

BFTRAND: Low-latency Random Number Provider for BFT Smart Contracts

Presenter: Jinghui Liao

Other Authors: Borui Gong, Wenhai Sun, Fengwei Zhang, Zhenyu Ning, Man Ho Au, and Weisong Shi

> Department of Computer Science and Engineering Southern University of Science and Technology COMPuter And System Security Lab

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Outline

- 1 Random Number Generation
- 2 BFTRAND Overview
- 3 BFTRAND Protocol
- In BETRAND Security Analysis
- 5 Implementation and Evaluation

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Server Client

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

メロト メポト メヨト メヨト

We do not trust single server.

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

< A IN

Multi-Server Client

H b

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

• • • • • • • • • • •

What bad guys can do?

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

4 A N

Multi-Server Client: Bias Attack

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Image: A math a math

How about aggregation algorithms?

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Multi-Server Client: DOS Attack

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

(日)

How to prevent bad guys from doing bad things?

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Multi-Server Client: Threshold

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Image: A math a math

Distributed Random Beacon (DRB).

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Is DRB sufficient for Blockchain?

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Is DRB sufficient for Blockchain?

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

A 1

BFTRAND Overview

- A secure runtime random number generator for smart contracts
- Integrates distributed random beacons (DRB) into BFT consensus
- Achieves low latency and on-chain data savings

Figure: BFTRand RNP

- Importance of randomness in blockchain applications
- Limitations of existing commit-reveal schemes
- Need for a secure and efficient runtime RNG

Challenges

- Integrating DRB without compromising consensus security
- Mitigating post-reveal undo attacks (PUA)
- Ensuring pseudo-randomness, uniqueness, and availability

Figure: Commit-execute RNP

BFTRAND Protocol

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

- Addressing semantic gaps between DRB and consensus
- Semantic Gap between DRB threshold k and BFT threshold t: $t < k \leq 2t + 1$
- Semantic Gap between DRB Round and Consensus Round: UpdateState(st_{b-1}, ⊥, ⊥, pk) : st ← σ_{b-1} || b − 1 when v = 0, and UpdateState(st_{b,v-1}, ⊥, ⊥, pk) : st ← st_{b,v-1} || b || v, otherwise.

- Providing random numbers to smart contracts
- Utilizing pseudo-random functions (PRF) for efficiency
- Ensuring unique and unpredictable outputs

- A new attack on runtime RNG schemes
- Exploiting transaction atomicity to revert unfavorable results
- Identified four types: Contract, Fallback, Fee, and Script PUA

Post-reveal Undo Attack (PUA): Vulnerable BlindBox

Jinghui Liao (SUSTech University)

June 2024

Post-reveal Undo Attack (PUA): Contract PUA

Jinghui Liao (SUSTech University)

Post-reveal Undo Attack (PUA): Fallback PUA

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Post-reveal Undo Attack (PUA): Fee-based PUA

June 2024

24

Post-reveal Undo Attack (PUA): Script-based PUA

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Image: Image:

- A countermeasure against PUA
- Validates user inputs and detects malicious transactions
- Maintains transaction atomicity and security properties

IVD

Input Validation-based Detection (IVD) (C, T, σ)

For simplicity, we use the name of the contract as the contract address and the abstract invoking function of C as invoking C:

- Leveraging the pseudo-randomness of DRB and PRF
- Ensuring unpredictable and unbiased random numbers
- Resilient against precomputation attacks

COMPuter And System Security Lab

June 2024

- Guaranteeing deterministic uniqueness of random numbers
- Mitigating replay attacks and validator collusion
- Utilizing threshold-based DRB and secure PRF

COMPuter And System Security Lab

June 2024

- Ensuring consistent random number generation
- Tolerating Byzantine faults and DoS attacks
- Leveraging the robustness of the underlying BFT consensus

- Prototype implementation on Neo blockchain
- Utilizing DBLS scheme for DRB and BLS signature
- Demonstrating efficiency and scalability advantages

Table: Applications Transaction Fee (GAS/\$).

Method Loot::tokenURI Neoverse::UnBoxing Neoverse::BulkUnBoxing RPS::Play Network Fee 0.00593250/0.013 0.00119552/0.002 0.00125752/0.002 0.00616260/0.013 System Fee 0.20694257/0.459 0.07313472/0.162 0.36183988/0.803

0.06588677/0.146

COMPASS Lab

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Evaluation - GAS Cost

• The left y-axis is the total GAS consumption, while the right y-axis is the GAS cost ratio R = (Commit + Execute)/Runtime.

Evaluation - Blockchain Overhead

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Comparison with Existing RNG Solutions

- Superior efficiency and scalability
- Lower on-chain storage and computational overhead
- Secure against various random number attacks

Protocol	Platform Consensus	Method(s)	Resistance (t)	# random values (r)	Latency (Consensus round)
Drand [31]	PABFT	Threshold SecretBLS	t < n/2	$O(\sigma)$	≥ 2
HERB [36]	ø	Threshold ElGamal	t < n/3	$O(\sigma)$	≥ 2
RandChain [56]	Sequential PoW	PoW	t < n/3	$O(\sigma)$	≥ 2
RandHerd [93]	BFT	Threshold Schnorr	t < n/3	$O(\sigma)$	≥ 2
RandHound [93]	BFT	Client based, PVSS	t < n/3	$\mathcal{O}(\sigma)$	≥ 2
BRandRiper [19]	BFT	VSS, q-SDH	t < n/2	$O(\sigma)$	≥ 2
Dfinity [2]	BFT	Threshold BLS	t < n/2	∞	≥ 2
Secret [24]	DPoS	Scrt-RNG,TEE	t < n/2	∞	≥ 2
Elrond [21]	Secure PoS	BLS,onchain data	t < n/3	∞	≥ 2
Klaytn [23]	Istanbul BFT	VRF	t < n/3	$O(\sigma)$	≥ 2
Harmoney [22]	Fast BFT	VRF,VDF	t < n/3	$O(\sigma)$	≥ 2
★Chainlink VRF [35]	ø	VRF, TEE	t < n/2	$O(\sigma)$	≥ 2
*Automata [76]	ø	VRF, TEE	t < n/2	∞	1
BFTRAND _{commit-execute}	BFT	ø	t < n/3	$O(\sigma)$	≥ 2
BFTRAND	BFT	Threshold BLS	t < n/3	∞	1§

In the table, n denotes the number of consensus nodes, t is the maximum number of Byzantine nodes allowed in the system, and σ denotes the beacon. **Resistance** refers to the tolerance of the system for Byzantine faults, \star is the off-chain third-party Oracle RNP. ∞ means the number of random numbers is upper-bounded by consensus.⁸ BFTRAND is the first smart contract solution in runtime RNP on a BFT-based blockhain.

COMPASS Lab

June 2024

Thank You!

Questions and Comments are Welcome.

Jinghui Liao (SUSTech University)

COMPuter And System Security Lab

June 2024

Image: A math a math