COMS: Customer Oriented Migration Service

Kai Huang*, Xing Gaof, Fengwei Zhang?, Jidong Xiao*

* Boise State University, Boise, ID, USA
kaihuang @u.boisestate.edu, jidongxiao @boisestate.edu
t College of William and Mary, Williamsburg, VA, USA
xinggao@cs.wm.edu
1 Wayne State University, Detroit, MI, USA fengwei@wayne.edu

Abstract— Virtual machine live migration has been studied for
more than a decade, and this technique has been implemented
in various commercial hypervisors. However, currently in the
cloud environment, virtual machine migration is initiated by
system administrators. Cloud customers have no say on this:
They can not initiate a migration, and they do not even know
whether or not their virtual machines have been migrated.
In this paper, we propose the COMS framework, which is
short for “Customer Oriented Migration Service”. COMS gives
more control to cloud customers so that migration becomes a
service option and customers are more aware of the migration
process. We have implemented a suite of modules in our COMS
framework. Our evaluation results show that these modules could
either bring performance benefit to cloud customers, or mitigate
security threats in the cloud environment.

I. INTRODUCTION

Virtual machine (VM) live migration has been studied
for more than a decade. It has been implemented in various
commercial hypervisors, and has become an indispensable
feature in today’s virtualization technology. Cloud vendors use
VM migration to achieve the goals such as: load balance,
resource consolidation, system upgrade/maintenance, fault tol-
erance. These are all the positive side of VM migration. The
problem is, today’s virtualization technology enables cloud
administrators to do VM live migration, yet it does not enable
cloud customers to do VM live migration. When cloud vendors
decide to migrate VMs, cloud customers have no choice but
to accept; on the other hand, when cloud customers want to
migrate their VMs, they simply can not do it. So why is it
necessary to give customers more flexibility (or freedom) to
drive or initiate VM migration? The benefits are threefold:

First, availability. At some stage of the migration, it incurs
a certain amount of service downtime. When that happens,
unfortunately, cloud customers have to involuntarily tolerate
the service downtime. It is natural to think that, if service
downtime is inevitable, can we let the customers choose when
to tolerate that downtime? If so, customers can then choose a
time window when the migration causes least impact to their
business.

Second, performance. if cloud customers can initiate virtual
machine migration, then they can mitigate the interference
problem between co-located virtual machines [1], [2]. Since
the contention of hardware resources could degrade the per-
formance significantly, once customers notice that degradation,
they can migrate their virtual machines to a different host
machine, in the hope that the same level of interference may
not be existing on that new host machine.

Third, security. When migration is initiated, the storage
(e.g., memory or disk) is transferred over the network in plain
text. This is not secure, as demonstrated by [3]. Attackers,
by monitoring the packets transferred over the network, can
perform man-in-the-middle attack and eventually compromise
the virtual machine. If we enable customers to initiate the
migration, customers should be able to choose to encrypt their
whole system, or parts of their system in case that encrypting
everything incurs too significant performance penalty.

In this paper, we propose the COMS framework, a frame-
work that offers customer oriented migration service. We
enable customers to initiate VM migration, let customers be
aware of the migration.

The contribution of our work can be summarized as
follows. We propose the COMS framework. We present the
design and implementation of the COMS framework in a Linux
KVM/Qemu based virtualized environment. The framework
currently includes four modules: 1) performance monitoring
and migration, 2) geolocation migration, 3) encrypted mi-
gration, and 4) random migration. We evaluate the COMS
framework with various experiments. Our evaluation results
show that the first two modules could bring performance
benefits to cloud customers, and the latter two modules could
mitigate security threats in cloud.

II. DESIGN AND IMPLEMENTATION

We designed and implemented the COMS framework in
a Linux KVM based virtualized environment. Typically, VM
live migration involves two physical machines. One source
machine, and one destination machine. Our goal is to integrate
existing VM live migration techniques into a web interface, so
we need three physical machines: source, destination, and a
web server. Generally, the web server will take requests from
web front end - submitted by users. The web server will then
parse these requests and determine users’ needs. Based on
users’ needs, the web server would then call a corresponding
module to serve users’ needs. In the following, we describe
the design and implementation of these four modules.

A. Module A: Performance Monitoring and Migration

Module A includes two components: monitoring agent and
migration agent. The monitoring agent is located inside the
virtual machine, and should be provided by the cloud customer.
The migration agent is located on the source side host machine.

These two agents communicate with each other via a pre-
defined interface, which in our implementation, is a shared
file that both agents can read from and write to.

When the customer’s workload is running, the monitoring
agent should also keep running, and monitor the workload’s
performance. When its performance degrades to a certain
pre-defined threshold, the monitoring agent should send a
signal via the pre-defined interface to the migration agent.
Upon receiving that signal, the migration agent would first
notify the destination Qemu process to launch a fake VM
image and enter into listening mode, and then it issues a
migration command to the source Qemu process to initiate a
migration procedure. Migration usually takes a certain amount
of time, therefore, during migration, the monitoring agent
should periodically check the migration status. This can be
achieved by communicating with the source Qemu process.
Once migration is completed, the monitoring agent should
notify the cloud customer, or write to a log file that is visible
to the customer.

B. Module B: Geolocation Migration

Module B also includes two components: analysis agent
and migration agent. The analysis agent is located inside the
virtual machine, and should be provided by the virtual machine
owner; the migration agent is located on the source side host
machine. These two agents also communicate with each other
using a pre-defined interface, such as a shared file.

The analysis agent’s job is to analyze the source of clients
(who access service running inside the virtual machine), by
either using tools such as geoiplookup [4], or searching in
some public available database. If the majority of the clients
are from some specific region, the analysis agent will then
notify the migration agent via writing into that shared file. The
migration agent would then take this as a signal to migrate the
virtual machine to a host machine that is closer to or within
that region.

C. Module C: Encrypted Migration

Module C allows users to enable or disable encryption.
If the user chooses not to encrypt migration, then the web
backend would issue default migration request to the source
Qemu process. If the user chooses to encrypt migration, then in
the setup phase, the web backend would notify the destination
machine to get ready to receive encrypted migration. This
requires more configuration work on both the source and the
destination side, as we need to generate a GPG key in advance,
so that the source side will later on using the GPG key to
encrypt the memory and disk image, and then the destination
side will use the GPG key to decrypt the memory and disk
image.

D. Module D: Random Migration

We define a list of physical machines for migration. If
the user chooses to enable random migration, module D will
migrate the virtual machine after some random interval, to a
server that is randomly picked up from the above physical
machine list. Such procedure will be repeated time and time
again, until the user selects to stop it.

From security perspective, we explain why random migra-
tion would be useful. Nowadays, attacks happening in cloud
mainly include two steps: First, find out the location of a
target virtual machine and launch their own virtual machine
on the same host machine; next, perform co-resident attacks.
As the representative work of the first step, Ristenpart et al.
[5] revealed that in leading cloud service such as Amazon
EC2, sophisticated attackers can put their virtual machines
co-resident with the victim’s virtual machine. Once attackers
can co-locate their own virtual machine with the target virtual
machine on the same host machine, as to the second step of the
attack, there are many offense techniques attackers can utilize.
These techniques will cause a denial-of-service, performance
degradation [2], or information leakage [6], [7] to the target
virtual machine. However, both the first step and second step
will take a certain amount of time. For example, in [§], the
authors show that the time spent to achieve co-residence with
a specific target VM in a public cloud is above one hour. In
[7], the covert channel attack on a target co-resident virtual
machine requires several minutes of setup time, and then it
takes even more time to steal sensitive information via the
covert channel. Therefore, if we can migrate the specified
virtual machine in a random fashion with the interval of a
few minutes or even less, then the attackers may neither be
able to find the location of their target virtual machine, nor be
able to perform the co-resident attacks.

III. EVALUATION

In this section, we mainly describe our evaluation for
module A, B, C, D. We used two machines (as the source
and destination) located in the same local area network (LAN)
to perform experiments for module A, C, and D. We call
these two physical machines Host 1 (Intel Core i7-4790
3.60GHz, 16G mem, Fedora 22) and Host 2 (Intel Core i7-
4790 3.60GHz, 16G mem, Fedora 22). For module B, i.e.
geolocation migration, we use two machines located at two
different states - to emulate that they are in two different
data centers. We call these two physical machines Host 3
(Intel(R) Xeon(R) CPU E5-1630 v3 @ 3.70GHz, 32G mem,
CentOS 7.1) and Host 4 (Intel(R) Xeon(R) CPU E5520 @
2.27GHz, 32G mem, Ubuntu 14.04.3). Qemu 2.4.0 was used
for evaluating module A, C, D; and Qemu 2.6.1 was used
for evaluating module B. The virtual machine images (Ubuntu
14.04.1 and Fedora 16, 2G Mem, 40G Disk) were stored
on Host 1 and Host 3. The migration we performed was
pre-copy migration [9]. In pre-copy migration, there are
two metrics: total migration time and service downtime. The
former refers to the total time taken between the initiation and
the completion of the migration, while the latter means the
duration in which the VM is suspended and service is not
available.

A. Module A: Performance Monitoring and Migration

To evaluate module A, we ran a computational workload
called Cuadro [10] inside a virtual machine (we call it VM1).
Then we launched four more other virtual machines, and made
them busy, so as to compete the resource with VMI1. We
expected this competition to downgrade the performance of
that workload running inside VM1. When the performance of
Cuadro in VM1 reached a low point, migration was triggered.
Figure 1 shows our experimental results.

CPU Benchmark Performance in a Virtual Machine w/o and w/ Migration

Time (sec)

28 T : T
—+— Baseline: Without Migration
—e— With Migration

26 1

241 B

22 B

201 1

183%&#%%%ﬁ@®eee At]

S
16 1
14
10 20 30 40 50
Runs

Fig. 1: Performance monitoring and migration.

The baseline (red curve, plus sign marker) represents the
Cuadro performance in the first virtual machine, with four
other virtual machines staying idle on the same host. It can
be seen from the Figure 1 that the baseline performance was
very stable: every single run consumed about 18 seconds.

Then that blue curve (circle marker) in Figure 1 demon-
strates the performance benefit when module A was enabled.
We repeated the experiment, but at some point, we started to
run CPU intensive benchmarks on the other virtual machines.
These virtual machines would compete CPU resource with the
first virtual machine (VM1). When all the virtual machines
were running CPU benchmarks, it can be seen from Figure 1
that VM1’s performance was degraded to 50% worse than
the baseline. With the migration option we implemented, this
could be solved. When VMI noticed that its benchmark’s
performance was degrading to a certain level, it notified the
host to migrate. Therefore we migrated it to another machine,
which in our experiment was an idle machine (no other
virtual machine was running at all). Therefore we can see
the performance was bounced back, and even better than the
original one.

B. Module B: Geolocation Migration

Figure 2 depicts our experimental results for evaluating
module B. We have two servers, Host 3 and Host 4, which were
located at two different states: state A and state B. The virtual
machine was originally located at state A, we ran iperf [11]
server inside the virtual machine. We ran iperf client from
another machine, which was located at state C.

The bandwidth between the server in state A and the client
was not stable, and it ranged from 30 to 70 mbps (red part of
the curve, plus sign marker); after a certain number of runs, we
decided to migrate the virtual machine from state A to state
B. It takes time to migrate a virtual machine, in particular
across states (in our case, it was over the Internet, not over
a LAN). During migration, the throughput downgraded a bit
(green part of the curve, circle marker). However, when the
migration was finished, we see the throughput was stable and
much better than before, about 90 mbps (blue part of the curve,
asterisk marker).

Network Benchmark Performance

120 T :
—+— Before Migration
During Migration
—+— After Migration
100t orat

Throughput (Mbits/sec)

100 120

20 40 60 80
Runs

Fig. 2: Geographic location migration.

C. Module C: Encrypted Migration

To evaluate module C, we first made the virtual machine
idle, and measured the cost of encrypted migration. For
both encrypted migration and non-encrypted migration, we
measured the migration time and downtime respectively. We
ran computational intensive benchmark Cuadro in the virtual
machine.

Figures 3 and 4 illustrate the experimental results. The
story behind Figure 3 is, we let the virtual machine be idle.
When we migrated a virtual machine in an encrypted way, it
inevitably increased both the migration time, and service down
time. It can be seen from these two figures that migration time
was roughly increased by 30%. Downtime was even worse: it
could be doubled or even tripled. Figure 4 is telling the same
story. The difference is, instead of letting the virtual machine
be idle, we let it run the network intensive workload iperf.

There are two reasons why encryption increases migration
time significantly. On one hand, encryption and decryption
consumes more CPU cycles, thus increases the computation
time, and slows down the migration; On the other hand, Qemu
itself does not do encryption. In fact, on both the source
side and the destination side, Qemu has to invoke a separate
program named gpg to encrypt and decrypt memory pages.
Qemu would then communicate with gpg via pipes, and such
a inter-process communication model brings a lot of context
switches, thus incurs considerable performance overhead.

D. Module D: Random Migration

Similar to encrypted migration, random migration comes
with a price. Generally, migration consumes CPU cycles, mem-
ory and network bandwidth. When migration is in process, the
workload running inside the virtual machine, or running on the
host machine, may experience performance loss.

To evaluate the performance overhead of random migration,
we conducted the following experiment: We ran the iperf
benchmark on the host machine, and measured the throughput
from the host machine to another physical machine. The
experiment includes four steps: First, there was no migration.
We just ran the iperf benchmark to measure the baseline
throughput. Next, we triggered the random migration, and did

Idle VM Migration Time w/o and w/ Encryption Idle VM Migration Downtime w/o and w/ Encryption

Busy VM Migration Time w/o and w/ Encryption

16, ~— Without Encryption 250 ~— Without Encryption 16 ~— Without Encryption © [~ Without Encryption
—6— With Encryption —©— With Encryption —©-_ With Encryption 250 \m‘
5 2 200 = on £
@ = 3 =
8 e fog L3 2 200
© £ o = o £
£ g 15 £ €
E H = g 150
s a 5 o
S =100 2 =
o b o # S [S 100
2 ® k=l ©
= > = > T
£ soff S
s S sof Ay ot !
8 8 WA et il ﬁﬁﬂgﬁ Hﬂ m T
M i
0
20 40 60 80 0 20 40 60 80 20 40 60 80
Runs Runs Runs

Fig. 3: Encrypted migration time (left) and service downtime
(right) when VM is idle.

Performance Overhead of Random Mlgratlon

1200
— Basellne Without Mlgratlon
Random Migration: Every 20~50 Seconds
1100 —+— Random Migration: Every 50~100 SecondsH
—4— Random Migration: Every 5~10 Minutes
o 1000+ q
(o3
£
2 o - -
S 900} | | i ¥ | i
< | ||
E ‘ |
= 800f || | J
3 | | (|
<] It A
= 700p i1 \A ,
A5 A
600+~ q
500
20 40 60 80 100

Runs

Fig. 5: Random migration.

the random migration every 20 to 50 seconds. Third, we trig-
gered the random migration, but did the random migration in a
different frequency - we did it every 50 to 100 seconds. Finally,
we triggered the random migration, but the frequency was
every 5 to 10 minutes. Figure 5 shows the result. It can be seen
that the baseline throughput was around 930 Mbits/sec. Virtual
machine migration indeed caused performance degradation on
the host, and the throughput degraded to about 670 Mbits/sec.
In other words, the performance loss was about 28%. The
more frequent we migrated the virtual machine, the more
performance loss we experienced: in Figure 5, among 120 runs
of the iperf benchmark, we encountered major performance
drops twice when migration frequency was every 5 to 10
minutes. We encountered major performance drops five times
when the migration frequency was increased to every 50 to
100 seconds, and six times when the migration frequency was
increased to every 20 to 50 seconds.

We then repeated the same experiment but ran the iperf
benchmark inside a virtual machine. However, we did not ob-
serve any obvious performance penalty. There are two reasons:
First, the baseline throughput inside the virtual machine was
very unstable. It fluctuated a lot even if we did not migrate
the virtual machine. Second, the migration traffic was initiated
by the host machine, rather than the virtual machine itself.
Therefore, the throughput of the virtual machine did not follow
the same pattern as the throughput of the host machine during
migration.

Fig. 4: Encrypted migration time (left) and service downtime
(right) when VM is running workload.

IV. CONCLUSION

In this paper, we present the design, implementation, eval-
uation of a new framework - COMS, which offers a customer
oriented virtual machine migration service in cloud environ-
ment. We demonstrate how convenient this framework could
be, and what kind of benefits it could bring to cloud customers.
Once such a framework is deployed, cloud customers have the
privilege to decide when to migrate, what to migrate, how to
migrate, and where to migrate. We believe such a flexible new
model would make cloud computing more attractive.

REFERENCES

[1] X.Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Understanding
performance interference of i/o workload in virtualized cloud environ-
ments,” in Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on. 1IEEE, 2010, pp. 51-58.

[2] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift,
“Resource-freeing attacks: improve your cloud performance (at your
neighbor’s expense),” in Proceedings of the 2012 ACM conference on
Computer and Communications Security (CCS). ACM, 2012, pp. 281-
292.

[3] J. Oberheide, E. Cooke, and F. Jahanian, “Empirical exploitation of
live virtual machine migration,” in Proc. of BlackHat DC convention.
Citeseer, 2008.

[4] “How to look wup the geographic location of an ip
address from the command line,” http://xmodulo.com/
geographic-location-ip-address-command-line.html.

[5] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS). ACM, 2009, pp. 199-212.

[6] Z.Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: high-speed
covert channel attacks in the cloud,” in Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12), 2012, pp. 159—
173.

[7]1 J. Xiao, Z. Xu, H. Huang, and H. Wang, “Security implications of
memory deduplication in a virtualized environment,” in 2013 43rd
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). 1EEE, 2013, pp. 1-12.

[8] Z. Xu, H. Wang, and Z. Wu, “A measurement study on co-residence
threat inside the cloud,” in 24th USENIX Security Symposium (USENIX
Security 15), 2015, pp. 929-944.

[9] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation (NSDI) -Volume 2. USENIX Association, 2005, pp.

273-286.

[10] “Cuadro cpu benchmark,” http://sourceforge.net/projects/
cuadrocpubenchm.

[11] “iperf - the network bandwidth measurement tool,” https://iperf.fr/.

Busy VM Migration Downtime w/o and w/ Encryption

