010 1,130 212 504 9,515
— Parameter 17,166 23,451 3,065 375 1,450 || 45,507
Incorrect 0 0 0 0 0 0
Proposal 21,023 8,999 1,827 2,419 1,250 35,518
Function 20,273 25,184 3,175 616 2,614 51,862
Parameter 30,424 33,951 3,513 745 2,803 71,436

TABLE IX: Classification of the collected real-world gover-
nance attack incidents. The description intention is short for
DI and code action is short for C A.

Incidents Date Attack Result ~ Expect Lost Proposal Consistency
True Seigniorage Dollar [14] Mar 2021 Successed $16K Lack of DI

Yuan [17] Sep 2021 Successed $250K Lack of DI

Venus [86] Sep 2021 Successed $250K Lack of DI

Build Finance [16] Feb 2022 Successed $470K Lack of DI

Fortress Protocol [12] May 2022 Successed $3M Incomplete Parameter
Beanstalk [18] Apr 2022 Successed $182M Incomplete Function
Audius [11] Jul 2022 Successed $1.1IM Lack of DI

YAM [9] Jul 2022 Blocked $2.IM Incomplete Function
Swerve Finance [87] Mar 2023 Successed $1.3M Lack of DI

Tornado Cash [13] May 2023 Successed $2M Code Mutability
Atlantis Loans [88] Jun 2023 Successed $IM Lack of DI
BIGCAP [90] Sep 2023 Blocked $45K Incomplete Function
Indexed Finance [89] Nov 2023 Blocked $158K Lack of DI

governance contract as a proposal, which could interfere with
the accuracy of our analysis. Our results suggest that members
currently do not pay sufficient attention to proposals. Of the
35,518 proposals analyzed, 24,426 either lack a description
of the proposal code or only contain a description without
corresponding code. Furthermore, among the 11,092 proposals
that do include both a description and code, 8,268 are found
to be incomplete, either lacking an explanation about the
functions or detailed parameters in the functions.

Real-World Attack Cases Detection. To assess whether
our approach is capable of detecting real-world malicious
proposals, we have gathered reports of DAO governance
attack cases from the following sources: Slowmist [82], Cryp-
toSec [83], Rekt [84], and Twitter [85]. We total collected 11
DAO governance attack cases [17], [14], [16], [18], [11], [86],
[9], [12], [871, [13], [88], [89], [90]. Upon examining these
malicious proposals with our approach, we identified all 13
proposals as 8 malicious proposals due to lack of description
intention, 3 proposals due to incomplete function, 2 proposals
with incomplete parameter, and 1 proposal is subjected to
mutability of proposal code.

s \

Answer to RQ3: Although most proposal code is open-
source and can be reviewed by members, approximately
10% (5,571) of proposal code is closed-source, making
it difficult for members to scrutinize. Among the 35,518
proposals analyzed, 32,500 (about 91%) fail to provide
consistent descriptions and corresponding code. This incon-
sistency highlights why attackers frequently target proposals
during the governance process.

VIII. DISCUSSION
A. Threat to Validity

Complete DAO data. We have employed the following
method to collect a comprehensive DAO dataset. First, we
collect DAO data from various sources, including previous
studies [36], [26], as well as from well-known industry dataset
DeepDAO [8]. Second, we expand our collection to include
DAOs from Ethereum and 8 other popular blockchains. Third,
we gather data from both websites and blockchains to ensure
the data completeness. As a result, our dataset, comprising
over 3,000 DAOs, 200 websites, and 65,000 proposals, is
the most comprehensive DAO dataset to date. The findings
derived from this dataset can be considered representative of
the entire DAO ecosystem. However, there may still be some
self-developed DAOs or platforms that were not captured. Our
approach can be applied to such DAOs once they provide their
governance contract address and documentation website.

DAOs from non-EVM-compatible chains. According to
statistics from DefiLlama [91], EVM-compatible chains cur-
rently dominate the blockchain ecosystem, accounting for over
85% of the Total Value Locked (TVL) across all blockchains.
Therefore, we primarily applied our approach to EVM-
compatible chains. However, aside from the immutability of
contracts, our approach and insights are not solely dependent
on EVM-specific features. Thus, our approach can be applied
to non-EVM-compatible chains as well.

Off-chain governance DAOs. In off-chain governance,
the governance process takes place on the website, where
members submit proposals and cast their votes. The execution
of these proposals is carried out by the DAO developers rather
than being automatically triggered by smart contracts [32],
[33]. According to the definition of DAOs provided by
Ethereum [1] and the DAO Model Law [30], DAOs must be
governed by smart contracts. Therefore, off-chain governance
DAOs fall outside of our scope.

B. Limitations

Querying DAO Documentation In Section VI (RQ2),
our method leverages LLM to verify whether the provided
DAO documentation aligns with the requirements outlined
in the DAO model laws. However, due to current token
limitations in LLMs, large documents must be divided into
smaller segments, and full-length rule descriptions with de-
tailed explanations from the DAO model laws cannot be
directly utilized. To address these challenges, we integrate CoT
reasoning to enhance the performance of LLMs. Despite these
efforts, advancements in LL.Ms that support larger content
sizes, combined with the application of prompt engineering
techniques, are anticipated to improve the perform of semantic
search.

Proposal Description and Code Consistency In Section
VII-B (RQ3), our method evaluates the consistency between a
proposal’s description and its code by extracting the descrip-
tion intent and the code actions, then identifying 5 types of
inconsistencies. However, this approach may result in some
loss of information from both the code and the description.
To address this limitation, we could involve fine-tuning LLM

using the current inconsistency results to improving the ability
to detect inconsistencies with greater accuracy.

IX. IMPLICATIONS AND SUGGESTIONS.

Based on our research findings, we recommend that DAO
platforms ensure all DAOs established on their platforms
adhere to the principles of decentralized governance, rather
than allowing developers to optionally support it. Developers
should be required to disclose all privileged addresses to their
members or mandate that all privileged functions be controlled
by the governance contract. Additionally, they should provide
complete documentation to facilitate member participation in
the governance process. Blockchain scanners, such as Ether-
scan, should label contracts that are deployed using the CRE-
ATE?2 opcode. In response to the observed inconsistencies in
proposals, we suggest that DAOs enforce consistency between
proposal descriptions and the actual code. Additionally, tools
should be developed to automatically supplement proposal
descriptions with any missing code and explanations.

X. FEATURE WORKS

Automate DAO Reinforcement Our method efficiently and
accurately identifies issues within the governance process.
However, it currently lacks the capability to automatically
generate patches to address these issues. Future work could
integrate static analysis techniques and LLM to automate patch
generation for governance contracts. This approach could also
be extended to automatically generate the required DAO docu-
mentation, ensuring sufficient and accurate documentation for
all six rules. Additionally, the method could automate the
completion of proposal descriptions based on the provided
proposal code, fostering a more robust and transparent DAO
governance ecosystem.

Governance Procee Attack Detection Our work identifies
several vulnerabilities within the DAO governance process,
such as privileged functions in governance contracts and
inconsistencies between proposal descriptions and their code.
Future work could leverage these identified issues to develop
tools that help DAO developers and members detect malicious
DAOs or proposals. Such tools could play a critical role in
preventing prevalent attacks against DAOs, enhancing security
and trust in decentralized governance frameworks.

XI. RELATED WORK

DAO. Recent research on DAO focuses on the DAO activity
analysis [20], [21], [7], [92], [93], [22], DAO definition and
application [94], [95], and DAO governance method [28],
[96], [97]. However, they do not concentrate on the security
aspects of DAO governance. As for empirical studies that
do focus on security within DAO governance: Feichtinger et
al.[24] provided analysis on 21 on-chain governance DAOs,
specifically focusing on the voting process within the gover-
nance procedure. Fritsch et al.[27] focused on the distribution
of voting power among three popular DAOs: Compound,
Uniswap, and ENS. Sharma et al.[25] analyzed the existing
centralized risk of 10 existing DAOs and the corresponding
members voting behaviors. Wang ef al.[26] analyzed the

design principles of DAOs from off-chain voting platform
Snapshot. Liu et al.[23] focused on voting behavior in DAO
governance. Dotan et al.[22] disclosed the centralized voting
nature of four DAOs and explained the existing governance
attack incidents. The above research primarily focused on
partial aspects such as voting within the DAO governance
framework, and their datasets are limited, no larger than
1,000 DAOs. Our methodology analyzes the security issues
across both on-chain and off-chain parts of the governance
framework. The security threats we studied have not been
explored in previous research.

Smart contracts analysis. Smart contracts have gained
popularity for facilitating trustless code execution on the
blockchain. However, with the increasing usage of smart
contracts, they have become targets for attacks. Numerous
tools have been developed for the analysis of smart contracts.
Some notable examples include Mythril [98], Manticore [99],
and Oyente [100]. Pied-Piper [58] proposed a hybrid analysis
method that combines datalog analysis and directed fuzzing to
detect potential backdoor threats in ERC token contracts in or-
der to enhance smart contract security. Beyond the direct anal-
ysis of bytecode, binary lifter tools such as Gigahorse [101]
transform the bytecode into a higher-level, function-based,
three-address representation. Our method targets the detection
of security issues within governance contracts and can be
integrated with existing tools to enhance the security of dApps.

Consistency between code and natural language descrip-
tion. The consistency between the code and natural language
description has been well-studied [102], [103], [104], [105],
[106], [107]. They primarily concentrate on Java code and
API documentation, which are well-written and focused on
describing code behavior. DocCon [108] detects inconsis-
tencies between documentation and the corresponding code
for Solidity smart contract libraries. Compared with Doccon,
our method targets different research questions. Our natural
language description comes from proposal description, which
lacks structured information such as tags in the comments
or API document. Additionally, the proposal description en-
compasses a broader scope instead of only describing the
code behavior. The code in our method is the bytecode,
not the Solidity source code, which lacks code information
like variable name. Furthermore, our code size is extremely
limited, containing only several bytes and the function call
parameters rather than the full code logic.

XII. CONCLUSION

In this paper, we conduct a comprehensive study of the
issues in the DAO governance process components. We con-
struct the dataset contains 3,348 DAOs, 144 documentation,
and 65,436 proposals across 9 different blockchains. Then we
apply our novel methods to automatically identifying issues
within these components. For Impartial Decentralized Gover-
nance in the Governance Contract, we found that out of the
3,348 DAOs analyzed, 176 could potentially be manipulated
by developers, with one DAQO’s governance contract logic
being directly alterable by its developer. This suggests that
not all active DAOs can be trusted to maintain impartial

decentralized governance. For Sufficient Governance Process
Documentation, only 71 out of 3,348 DAOs provide any form
of documentation for their members, and none offer complete
documentation. However, more comprehensive documentation
significantly enhances member participation in the DAO gov-
ernance process. Finally, for Proposal Consistency, while most
proposal code is open-source and available for review by
members, approximately 10% (5,571) of target address within
proposal code are closed-source, making them difficult for
members to scrutinize. Among the 35,518 proposals analyzed,
32,500 (about 91%) fail to provide consistent descriptions
and corresponding code. This might explain why attackers
frequently target proposals during the governance process.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
insightful comments and valuable feedback. This work is sup-
ported by the National Natural Science Foundation of China
(No. 62372218 , No. U24A6009, No. 62172301) and Hong
Kong RGC Projects (PolyU15224121, PolyU15231223).

REFERENCES

[1] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, 2014.

[2] “Uniswap.” https://uniswap.org/, 2023.

[3] “CoinMarketCap.” https://coinmarketcap.com/view/dao/, 2023.

[4] “XDAO.” https://docs.xdao.app/, 2023.

[5] “Aragon.” https://legacy-docs.aragon.org/aragon/readme, 2023.

[6] “Daohaus.” https://daohaus.club/, 2023.

[7]1 Y. Fagir-Rhazoui, J. Arroyo, and S. Hassan, “A comparative analysis
of the platforms for decentralized autonomous organizations in the
ethereum blockchain,” Journal of Internet Services and Applications,

2021.
[8] “Deepdao.” https://deepdao.io/organizations, 2023.
[9] “Yam attack analysis.” https://decrypt.co/104848/

yam-finance-safeguards- 3- I m- treasury- governance-attack, 2023.
“Potential curve dao attack.” https://gov.curve.fi/t/
the-curve-emergency-dao-has-killed-the-usdm-gauge/2307, 2023.

[10]

[11] “Audius dao attack.” https://cointelegraph.com/news/
hackerdrains- 1-08m- from-audius- following- passing-of-malicious- proposal
2023.

[12] “Fortress protocol attack.” https://rekt.news/fortress-rekt/, 2023.

[13] “Attacker hijacks Tornado Cash governance via
malicious proposal.” https://cointelegraph.com/news/

attacker-hijacks-tornado-cash- governance- via-malicious-proposal,
2024.

“True seigniorage dollar attack.” https://twitter.com/TrueSeigniorage/
status/1370956726489415683, 2023.

“Pride punks dao attack.” https://twitter.com/BoringSecDAO/status/
1556150989140373504, 2023.

“Build Finance suffers from governance attack.” https://cryptoslate.
com/build-finance-dao-hostile-takeover-treasury-drained/, 2023.
“Yuan.finance attack report” https://medium.com/yuan-finance/
yuan-governance-attack-update-and-migration-plan-3b5d949ab466,

[14]
[15]
[16]

[17]

2023.
[18] “Beanstalk Exploit — A Simplified Post-
Mortem Analysis.” https://medium.com/coinmonks/

beanstalk-exploit-a-simplified- post-mortem-analysis-92e6¢db1 7ace,
2023.

“VPANDA DAO Rug Pull.” https://twitter.com/DeDotFiSecurity/status/
1669859985113731082, 2023.

Y. Fagir-Rhazoui, M.-J. Ariza-Garzon, J. Arroyo, and S. Hassan, “Ef-
fect of the gas price surges on user activity in the daos of the ethereum
blockchain,” in Extended Abstracts of the 2021 CHI Conference on
Human Factors in Computing Systems, 2021.

Y. El Faqir, J. Arroyo, and S. Hassan, “An overview of decentralized
autonomous organizations on the blockchain,” in Proceedings of the
16th international symposium on open collaboration, pp. 1-8, 2020.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]

[34]
[35]

[36]

[37]
[38]
[39]
[40]
[41]
T42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]

[51]
[52]
[53]
[54]
[55]

[56]

[57]

[58]

M. Dotan, A. Yaish, H.-C. Yin, E. Tsytkin, and A. Zohar, “The
vulnerable nature of decentralized governance in defi,” in Proceedings
of the 2023 Workshop on Decentralized Finance and Security, 2023.
X. Liu, “The illusion of democracy? an empirical study of dao gover-
nance and voting behavior,” An Empirical Study of DAO Governance
and Voting Behavior (May 8, 2023), 2023.

R. Feichtinger, R. Fritsch, Y. Vonlanthen, and R. Wattenhofer, “The
hidden shortcomings of (d) aos—an empirical study of on-chain gover-
nance,” arXiv preprint arXiv:2302.12125, 2023.

T. Sharma, Y. Kwon, K. Pongmala, H. Wang, A. Miller, D. Song,
and Y. Wang, “Unpacking how decentralized autonomous organizations
(daos) work in practice,” arXiv preprint arXiv:2304.09822, 2023.

Q. Wang, G. Yu, Y. Sai, C. Sun, L. D. Nguyen, S. Xu, and S. Chen, “An
empirical study on snapshot daos,” arXiv preprint arXiv:2211.15993,
2022.

R. Fritsch, M. Miiller, and R. Wattenhofer, “Analyzing voting power
in decentralized governance: Who controls daos?,” arXiv preprint
arXiv:2204.01176, 2022.

T. Dursun and B. B. Ustiindag, “A novel framework for policy based
on-chain governance of blockchain networks,” Information Processing
& Management, 2021.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V.
Le, D. Zhou, et al., “Chain-of-thought prompting elicits reasoning in
large language models,” Advances in Neural Information Processing
Systems, 2022.

“DAO Model Law.” https://coala.global/daomodellaw/, 2023.
“Compound documents.” https://docs.compound.finance/v2/, 2023.

W. Reijers, I. Wuisman, M. Mannan, P. De Filippi, C. Wray, V. Rae-
Looi, A. Cubillos Vélez, and L. Orgad, “Now the code runs itself:
On-chain and off-chain governance of blockchain technologies,” Topoi,
2021.

P. De Filippi and G. McMullen, Governance of blockchain sys-
tems: Governance of and by Distributed Infrastructure. PhD thesis,
Blockchain Research Institute and COALA, 2018.

“The Model Law.” https://uncitral.un.org/en/texts/arbitration/modellaw/
commercial_arbitration, 2023.
“Synthetify ~ governance attack.”
solana-exploit-dao-hacker, 2024.

J. Arroyo, D. Davé, E. Martinez-Vicente, Y. Fagir-Rhazoui, and S. Has-
san, “Dao-analyzer: Exploring activity and participation in blockchain
organizations,” in Companion Publication of the 2022 Conference
on Computer Supported Cooperative Work and Social Computing,
pp. 193-196, 2022.

“Daostack.” https://daostack.io/, 2023.

“Tally.” https://www.tally.xyz/, 2023.

“Ethereum.” https://ethereum.org/en/, 2024.

“BSC.” https://www.bnbchain.org/en, 2024.

“Polygon.” https://www.polygon.com/, 2024.

“Fantom.” https://fantom.foundation/, 2024.

“Gnosis.” https://www.gnosis.io/, 2024.

“Avalanche.” https://www.avax.network/, 2024.

“Arbitrum.” https://arbitrum.io/, 2024.

“Cronos.” https://cronos.org/, 2024.

“Optimism.” https://www.optimism.io/, 2024.

“Curve.” https://curve.fi/, 2023.

“MakerDAO.” https://makerdao.com/en/, 2023.

“Public name tags.” https://info.etherscan.com/
public-name-tags-labels/, 2023.

“Selenium.” https://www.selenium.dev/, 2023.

“Event logs.” https://info.etherscan.com/what-is-event-logs/, 2023.
“How to set up on-chain governance.” https://docs.openzeppelin.com/
contracts/4.x/governance, 2023.

“Evm cfg builder.” https://github.com/crytic/evm_cfg_builder, 2023.

J. Xu, K. Paruch, S. Cousaert, and Y. Feng, “Sok: Decentralized
exchanges (dex) with automated market maker (amm) protocols,” ACM
Computing Surveys, vol. 55, no. 11, pp. 1-50, 2023.

L. Zhou, X. Xiong, J. Ernstberger, S. Chaliasos, Z. Wang, Y. Wang,
K. Qin, R. Wattenhofer, D. Song, and A. Gervais, “Sok: Decentralized
finance (defi) attacks,” in 2023 IEEE Symposium on Security and
Privacy (SP), pp. 2444-2461, IEEE, 2023.

M. Frowis and R. Bohme, “Detecting privileged parties on ethereum,”
2022.

F. Ma, M. Ren, L. Ouyang, Y. Chen, J. Zhu, T. Chen, Y. Zheng,
X. Dai, Y. Jiang, and J. Sun, “Pied-piper: Revealing the backdoor
threats in ethereum erc token contracts,” ACM Transactions on Software
Engineering and Methodology, 2023.

https://blockworks.co/news/

https://uniswap.org/
https://coinmarketcap.com/view/dao/
https://docs.xdao.app/
https://legacy-docs.aragon.org/aragon/readme
https://daohaus.club/
https://deepdao.io/organizations
https://decrypt.co/104848/yam-finance-safeguards-3-1m-treasury-governance-attack
https://decrypt.co/104848/yam-finance-safeguards-3-1m-treasury-governance-attack
https://gov.curve.fi/t/the-curve-emergency-dao-has-killed-the-usdm-gauge/2307
https://gov.curve.fi/t/the-curve-emergency-dao-has-killed-the-usdm-gauge/2307
https://cointelegraph.com/news/hackerdrains-1-08m-from-audius-following-passing-of-malicious-proposal
https://cointelegraph.com/news/hackerdrains-1-08m-from-audius-following-passing-of-malicious-proposal
https://rekt.news/fortress-rekt/
https://cointelegraph.com/news/attacker-hijacks-tornado-cash-governance-via-malicious-proposal
https://cointelegraph.com/news/attacker-hijacks-tornado-cash-governance-via-malicious-proposal
https://twitter.com/TrueSeigniorage/status/1370956726489415683
https://twitter.com/TrueSeigniorage/status/1370956726489415683
https://twitter.com/BoringSecDAO/status/1556150989140373504
https://twitter.com/BoringSecDAO/status/1556150989140373504
https://cryptoslate.com/build-finance-dao-hostile-takeover-treasury-drained/
https://cryptoslate.com/build-finance-dao-hostile-takeover-treasury-drained/
https://medium.com/yuan-finance/yuan-governance-attack-update-and-migration-plan-3b5d949ab466
https://medium.com/yuan-finance/yuan-governance-attack-update-and-migration-plan-3b5d949ab466
https://medium.com/coinmonks/beanstalk-exploit-a-simplified-post-mortem-analysis-92e6cdb17ace
https://medium.com/coinmonks/beanstalk-exploit-a-simplified-post-mortem-analysis-92e6cdb17ace
https://twitter.com/DeDotFiSecurity/status/1669859985113731082
https://twitter.com/DeDotFiSecurity/status/1669859985113731082
https://coala.global/daomodellaw/
https://docs.compound.finance/v2/
https://uncitral.un.org/en/texts/arbitration/modellaw/commercial_arbitration
https://uncitral.un.org/en/texts/arbitration/modellaw/commercial_arbitration
https://blockworks.co/news/solana-exploit-dao-hacker
https://blockworks.co/news/solana-exploit-dao-hacker
https://daostack.io/
https://www.tally.xyz/
https://ethereum.org/en/
https://www.bnbchain.org/en
https://www.polygon.com/
https://fantom.foundation/
https://www.gnosis.io/
https://www.avax.network/
https://arbitrum.io/
https://cronos.org/
https://www.optimism.io/
https://curve.fi/
https://makerdao.com/en/
https://info.etherscan.com/public-name-tags-labels/
https://info.etherscan.com/public-name-tags-labels/
https://www.selenium.dev/
https://info.etherscan.com/what-is-event-logs/
https://docs.openzeppelin.com/contracts/4.x/governance
https://docs.openzeppelin.com/contracts/4.x/governance
https://github.com/crytic/evm_cfg_builder

[59]

[60]
[61]
[62]

[63]
[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]
[72]

[73]

[74]

[75]
[76]
[77]

[78]
[79]

[80]

[81]
[82]
[83]
[84]

[85]
[86]

[87]

[88]
[89]
[90]

[91]
[92]

[93]

“Ethereum Constantinople/St. Petersburg Upgrade
Announcement.” https://blog.ethereum.org/2019/02/22/
ethereum-constantinople-st-petersburg-upgrade-announcement, 2023.
“Eip-1014: Skinny create2.” https://eips.ethereum.org/EIPS/eip-1014,
2023.

M. Frowis and R. Bohme, “Not all code are create2 equal,” in 6th
Workshop on Trusted Smart Contracts (WTSC’22), 2022.

“Proxy contracts.” https://info.etherscan.com/what-is-proxy-contract/,
2023.

“Tenderly.” https://tenderly.co/, 2023.

S. Boss, “Daos: Legal and empirical review,” Blockchain & Society
Policy Research Lab Research Nodes, 2023.

“Chatgpt.” https://openai.com/blog/chatgpt, 2023.

Y. Tan, D. Min, Y. Li, W. Li, N. Hu, Y. Chen, and G. Qi, “Evaluation
of chatgpt as a question answering system for answering complex
questions,” arXiv preprint arXiv:2303.07992, 2023.

N. Bian, X. Han, L. Sun, H. Lin, Y. Lu, and B. He, “Chatgpt is a knowl-
edgeable but inexperienced solver: An investigation of commonsense
problem in large language models,” arXiv preprint arXiv:2303.16421,
2023.

Q. Zhong, L. Ding, J. Liu, B. Du, and D. Tao, “Can chatgpt understand
too? a comparative study on chatgpt and fine-tuned bert,” arXiv preprint
arXiv:2302.10198, 2023.

R. Omar, O. Mangukiya, P. Kalnis, and E. Mansour, “Chatgpt versus
traditional question answering for knowledge graphs: Current status and
future directions towards knowledge graph chatbots,” arXiv preprint
arXiv:2302.06466, 2023.

S. Zheng, J. Huang, and K. C.-C. Chang, “Why does chatgpt fall short
in answering questions faithfully?,” arXiv preprint arXiv:2304.10513,
2023.

“Claude.” https://claude.ai/, 2023.

D. Das, P. Bose, N. Ruaro, C. Kruegel, and G. Vigna, “Understanding
security issues in the nft ecosystem,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, 2022.
S. Bird, E. Klein, and E. Loper, Natural language processing with
Python: analyzing text with the natural language toolkit. > O’Reilly
Media, Inc.”, 2009.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

“Spacy.” https://github.com/explosion/spaCy, 2023.

“Synonym.” https://www.synonym.com/, 2023.

“Contract ABI Specification.” https://docs.soliditylang.org/en/v0.8.19/
abi-spec.html, 2023.

“Ethereum Signature Database.” https://www.4byte.directory/, 2023.
N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.
“Official ~ sentence-bert examples.” https://github.com/UKPLab/
sentence- transformers/blob/master/examples/app-lications/clustering/
fast_clustering.py#L57, 2023.
“ERC-20 Token Standard.”
2023.

“SlowMist.” https://www.slowmist.com/, 2023.

“CryptoSec.” https://cryptosec.info/, 2023.

“rekt.” https://rekt.news/, 2023.

“Twitter.” https://twitter.com/home, 2023.

“Venus protocol prevented hostile takeover attempt.” https://www.
cryptotimes.io/venus-protocol- prevented- hostile- takeover-attempt/,
2023.

https://eips.ethereum.org/EIPS/eip-20,

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

“Defunct swerve finance still subject of 1.3 million live
governance hack.” https://www.theblock.co/post/222744/
defunct-swerve-finance- still-subject-of- 1- 3-million-live- governance- hack,
2023.

“Atlantis loans hack analysis”” https://blog.solidityscan.com/
atlantis-loans-hack-analysis-7f3fb2e295e0, 2023.

“Indexed finance dao attack.” https://blockworks.co/news/

blackmail-thwarts-90k-dao-attack, 2024.

“Bigcap dao attack.”” https://twitter.com/BIGCAPProject/status/
1697958233204490494, 2024.

“Total value locked all chains.” https://defillama.com/chains, 2023.

0. Rikken, M. Janssen, and Z. Kwee, “The ins and outs of decentralized
autonomous organizations (daos),” Available at SSRN 3989559, 2018.
X. Zhao, P. Ai, F. Lai, X. Luo, and J. Benitez, “Task management
in decentralized autonomous organization,” Journal of Operations
Management, 2022.

E. Baninemeh, S. Farshidi, and S. Jansen, “A decision model for de-
centralized autonomous organization platform selection: Three industry
case studies,” arXiv preprint arXiv:2107.14093, 2021.

L. Liu, S. Zhou, H. Huang, and Z. Zheng, “From technology to society:
An overview of blockchain-based dao,” IEEE Open Journal of the
Computer Society, 2021.

C. Calcaterra, “On-chain governance of decentralized autonomous
organizations: Blockchain organization using semada,” Available at
SSRN 3188374, 2018.

X. Fan, Q. Chai, and Z. Zhong, “Multav: A multi-chain token backed
voting framework for decentralized blockchain governance,” in Inter-
national Conference on Blockchain, 2020.

B. Mueller, “Smashing ethereum smart contracts for fun and real
profit,” HITB SECCONF Amsterdam, 2018.

M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 1186-1189, IEEE, 2019.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, 2016.

N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse:
thorough, declarative decompilation of smart contracts,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 1176-1186, IEEE, 2019.

L. Yu, X. Luo, J. Chen, H. Zhou, T. Zhang, H. Chang, and H. K.
Leung, “Ppchecker: Towards accessing the trustworthiness of android
apps’ privacy policies,” IEEE Transactions on Software Engineering,
2018.

B. Andow, S. Y. Mahmud, W. Wang, J. Whitaker, W. Enck, B. Reaves,
K. Singh, and T. Xie, “{PolicyLint}: investigating internal privacy pol-
icy contradictions on google play,” in 28th USENIX security symposium
(USENIX security 19), 2019.

D. Torre, S. Abualhaija, M. Sabetzadeh, L. Briand, K. Baetens,
P. Goes, and S. Forastier, “An ai-assisted approach for checking the
completeness of privacy policies against gdpr,” in 2020 IEEE 28th
International Requirements Engineering Conference (RE), 2020.

H. Zhong and Z. Su, “Detecting api documentation errors,” in Proceed-
ings of the 2013 ACM SIGPLAN international conference on Object
oriented programming systems languages & applications, 2013.

Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall, “Ana-
lyzing apis documentation and code to detect directive defects,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE), 2017.

Y. Zhou, C. Wang, X. Yan, T. Chen, S. Panichella, and H. Gall,
“Automatic detection and repair recommendation of directive defects in
java api documentation,” IEEE Transactions on Software Engineering,
2018.

C. Zhu, Y. Liu, X. Wu, and Y. Li, “Identifying solidity smart contract
api documentation errors,” in Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, 2022.

Junjie Ma received the Bachelor degree in Com-
puter Science and Technology from Northeastern
University, China in 2022. He is currently working
towards the Ph.D. degree under the collaborative
Ph.D. program in the Department of Computer
Science and Engineering at Southern University of
Science and Technology and the Department of
Computing at The Hong Kong Polytechnic Univer-
sity, under the supervision of Prof. Daniel Xiapu
Luo, Prof. Wang Qi, and Prof. Fengwei Zhang.
His current research interests include decentralized

autonomous organizations and blockchain security.

https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-upgrade-announcement
https://blog.ethereum.org/2019/02/22/ethereum-constantinople-st-petersburg-upgrade-announcement
https://eips.ethereum.org/EIPS/eip-1014
https://info.etherscan.com/what-is-proxy-contract/
https://tenderly.co/
https://openai.com/blog/chatgpt
https://claude.ai/
https://github.com/explosion/spaCy
https://www.synonym.com/
https://docs.soliditylang.org/en/v0.8.19/abi-spec.html
https://docs.soliditylang.org/en/v0.8.19/abi-spec.html
https://www.4byte.directory/
https://github.com/UKPLab/sentence-transformers/blob/master/examples/app-lications/clustering/fast_clustering.py#L57
https://github.com/UKPLab/sentence-transformers/blob/master/examples/app-lications/clustering/fast_clustering.py#L57
https://github.com/UKPLab/sentence-transformers/blob/master/examples/app-lications/clustering/fast_clustering.py#L57
https://eips.ethereum.org/EIPS/eip-20
https://www.slowmist.com/
https://cryptosec.info/
https://rekt.news/
https://twitter.com/home
https://www.cryptotimes.io/venus-protocol-prevented-hostile-takeover-attempt/
https://www.cryptotimes.io/venus-protocol-prevented-hostile-takeover-attempt/
https://www.theblock.co/post/222744/defunct-swerve-finance-still-subject-of-1-3-million-live-governance-hack
https://www.theblock.co/post/222744/defunct-swerve-finance-still-subject-of-1-3-million-live-governance-hack
https://blog.solidityscan.com/atlantis-loans-hack-analysis-7f3fb2e295e0
https://blog.solidityscan.com/atlantis-loans-hack-analysis-7f3fb2e295e0
https://blockworks.co/news/blackmail-thwarts-90k-dao-attack
https://blockworks.co/news/blackmail-thwarts-90k-dao-attack
https://twitter.com/BIGCAPProject/status/1697958233204490494
https://twitter.com/BIGCAPProject/status/1697958233204490494
https://defillama.com/chains

Muhui Jiang obtained his Ph.D. degree in De-
partment of Computing from the the Hong Kong
Polytechnic University. Before coming to PolyU,
He received his B.Eng. in Department of Software
Engineering, Tongji University in 2016. His cur-
rent research interests include blockchain security,
network security, system security and IoT security.
More specifically, He is interested in reverse engi-
7} neering, binary analysis, firmware rehosting, fuzzing

techniques, and Defi security.

Jinan Jiang obtained his B.A. degree in Computer
Science from University of California, Berkeley. He
is currently working towards the Ph.D. degree in the
Department of Computing, The Hong Kong Poly-
technic University, under the supervision of Prof.
Daniel Xiapu Luo. His current research interests
include smart contract analysis and blockchain se-
curity.

Xiapu Luo is a professor at the Department of Com-
puting of the Hong Kong Polytechnic University. His
research focuses on Blockchain and Smart Contracts
Security, Mobile and IoT Security, Network Security
and Privacy, and Software Engineering with papers
published in top-tier security, software engineering,
and networking venues. His research led to more
than ten best/distinguished paper awards, including
ACM CCS’24 Distinguished Paper Award, three
ACM SIGSOFT Distinguished Paper Awards in
ICSE’24, ISSTA’22 and ICSE’21, Best DeFi Papers
Award 2023, Best Paper Award in INFOCOM’18, Best Research Paper
Award in ISSRE’16, etc. and several awards from the industry. He received
the BOCHK Science and Technology Innovation Prize (FinTech) for his
contribution to blockchain security. He regularly serves in the program
committees of top security and software engineering conferences and received
Top Reviewer Award from CCS’22 and Distinguished TPC member Award
from INFOCOM’23 and INFOCOM’24.

Yufeng Hu received the Bachelor degree in math-
ematics and finance from Zhejiang University, in
2020. He is currently working towards a PhD degree
in cyberspace Security at Zhejiang University. His
research interests include blockchain security, smart
contract security, anti-money laundering, and binary
security.

Yajin Zhou is a ZJU 100-Young professor (since
2018), with both the College of Computer Science
and Technology and the School of Cyber Science
and Technology at Zhejiang University, China. He
earned his Ph.D. (2015) in Computer Science from
North Carolina State University (Advisor: Prof. Xux-
ian Jiang), and then worked as a senior security
researcher at Qihoo 360. He has published more than
40 papers, with 7500+ citations (Google Scholar).
Two of his papers have been selected to the list of
normalized Top-100 security papers since 1981. He
was recognized as the Most Influential Scholar Award Honorable Mention for
his contributions to the field of Security and Privacy (Rank 48 from 2010 -
2019, Rank 6 from 2011 - 2020). His joint team with City University of Hong
Kong won first place in the 2019 iDash competition (SGX Track). His current
research spans software security, operating systems security, hardware-assisted
security and confidential computing. He is also interested in emerging areas,
e.g., security of smart contracts, decentralized finance (DeFi) security, and
underground economy.

Qi Wang received the B.Eng. degree from the Uni-
versity of Science and Technology of China (USTC)
in 2007 and the Ph.D. degree from The Hong Kong
University of Science and Technology (HKUST) in
2011. From October 2011 to September 2013, he
was an Alexander von Humboldt Post-Doctoral Re-
searcher with Otto-von-Guericke University Magde-
burg, Magdeburg, Germany. From October 2013
to September 2014, he was a Research Associate
with HKUST. He has been with the Department
of Computer Science and Engineering, Southern
University of Science and Technology, since 2014, where he is currently
a tenured Associate Professor. His research interests include coding theory,
cryptography, and combinatorial designs.

Fengwei Zhang received the Ph.D. degree in com-
puter science from George Mason University. He
is currently an Associate Professor with the De-
partment of Computer Science and Engineering,
Southern University of Science and Technology
(SUSTech). His research interests include systems
security, with a focus on trustworthy execution,
hardware-assisted security, debugging transparency,
transportation security, and plausible deniability en-
cryption.

	Introduction
	Background
	Decentralized Autonomous Organization
	DAO Platform
	DAO Model Law

	 DAO Governance Process
	Approach
	Research Questions
	Data Collection

	Does DAO achieve impartial decentralized governance?(RQ1)
	Correctness of Governance Contract
	Self-governance of Governance Contract
	Immutability of Governance Contract

	Does DAO offer sufficient governance process documentation for their members?(RQ2)
	Does Proposal ensure consistency between descriptions and code?(RQ3)
	Immutability of Proposal Code
	Consistency between Description and Code
	Description Intention Extractor
	Code Action Extractor
	Inconsistency Detector

	Discussion
	Threat to Validity
	Limitations

	Implications and suggestions.
	Feature works
	Related Work
	Conclusion
	References
	Biographies
	Junjie Ma
	Muhui Jiang
	Jinan Jiang
	Xiapu Luo
	Yufeng Hu
	Yajin Zhou
	Qi Wang
	Fengwei Zhang

