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Abstract— Many modern processors have embedded hardware
tracing techniques (e.g., Intel Processor Trace or ARM Core-
Sight). While these techniques are widely used due to their
transparency and low overhead, they also bring serious security
threats. Attackers can utilize hardware tracing to trace the
trusted applications from a non-secure application. Existing
protection techniques fail to effectively protect the runtime
information when hardware tracing is employed. To counter these
threats, in this paper, we propose a novel direction called anti-
hardware tracing. Our key idea is to exploit the limitations of
hardware tracing: trace buffer overflow can cause trace data
loss. We build a model to analyse the overflow and outline
three principles for efficient triggering overflows and achieving
anti-hardware tracing: numerous branches in the program, high-
speed execution of the program, and the high-water mark of the
trace buffer. We develop a framework called ARMOR on ARM
Juno R2 to realize our approach. ARMOR protects software
against the trace unit Embedded Trace Macrocell (ETM) in
CoreSight by instrumenting protection and loop functions. The
protection function detects runtime environments, efficiently fills
the trace buffer, and employs various protection strategies like
PID (process identifier) replacement and PIE+STRIP+ASLR.
Meanwhile, the loop function triggers overflows efficiently based
on context-based calculations and anti-ETM loop. Our evaluation
demonstrates that the overhead of ARMOR is 77.31% lower than
that of OLLVM on SPEC2006. ARMOR effectively hides 54.51%
of basic blocks across 16 real-world applications, triggering
113× more overflows. Moreover, we showcase two practical
applications of ARMOR. Firstly, we conduct a cryptographic and
cross-world attack on GnuPG 1.4.13 RSA private keys using
ETM, which can steal entire keys from a program in the Secure
world with a single run. ARMOR successfully reduces leaked
bits by 84.5%. Secondly, ARMOR impedes hardware-assisted
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fuzzing by reducing throughput by 89.71% and branch coverage
by 47.99%.

Index Terms— ARM CoreSight, hardware tracing, software
protection.

I. INTRODUCTION

MODERN CPUs are equipped with hardware tracing
techniques, such as Intel Processor Trace (PT) [2] and

ARM CoreSight [3]. These techniques can transparently record
the instructions executed by CPU and encode the runtime
information into trace packets with negligible overhead (2)-
5%) [4]. Then, the users can retrieve the packets from the
memory buffer and decode them to analyse the information.
By examining the information with the disassembly code of
binary, users can recover its control flow. These techniques
have been employed in various fields, including fuzzing [5],
[6], [7], [8], [9], [10], malware analysis [11], [12], [13],
software debugging [14], control flow integrity [15], [16], [17],
[18], [19], [20], and others [21], [22], [23], [24], [25].

While hardware tracing brings convenience to program
analysis, it also poses some security risks. Firstly, with the
upgrade of defense mechanisms, the Trusted Execution Envi-
ronment (TEE) technologies, such as Intel Software Guard
Extensions (SGX) [26] and ARM TrustZone [27], have been
widely deployed in commercial processors to protect the
security-critical applications [28]. Researchers also extend
the confidential computing to user space such as user-level
(Normal world) isolated environments [29]. Even if an attacker
gains the root or kernel privileges, the attack may not directly
access the memory within these secure environments. How-
ever, many defense mechanisms, such as ARM TrustZone [27]
or Shelter [29], did not consider the hardware tracing or
provide protection against it. As a post-root attack, hard-
ware tracing can enable cross-privilege tracing on specific
devices [30], posing significant challenges to existing pro-
tection mechanisms [30], [31], [32]. For example, Ning and
Zhang explored the flaws in authentication signals of ARM
CoreSight and proposed the nailgun attack [30]. This attack
employs ARM ETM, the trace unit in ARM CoreSight, to non-
invasively trace the Trusted Applications (TA) and steal secure
data (e.g., AES encryption key) in ARM TrustZone from a
non-secure application. Furthermore, adversaries can combine
Intel PT or ARM CoreSight with greybox fuzzing to accelerate
detecting the vulnerabilities in software [5], [6], [7], [8],
[9], [10]. Particularly, inspired by the nailgun attack [30],
some greybox fuzzers have been built on ARM CoreSight to
fuzz the TA in ARM TrustZone [33], [34], [35]. Therefore,
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protecting the software against attackers who can exploit
hardware tracing is crucial in specific scenarios.

However, some existing protection techniques (e.g., anti-
debugging, anti-tracing, and code obfuscation) may not
effectively achieve this goal. Traditional anti-debugging or
anti-tracing techniques usually focus on identifying exter-
nal debuggers or attackers and preventing them [36], [37],
[38], such as measuring the time of executed instructions
and examining the process of debugger. However, hardware
tracing can bypass these detections due to its transparency
and negligible runtime overhead [11], [14]. Some tools even
leveraged hardware tracing to bypass the anti-debugging tech-
niques [14], [31], [32]. A possible way to detect and disable
the hardware tracing techniques is accessing and configuring
their registers, while these registers are only accessible for at
last kernel-privilege process rather than the software running
at the user level without the root-privilege ability (even in the
Secure world). Code obfuscation techniques primarily aim to
protect software against malicious modifications or reverse-
engineering, rather than hardware tracing [1], [39], [40], [41],
[42], [43], [44]. Though the obfuscated binaries challenge
attackers in understanding program semantics, we argue that
code obfuscation cannot prevent attackers from obtaining
information about the executed instructions and incurs heavy
overhead (we will prove this in our evaluation).

To address software security concerns posed by hardware
tracing, in this paper, we propose a new direction of software
protection, named anti-hardware tracing. We aim to hide
some runtime information of the programs under hardware
tracing, such as the control-flow information of a secure appli-
cations in TEE. We leverage the limitations of modern tracing
techniques: the trace buffer overflow issue. Specifically,
modern CPUs have higher bandwidth compared to memory,
which poses a challenge in directly writing trace data to
memory without loss. To address this, embedded hardware
tracing units like Intel PT and ARM ETM in CoreSight utilize
on-chip trace buffers, such as the 64 KB SRAM on ARM Juno
R2, to temporarily store trace data with low latency. Then the
trace buffer exports the trace data to memory at a constant
speed. However, if the trace units generate an excessive
amount of trace data at a high frequency, the trace buffer
might overflow and raise a signal to stop trace units for a while
until it recovers from the overflow. During this time, the trace
units are lockout while CPUs are executing the instructions,
resulting in the loss of trace data. We define this as escap-
ing from hardware tracing. Additionally, certain runtime
information, such as conditional branches and destinations of
indirect branches, can only be determined by decoding tracing
packets rather than through static analysis. We define these
instructions as implicit-semantics points (return instruction is
regarded as the indirect branch in this paper). When executing
these instructions during trace buffer overflow, the tracing
units may miss this information. Therefore, hiding specific
runtime information under hardware tracing becomes feasible
by frequently triggering trace buffer overflow before reaching
these implicit-semantics points.

However, efficiently triggering trace buffer overflows poses
a challenge due to the careful design of trace units and buffers
by vendors. Inducing overflows in many programs under nor-

mal execution can be difficult. To address this challenge, we
analyse the workflow of trace buffer through model building
and experiments in Section III. Then we point out three
principles for efficiently triggering trace buffer overflow:
1) Numerous branches in program. Techniques like Intel
PT and ETMv4 conduct branch tracing, particularly the des-
tinations of indirect branches. Numerous executed branches,
particularly indirect branches, can make trace units generate
numerous trace data. 2) High-speed execution. The program
needs to run at high speed to generate trace packets faster
than the bandwidth at which the trace buffer outputs them.
This ensures that the trace buffer can potentially overflow.
3) High-water mark of the trace buffer. Compared to an
empty trace buffer, the buffer with a high-water mark of trace
data triggers the overflow more easily.

In this paper, we take ARM CoreSight as an example
to develop a compiler-level anti-hardware tracing framework
named ARMOR, as powerful attacks have been implemented
through CoreSight [30]. Developers can compile and rein-
force the software with ARMOR. Specifically, for satisfying
the proposed principles, ARMOR instruments two functions
in software: protection function and loop function. The
protection function is inserted in the program entry to mea-
sure the execution speed of instructions for ensuring that
the program is running at a high speed (principle (2)), and
fill the empty trace buffer efficiently with our elaborate
anti-ETM loop (principle (3)). It also conducts two protection
strategies including PID replacement and PIE+STRIP+ASLR.
Then ARMOR instruments the loop functions before the
implicit-semantics points (and the user-specific points) in the
program to hide crucial runtime information. The loop function
also contains the anti-ETM loop (principle (1)), which is
designed according to the features of ETM for efficiently
generating trace data. The function utilizes a context-based
mechanism to calculate the times of loops for triggering the
overflow and avoiding heavy overhead.

We conduct comprehensive experiments to evaluate
ARMOR. Compared to OLLVM [1], a typical code obfus-
cation tool, ARMOR introduces 77.31% lower overhead on
SPEC2006 and is more effective in hiding the runtime infor-
mation under ETM on 16 real-world applications. To prove
the practicability of ARMOR, we employ it in resisting cryp-
tographic attacks and impeding hardware-assisted fuzzing.
Using ETM, we demonstrate an attack to extract the RSA
private keys from a TA running GnuPG 1.4.13 in the
Secure world. Compared to some side-channel attacks [45],
attackers only need to run the program once to capture
all the bits of a 2,048-bit key by ETM, which proves the
security threats brought by hardware tracing. Fortunately,
ARMOR can effectively resist this attack. We also utilize
ARMored-CoreSight [8] to evaluate ARMOR in anti-fuzzing.
The results shows that ARMOR can reduce the efficiency
of fuzzer significantly. Finally, we discuss the limitations of
ARMOR and compare ARMOR with other software protection
techniques.

In summary, this paper makes the following contributions.
• We propose anti-hardware tracing technique. Unlike

existing protection techniques which are useless under
transparent hardware tracing, our technique utilizes the
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Fig. 1. The typical architecture of ARM CoreSight.

trace buffer overflow to effectively bypass the trans-
parency and protect the runtime information.

• We analyse the buffer overflow and point out three
principles in efficient anti-hardware tracing: Numerous
branches in the program to generate trace data, high-speed
execution of the program to accelerate the generation, and
high-water mark of trace buffer for efficient triggering
overflow.

• We design and implement a framework ARMOR on ARM
Juno R2. ARMOR instruments the protection and loop
functions to meet the three principles for triggering the
overflow before the implicit-semantics points.

• We conduct comprehensive evaluations on ARMOR.
ARMOR is effective in concealing the runtime information
by hiding 54.51% basic blocks and 50.91% addresses of
indirect branches on 16 real-world applications.

• We conduct a cross-world attack on the RSA keys of a
TA by ETM and resist this attack by ARMOR. ARMOR
reduces 84.5% bits of keys stolen by attackers. ARMOR
also impedes the hardware-assisted fuzzer by reducing
47.99% branches.

• We open the source of ARMOR at https://github.com/
MoonLight-SteinsGate/Armor.

The remainder of this paper is structured as follows.
In Section II, we introduce the background of the hardware
tracing technique and illustrate our threat model. In Section III,
we build a model of trace buffer overflow and conduct some
experiments to prove that. In Section IV, we present the
design of ARMOR. In Section V, we present experimen-
tal results, including a cryptographic attack based on ETM
and the corresponding protection of ARMOR. In Section VI,
we take some discussion about ARMOR and anti-hardware
tracing. We present related work and conclude in Sections VII
and VIII, respectively.

II. BACKGROUND AND THREAT MODEL

A. Hardware Tracing Technique
For capturing the executed instructions inside the processor,

modern multi-core processor architecture and system have
been integrated with hardware tracing modules, such as Intel
PT [2] and ARM CoreSight [3]. Fig. 1 shows a typical
architecture of ARM CoreSight implemented in ARM Juno
R2 [46]. Generally, the trace units (i.e., ETM in ARM Core-
Sight) capture the runtime information by monitoring the

corresponding cores and compress the trace data into trace
packets to reduce the amount of trace data. Then, the units out-
put the packets to an internal trace buffer, such as Embedded
Trace FIFO (ETF), for addressing the significant bandwidth
problem. The packets are fed into the Embedded Trace Router
(ETR), which routes the trace data to the user-configurable
buffer in system memory [47]. Finally, the users decode the
trace packets to retrieve the accurate control flow with the help
of additional binary disassembly [4].

Particularly, there are three crucial points in modern hard-
ware tracing techniques: 1) Branch tracing. State-of-the-art
techniques such as ETMv4 and Intel PT usually support branch
tracing, which records the instructions that change the control
flow of programs, including branches and exceptions [4].
Taking the binary in Fig. 1 as an example, starting from
an entry (0x405758), by recording whether the conditional
branch is taken or not taken (e.g., Atom packets in ETM) and
the destinations of branches (e.g., Address packets in ETM),
the analyzer can accurately recover the control flow with the
disassembly code. Since the addresses of direct branches
can be determined in the instructions (e.g., instruction at
0x405758), popular techniques usually record the destinations
of indirect branches. Therefore, we define the conditional
branches and indirect branches as implicit-semantics points,
where the absence of tracing information in these points may
lead to the unrecoverable control flow. For example, in Fig. 1,
an overflow occurs before executing a conditional branch.
When ETM recovers from this overflow, the program has
executed several instructions and is executing the instruction at
0x40f878. As a result, information on the executed branches
during the overflow is absent.

2) Trace buffer overflow. Existing techniques support
capturing and transporting trace packets to the memory of host
devices. However, due to the powerful processors in modern
chips, trace units can generate data in the range of hundreds to
thousands of MB/s (depending on trace filters, trace packets,
and packet generation frequency) [4], which may exceed the
bandwidth of memory writing. Therefore, existing techniques
usually utilize the on-chip internal buffer to temporarily store
trace data with low latency, which can flatten the bursts for
bandwidth requirements in memory. However, limited by the
capacity of this dedicated trace buffer (e.g., 64 KB of ETF in
ARM Juno R2), there would be an overflow in the buffer if
trace units generate lots of trace data in a short time, causing
the loss of trace data. Therefore, we consider protecting the
programs from hardware tracing by frequently triggering the
trace buffer overflow. It is worth noting that this buffer refers
to the internal trace buffer, of which the size is fixed, rather
than the buffer configured by the user in the system memory
to fetch the trace data.

3) Kernel-privilege user. Generally, hardware tracing mod-
ules can be employed by configuring their registers, which
requires at least kernel privileges (or root privileges on specific
Linux systems). Taking ARMv8-A architecture as an example,
a core has four exception levels (EL0-EL3), which are used
by applications, kernels, hypervisors, and secure monitor,
respectively [48]. In addition, ARM introduces two CPU states
by ARM TrustZone: the Normal world (also named Non-
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TABLE I
TRACE ELEMENTS AND TRACE PACKETS OF ETM

secure world) and the Secure world [48]. No matter whether
a non-root process is running in Secure EL0 or Normal EL0,
it cannot access the registers of CoreSight.

B. Embedded Trace Macrocell

ETM is a standard trace unit in ARM CoreSight. The
trace elements generated by ETM can be classified into
several categories, such as synchronization and basic program
flow. The basic program flow elements are related to control
flow, including Atom, Exception, Address, and Context. The
Address element denotes the destination of a branch, and the
Atom element represents whether a branch is taken or not
taken (E is taken and N is not taken). Table I lists the trace
packets related to control flow.

Specifically, ETM takes some compression techniques to
generate the packets related to Address and Atom [49]. First,
it stores up to three recent addresses in a queue, denoted as
address_reg[i] (i is 0, 1, 2). Each time a new Address element
is generated, ETM updates the three addresses in the queue.
Before generating an Address packet, ETM compares the new
address value with the three addresses in the queue. If the
new address exactly matches any of them, ETM will output an
Exact Match Address packet instead of other Address packets,
which costs only one byte. Moreover, the Short Address and
Long Address packets only contain the least significant bits
that have changed from the most recently traced address stored
in address_reg[0]. If the number of changed bits is no
more than 17, ETM only generates a Short Address packet,
which costs no more than three bytes. Furthermore, ETM
always uses one byte to generate the Atom packets, which
can mostly denote 24 Atom elements. By these techniques,
ETM minimizes the amount of trace data to avoid trace buffer
overflow as much as possible.

According to the manual of ETM [49], ETM also supports
some features, including context ID tracing, global timestamp-
ing, and branch broadcasting. Generally, ETM or Intel PT
only records the destination addresses of indirect branches in
the default mode. Unlike PT, ETM can record the destinations
of direct branches under the branch broadcasting mode [49].
Furthermore, users can configure the context ID comparators
and address range comparators of ETM to trace the assigned
process within the specified address range [49]. Notably,
in addition to instruction tracing, ETM also supports data
tracing. However, this mode may generate an excessive amount

of trace data. Many SoCs, such as ARM Juno R2, do not
implement this function.

Particularly, there are four authentication signals in ARM
CoreSight to manage the debugging or tracing privileges [49].
Among them, the signals NIDEN and SPNIDEN determine
whether ETM can non-invasively trace the code in the Normal
world and Secure world, respectively. Generally, the signal
NIDEN is enabled by default to support users to trace and
analyse their applications in the Normal world. However, the
signal SPNIDEN may be ignored and enabled by manufac-
turers on many devices, leaving enough wiggle room for an
attacker to launch attacks to the Secure world [30].

C. Threat Model and Assumptions
In this paper, we focus on protecting programs from mali-

cious attackers who abuse the ETM. We trust the secure
monitor in EL3, hypervisors in EL2, and the components
in Secure world (e.g., TA and TEE OS). We also trust the
hardware provided by the manufacturer. We consider the
adversaries as the kernel-privilege attackers in the Normal
world (i.e., Normal EL1). They have full control of the
untrusted OS. Their goal is to leak the secret data of secure
software, such as the control-flow information of a cryptogra-
phy library. The software is a TA running in Secure EL0 or
a user-privilege (i.e., Normal EL0) secure program running in
the Normal world isolated environments (e.g., Shelter [29]).
Under these secure environments, even the kernel-privilege
attackers cannot directly access the memory of the protected
process [27], [29]. However, they can maliciously utilize the
ARM CoreSight to conduct malicious attacks. We also assume
that the signals SPNIDEN and NIDEN in ETM are enabled
by the SoC manufacturers. In fact, according to the investi-
gations in previous works [30], [33], many devices adhere to
this assumption (i.e., enabling these signals). Therefore, the
sophisticated attacker can follow the nailgun attack [30] to
mount a kernel module and employ ETM to trace the protected
software non-invasively.

Furthermore, this paper focuses on mitigating the attacks
based on hardware tracing. We do not consider physical attacks
(e.g., bus snooping attacks [50]) and invasive debugging (e.g.,
utilizing JTAG). Side channel attacks are also out of our
scope in this paper [51], [52], [53], [54], [55]. Particularly,
for the interrupt-based attacks [53], [54], [55], we assume that
the interrupts raised by kernel-privilege attackers (i.e., non-
secure interrupts) to the core running the TA are blocked
by the interrupt controller, which is feasible by conducting
specific configuration in the Secure world [56], [57], [58].
For example, according to the manual of Trusted Firmware-A
(TF-A) [58], we can block the non-secure interrupts by con-
figuring the exception mask bits I and F in the PSTATE
register of a core when entering the Secure world. This can
make the processes in the Secure world monopolize the core,
and even the kernel-privilege attackers cannot modify the
register or interrupt the TA. We will discuss more details about
the interrupt-based attacks and how to mask the non-secure
interrupts in Section VI.

Moreover, we argue that the anti-hardware tracing technique
should not prevent legitimate users from using ETM to trace



YUE et al.: ARMOR: PROTECTING SOFTWARE AGAINST HARDWARE TRACING TECHNIQUES 4251

and analyse applications in the Normal world. Particularly,
since the protected software is running as an EL0 process in
the Secure world or isolated environment, it cannot perceive
or disable the ETM through reading or writing the registers
of CoreSight, which is required for at least EL1 privileges.
Moreover, enforcing the access control to the tracing memory
and preventing malicious programs from directly accessing it
may be unfeasible as it is challenging to determine whether the
access is from the attacker. Furthermore, the above counter-
measures could potentially impact the normal usage of ETM
by legitimate users and can still be bypassed by sophisticated
attackers. For example, if the TEE OS or isolated environ-
ments disabled the ETM when the protected software traps in
EL1-EL3, attackers can bypass this by restarting ETM.

III. ESCAPING FROM HARDWARE TRACING

A. Workflow of Trace Buffer

We first build a model to analyse the critical conditions of
trace buffer overflow. For the program P running on one core
C with the configurations proposed in Section II-C, the amount
of trace data generated by ETM in time t can be denoted as
G(t, P, C) (briefly as G(t)). For the trace buffer, we represent
its size as Lbu f f er and its constant bandwidth of exporting
trace streams to the memory as V . The amount of trace data
in trace buffer in time t is D(t), deduced as:

D(t) =

∫ t

0
G(s)ds − V t (1)

Therefore, the critical conditions of the first trace buffer
overflow occurring in time t1 can be denoted as:

D(t1) =

∫ t1

0
G(s)ds − V t1 = Lbu f f er (2)

When the trace buffer overflow occurs, the trace units will
hang up until the trace buffer drains some trace data and
recovers from the overflow. It does not mean that all of the
trace data in the buffer will be drained, where we denote
the amount of drained data as 1n. We utilize t2 to represent
the time that trace units recover from the previous overflow in
time t1 and 1t to denote this time interval:

1t = t2 − t1, 1n ≤ V 1t ≤ Lbu f f er (3)

Based on Equation (2) and (3), D(t2) can be deduced as:

D(t2) =

∫ t1

0
G(s)ds − V t1 − 1n = Lbu f f er − 1n (4)

From time t2, the trace units recover and start to trace the
program until the trace buffer overflow occurs again in time t3.
We can calculate D(t3) as:

D(t3) = D(t2) +

∫ t3

t2
G(s)ds − V (t3 − t2) = Lbu f f er (5)

Based on Equation (4) and (5), we can further deduce that:∫ t3

t2
(G(s) − V )ds = 1n ≤ Lbu f f er =

∫ t1

0
(G(s) − V )ds

(6)

Fig. 2. The model of trace buffer overflow.

Assuming that the trace units recover from the k overflow in
time t2k and the (k+1) overflow occurs in time t2k+1, we can
extend Equation (6) as:∫ t2k+1

t2k

(G(s) − V )ds = 1n ≤ Lbu f f er =

∫ t1

0
(G(s) − V )ds

(7)

From starting tracing to time t2k+1, the trace buffer overflow
occurs (k + 1) times. Then we can calculate the percentage of
the time that trace units hang up (denoted as p) as:

p =
k1t
t2k+1

=
k1t

t2k+1 − t2k + t2k − t2k−1 + · · · + (t2 − t1) + t1

=
k1t

k∑
i=1

(t2i+1 − t2i ) + t1 + k1t
(8)

From Equation (7) and (8), considering that V , 1n, and
1t are constant, the larger G(t) is, the closer t2k+1 and t2k
are to. Then the p are closer to 100%, meaning more trace
data loss. In contrast, if the execution speed of instructions
in the program is too slow or the program contains too few
branch instructions, the bandwidth of trace data generated by
trace units will be less than the bandwidth of trace buffer (i.e.,
G(t) < V ), never causing the overflow.

Moreover, from Equation (7), since the drained trace data
during the overflow is no more than the size of the buffer,
the time interval to trigger the first trace buffer overflow is no
shorter than that of subsequent triggering. Particularly, we can
presume G(t) is close to a constant Vg . Then the model of
trace buffer can be described as the curve in Fig. 2.

B. Trace Buffer Overflow on ARM Juno R2
We apply our model to measure the three crucial parameters

on ARM Juno R2, including the bandwidth V , the recover time
1t , and the amount of drained data 1n, which are the basis
of implementing ARMOR on Juno R2.

We utilize ETM to trace a binary containing a simple loop
for 1, 000, 000 times by enabling the branch broadcasting on
ARM Juno R2, which is listed in Fig. 3. From Fig. 3, almost
in each loop, ETM generates 2 bytes trace data: an Atom
Format 1 packet with the Atom element E and an Exact
Match Address packet with the Address element 0x40062c.
Moreover, since the number of loops is large enough, we can
consider the execution time of each loop to be constant. The
workflow of ETF will be approximate to the model in Fig. 2.
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Fig. 3. The code snippet of the loop and the generated packets of ETM.

For measuring the parameters, we record the execution time
of 1, 000, 000 loops and the amount of trace data, denoted
as T and M , respectively. We can approximate the execution
time of each loop as T

1000000 . We also count the number of
loops and overflows traced by ETM, represented as Nloop and
Now, respectively. Then the number of loops executed when
the trace units hang up can be calculated as 1000000−Nloop

Now
.

We can utilize it to measure the recovery time 1t . We count
the number of loops and the amount of trace data between two
consecutive overflows occurring in t2k−1 and t2k+1, denoted as
Nk and Dk , respectively. Based on our model, we calculate V ,
1t , and 1n as:

V ≈
M
T

1t ≈
1000000 − Nloop

Now

∗
T

1000000

1n ≈

∑Now

k=1(Dk − Nk ∗
T

1000000 ∗ V )

Now

(9)

Then we execute the binary on two different cores. One is
Cortex-A72 with 1.2 GHz and 2 MB of L2 cache, while
the other is Cortex-A53 with 0.95 GHz and 1 MB of L2
cache. We repeat the experiments for 1000 times to reduce
the randomness introduced by environments, decode the trace
data by ptm2human [59], and analyse the trace packets.

Table II shows the average results. From Table II, the
bandwidth of ETF V is about 503.8 MB/s. It takes ETF
about 172.4 us to recover from one overflow by draining
about 83 bytes of trace data, during which the program
can escape from hardware tracing. Furthermore, ETM traces
330, 278 loops on Cortex-A72, less than those on Cortex-A53
(about 408, 353). The reason is that the core with higher per-
formance executes more instructions during the recovery time,
leading to more trace data loss. Therefore, when executing the
same instructions, the higher execution speed may bring more
protection to the program against hardware tracing.

In summary, by building the model and conducting exper-
iments on trace buffer overflow, we prove that it is viable
to hide the runtime information and achieve anti-hardware
tracing by triggering lots of overflows, where the following
two principles should be satisfied: 1) there are numerous
branches, particularly indirect branches, in the programs.
2) programs are not allowed to run at a low speed (e.g., under
debugging or on a processor with poor performance). And an
additional principle to efficiently produce overflows is also
proposed: 3) running the program in the trace buffer with a
high-water mark is easier to trigger the overflow.

TABLE II
THE AVERAGE RESULTS OF 1, 000 TRAILS ON CORTEX-A72 AND A53

Fig. 4. Overview of ARMOR.

IV. DESIGN AND IMPLEMENTATION

A. Overview

Inspired by our model of trace buffer overflow and the
experiments on ARM Juno R2, we design and implement
our anti-hardware tracing framework, named ARMOR. Fig. 4
shows the overview of ARMOR. For conducting some pro-
tection strategies and efficiently triggering lots of overflows,
ARMOR analyses the assembly code and instruments two
crucial functions in the program to satisfy the three principles,
including protection function and loop function.

For satisfying principles (2) and (3), ARMOR inserts the
protection functions in the entry of main function, where the
trace buffer may be empty. The protection function executes
some loops and measures the execution speed of loops to
detect environment, decides whether to stop the process, and
executes the anti-ETM loop to quickly fill trace buffer and
trigger the overflow. Moreover, since ETM supports tracing
a specific process within an address range, we propose two
countermeasures to thwart attackers from exploiting these
features: 1) PID replacement. This function changes the PID
by forking a child process that replaces the parent process,
which can hide runtime information under context ID trac-
ing. 2) PIE+STRIP+ASLR. ARMOR compiles the program
as position-independent executable (PIE) code and strips the
symbolic information. Then the protection function checks the
status of Address Space Layout Randomization (ASLR) and
ensures that the program runs only when ASLR is enabled.
This brings challenges for attackers to pre-specify the traced
address range and analyse the runtime information.

Since the protection function has filled the trace buffer in a
high-water mark, according to principle (3), the program only
needs to execute a few branches to trigger the subsequent
overflow. For protecting some crucial control-flow informa-
tion, ARMOR inserts the callers of loop functions before the
implicit-semantics points and some user-specific instructions
to trigger the overflow and stall the ETM when executing
these branches. The loop function contains the anti-ETM loop,
which is designed according to the mechanism of ETM and
can generate significantly more trace data than the common
loops, satisfying the principle (1). Moreover, the times of loops
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are calculated by the context-based calculation mechanism to
reduce the overhead introduced by loop functions.

Finally, the software compiled by ARMOR can hide some
runtime information and withstand the attackers who employ
ARM CoreSight to trace it. The details of these two functions
in ARMOR are introduced as follows.

B. Protection Function

1) Detecting Environment: Algorithm 1 shows the logic of
the protection function. Specifically, the protection function
executes the anti-ETM loop, which will be introduced in
Section IV-C, for MEASURE_LOOP times and measures the
execution time use_time (Line 2-4) by reading the cntvct_el0
and cntfrq_el0 registers. Then it calculates the amount of trace
data outputed by ETF in one loop by utilizing the bandwidth
of ETF (V) (Line 5), denoted as consumed_bytes. ARMOR
detects the environment and determines whether the program is
running at a high speed by comparing the consumed_bytes
with the pre-configured threshold CONSUME_MAX. If the
trace data consumed by ETF is more than CONSUME_MAX
in one loop, which means that the program spends much time
on executing the loop. The protection function will terminate
the program (Line 6-8) to prevent the attackers who plan to
avoid trace buffer overflow by slowing down the program (e.g.,
running the program in a poor-performance core).

Algorithm 1 Protection Function
1: pid_replacement()
2: cur_time = get_cur_time()
3: anti_ETM_loop(MEASURE_LOOP)
4: use_time = get_cur_time() - cur_time
5: consumed_bytes = use_time * V / MEASURE_LOOP
6: if consumed_bytes > CONSUME_MAX then
7: exit(-123)
8: end if
9: aslr_check()

10: fill_speed = LOOP_BYTES - consumed_bytes
11: loop_times = BUFFER_LENGTH / fill_speed
12: anti_ETM_loop(loop_times)
13: last_time = get_cur_time()
Output: fill_speed, last_time

2) Filling Trace Buffer: If the function passes the check,
this denotes that the execution speed of the program can satisfy
principle (2) to achieve anti-hardware tracing. According to
principle (3), it is easier to trigger overflows when the trace
buffer is at a high-water mark than that is empty. Therefore,
the protection function will execute enough indirect branches
to quickly fill the empty trace buffer for triggering overflows.
Specifically, the function accurately calculates the speed of the
anti-ETM loop to fill the buffer (i.e., fill_speed) based on the
amount of trace data generated by ETM and exported by ETF
in one loop (i.e., LOOP_BYTES and consumed_bytes).
Then it calculates the minimal times loop_times of the
anti-ETM loop to trigger the overflow from an empty buffer
by utilizing the size of the buffer and this speed (Line 10-11),
and executes the loops (Line 12). Finally, the function saves
the speed of filling trace buffer and current timestamp in a
global array to calculate the amount of outputted trace data in
next loop function.

3) PID Replacement: In addition, to withstand the attackers
who configure the context ID to accurately trace the program,
we add the pid_replacement() function to create a child
process for replacing the parent process (Line 1). This PID
replacement mechanism can hide almost all control flow under
the context ID tracing of ETM. It should be noted that this
strategy may not be applicable to some TAs as many TEE OSs
may not support the fork mechanism. However, this may be
achieved by enhancing the TEE OSs further.

4) PIE+STRIP+ASLR: To conduct this strategy, the pro-
tection function also checks the status of ASLR, such
as reading /proc/sys/kernel/randomize_va_space (Line 9)
in Linux. The TA may require some specific handling.
If the ASLR is disabled, the function will terminate the
program. Moreover, to resist the attackers who want to
detect and disarm this strategy by reverse engineering, we
take some tricks in this strategy, such as transferring the
string /proc/sys/kernel/randomize_va_space as implicit
data flows.

5) Instrumentation Position: We instrument the protection
function in the entry of main function, which brings two
benefits. First, if the environment is unable to support anti-
hardware tracing, protection function inserted in the beginning
of main function can terminate the program immediately,
preventing executing the functional code to protect almost all
of the useful runtime information. The PID replacement can
also derive benefits from this. Second, the trace buffer may
be empty when the program runs in this position, where the
protection function can fill the buffer to a high-water mark to
satisfy principle (3).

By the protection function, ARMOR conducts several protec-
tion strategies, ensures the program runs at a high speed, and
guarantees the buffer in a high-water mark (i.e., principles (2)
and (3)), providing the environment for efficiently triggering
overflow in loop functions.

C. Loop Function
To generate enough trace data for triggering overflows

and avoid the heavy overhead, we design the context-based
calculation mechanism to calculate the loop times of the
anti-ETM loop in the loop function.

1) Context-Based Calculation: Algorithm 2 shows the logic
of the loop function (i.e., armor_loop in Fig. 5). Specifically,
based on the timestamp, bandwidth of ETF, and amount of
trace data drained in one overflow, the loop function firstly
calculates the amount of trace data outputted by ETF (i.e.,
output_bytes) from the last anti-ETM loop to this (Line 1-2).
Then it estimates the times of loops to trigger the overflow
according to the outputted trace data and speed of filling trace
buffer, and executes the anti-ETM loop (Line 3-4). Finally, the
function updates the timestamp (Line 5).

2) Anti-ETM Loop: For efficiently generating the trace data
in one loop, we elaborately design the anti-ETM loop based on
the mechanism of ETM, which is shown in Fig. 5. In detail, we
utilize three general registers to store the addresses of three
bouncer functions before entering the loop, which contains
only one ret instruction. During each loop, the program
indirectly calls the three functions and returns from them,
executing six indirect branches. Notably, we increase the offset
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Algorithm 2 Loop Function
Input: fill_speed, last_time

1: cur_time = get_cur_time()
2: output_bytes = MIN((cur_time - last_time) * V + DRAINED_BYTES,

BUFFER_LENGTH)
3: loop_times = output_bytes / fill_speed
4: anti_ETM_loop(loop_times)
5: last_time = get_cur_time()

Output: fill_speed, last_time

Fig. 5. The details of loop functions.

between the indirect call instructions in the loop function and
the definition of bouncer functions to more than 32 MB for
generating the Long Address packet in each branch, as shown
in the right part of Fig. 5. Besides, to avoid ETM producing the
Exact Match Address packet, we insert three bouncer functions
to ensure that the new address is not in the queue of ETM.
By this design, ETM generates at least 36 bytes of data in
one loop, while the protected program only executes nine
instructions, which ensures generating lots of trace data in
acceptable overhead.

3) Instrumentation Position: By producing overflows in the
loop function, ARMOR provides the program with precious
intervals to escape from hardware tracing, which is about
172us in ARM Juno R2. To utilize the intervals, we call
the loop function before: 1) The implicit-semantics points,
including indirect branches and conditional branches. 2) Some
user-specific instructions. However, some instrumentations
may incur heavy overhead (e.g., calling loop function in a
recursive function). For reducing the overhead, ARMOR con-
ducts a simple but effective static analysis in assembly code to
determine the instrumented points. Specifically, ARMOR does
not instrument the loop functions in the recursive functions.
In other functions, ARMOR inserts the loop functions before
all of the indirect branches. However, there are usually more
conditional branches than indirect branches in programs and
many conditional branches are backward branches, which may
generate loops and introduce heavy overhead if we instrument
the loop functions before them. Hence, we only instrument
the conditional branches which satisfy the following con-
ditions: 1) This instruction is followed by more than two

TABLE III
PARAMETERS UTILIZED IN ARMOR

consecutive conditional branches. 2) There are no more than
two instructions between the adjacent conditional branches.
3) This instruction and its followed conditional branches are
not backward branches. The left part of Fig. 5 has shown
some examples of instrumentation. Benefited from this, when
the program executes these instructions, ETM may be in
the stalling due to the overflow of ETF caused by the loop
function, which protects the crucial control flow.

By inserting the loop functions (i.e., principle (1)), ARMOR
executes the anti-ETM loops (i.e., principle (1)) based on
a context-based calculation mechanism, which can trigger
overflow frequently with introducing little overhead.

D. Implementation
We implement ARMOR as a compiler-wrapper of gcc. For

some parameters utilized in the protection and loop function,
we define them according to the corresponding parameters on
ARM Juno R2, listed in Table III.

To maintain the semantics of the program unchanged after
our instrumentation, we define a global array save_reg to
save and restore these registers which may be changed in
protection function and loop function (e.g., x30, x0, and
nzcv). We reserves one general register x9 by using the
-ffixed-x9 argument in gcc to store or load the address of this
array. The assembly code to call the loop function inserted
by ARMOR is shown in the left part of Fig. 5 (calling the
protection function is similar). We save the value of x30
in save_reg[0] and reload this value after returning from
our function, keeping it unchanged after our instrumentation.
Particularly, in the protection and loop function, we employ
the array to maintain the context by storing the values of
used registers at the beginning of the function and loading
these values at the end, which is different from the traditional
mode that utilizes stack frames to save the context. This
can prevent ARMOR from destroying the origin data in the
stack. Moreover, before blr instruction, we directly call the
loop function without saving x30. For the ret instruction,
we transfer it as a tail branch to the loop function. These
tricks can lightly reduce the size of code.

V. EVALUATION

Research Questions: We conduct comprehensive evaluations
to answer the following research questions:

RQ1:How about the overhead introduced by ARMOR?
RQ2:How about the effectiveness of ARMOR in hiding
the runtime information of the program under ETM?
RQ3:Can ARMOR resist some attacks based on ETM?
RQ4:Can ARMOR impede the hardware-assisted fuzzing?
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TABLE IV
THE RUNTIME OVERHEAD OF GCC, ARMOR-P, ARMOR, AND

OLLVM AND THE NUMBER OF INSTRUMENTED LOOP
FUNCTIONS BY ARMOR ON SPEC2006

A. Performance Evaluation

1) Experimental Setup: We employ the widely-used
SPEC2006 test suites, along with training input, to assess the
overhead of ARMOR. In our design, the overhead of ARMOR
is attributable to two components: the instrumented protection
function and the loop function. The protection function is
executed only once at the entry point of the main function,
while the loop function is executed multiple times before
numerous implicit-semantic points in the program. To explore
the overhead introduced by these functions, we compile all of
the C and C++ benchmarks from the INT2006 and FP2006
with gcc-7.3, ARMOR-P (only instrumenting the protection
function), and ARMOR (ARMOR fails to compile 403.gcc).
Additionally, we also measure the performance overhead of
the state-of-the-art obfuscation technique, OLLVM [1], with
all strategies enabled (-mllvm -sub -mllvm -fla -mllvm -bcf).

Considering the variability of the environment, we repeated
each test five times. All experiments were performed on the
Taishan server, which is equipped with a 64-core Kunpeng
920 processor (2.6GHz) and 190GB RAM. The server was
running openEuler-20.03 with Linux kernel version 4.19.

2) Runtime Overhead: Table IV lists the runtime overhead
of ARMOR-P, ARMOR, and OLLVM. ARMOR-P introduces
negligible overhead on these benchmarks (about 0.18% on
average). Therefore, the overhead of ARMOR is mainly
brought by the execution of loop functions. Moreover, due
to the varying number of inserted loop functions in ARMOR
across different programs, the overhead of ARMOR varies
significantly across these benchmarks, from 0.4% to 578%.
Particularly, ARMOR introduces no more than 50% overhead
on nine benchmarks. We count the number of instrumented
loop functions in these benchmarks and list the results in the
right column of Table IV. Generally, the more loop functions
are instrumented and executed, the higher the overhead intro-
duced by ARMOR. On some benchmarks (e.g., 429.mcf and
470.lbm), ARMOR introduces no more than 10% overhead

with instrumenting few loop functions. Since ARMOR supports
user-specific instrumented points, the overhead of ARMOR will
decrease if the user choose to conduct fewer instrumentation.
Compared to OLLVM, the geometric mean execution time of
ARMOR on the tested benckmarks is 42.26s, 77.31% lower
than that of OLLVM (about 186.17s).

RQ1: The overhead introduced by ARMOR mainly depends
on the number of instrumented and executed loop functions,
which varies significantly across different programs. The
protection function introduces average 0.18% overhead on
SPEC2006, while the overhead of loop function ranges from
0.4% to 578% (averagely 99.84%).

B. Security Evaluation
In this section, we qualitatively analyse the security of

the PID replacement and PIE+STRIP+ASLR strategies and
conduct experiments to evaluate the effectiveness of ARMOR
in triggering overflows and hiding information.

1) PIE+STRIP+ASLR: In practical, users usually
pre-configure the address range of ETM to reduce the
unnecessary trace packets. Since recovering the integral
control flow requires matching the trace information with the
disassembly code, we implement the PIE+STRIP+ASLR
strategy to impede attackers in these situations. By forcing
the protected binaries to run under the ASLR, the Address
elements generated by ETM vary in different executions,
which brings a great challenge for attackers to pre-configure
the address range. Though the kernel-privilege attackers
can bypass the ASLR checking when tracing the programs
in Normal EL0, the stripped PIE and numerous overflow
introduced by ARMOR bring great trouble to attackers for
recovering control flow. And the attackers are unable to
disable the ASLR implemented by the TEE OS when tracing
the TA. Therefore, we recommend the TEE OS vendor
to provide support for ASLR to reinforce the protection.
Fortunately, popular TEE OSs such as OP-TEE [60] have
supported this feature.

2) PID Replacement: To accurately trace a process, users
usually employ the context ID tracing. For example, some
hardware-assisted fuzzers (e.g., ARMored-CoreSight [8]) have
taken this way. Our PID replacement strategy can change
the context ID to hide almost all of the runtime information
in these scenarios. To bypass this strategy, attackers may
have to track all processes instead of context ID tracing.
This may introduce some noisy packets generated by other
processes and bring some trouble to attacker in analysing trace
data.

3) Effectiveness in Triggering Overflows: To evaluate the
effectiveness of ARMOR in leading to trace buffer overflow
and hiding runtime information, we select 16 real-world appli-
cations (listed in Table V) which are different in functionality
and commonly used in the real world or other works [6], [61],
[62]. To get enough inputs, we employ AFL [63] to test these
programs on the TaiShan server for 24 hours and collect all the
seeds as the testcases. Then we compile these selected applica-
tions by gcc, OLLVM, and ARMOR, respectively, and run them
to reproduce these collected testcases on ARM Juno R2 devel-
opment board, which runs Linux-5.3 and gcc-9.2.0 with 8 GB
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TABLE V
THE CONFIGURATIONS OF THE PROGRAMS AND AVERAGE RESULTS OF TRACING INFORMATION ON

THE PROGRAMS COMPILED BY GCC, ARMOR, AND OLLVM

RAM on a Cortex-A72 processor cluster (two cores with
0.6-1.2 GHz CPU frequency) and a Cortex-A53 cluster (four
cores with 0.45-0.95 GHz CPU frequency) [46]. For each
testcase, we utilize one Cortex-A72 core with 1.2 GHz to run
the program and enable the corresponding ETM. We disable
the PID replacement and PIE+STRIP+ASLR strategies in
this and subsequent evaluation to evaluate the effectiveness of
ARMOR in triggering overflows. Specifically, we use objdump
to analyse the text sections of binary and configure ETM
to accurately trace these sections under the default mode by
assigning the PID of the process. Then we collect the trace
data and decode it with ptm2human [59].

a) Evaluation metric: We use the size of trace data
and the number of overflows to evaluate the efficiency and
effectiveness of ARMOR in producing trace data and triggering
overflows. Moreover, we count the executed basic blocks as
well as recorded addresses in the text sections of binaries to
evaluate ARMOR in hiding control flow. Specifically, since
ETM generates an Atom element in each branch instruction,
which can differentiate the basic blocks, we calculate the
number of executed basic blocks by counting the number of
Atom elements behind an Address element in text sections.
We do not count the meaningless blocks and addresses in
the protection and loop function of ARMOR. For each binary,
we calculate the arithmetic mean of these metrics.

b) Results on real-world applications: Table V lists the
detailed results of these applications. In the term of effec-
tiveness in anti-hardware tracing, ETM produces 677, 240,
1, 921, 687, and 4, 211, 601 bytes of trace data on the binaries
compiled by gcc, OLLVM, and ARMOR, respectively, with
recording 225, 0, and 25, 559 overflows. Compared to gcc,
ARMOR increases the trace data and overflows for 521.88%
and 11249.93%, respectively, proving that the binaries com-
piled by ARMOR bring much more workload to ETM than the
original binaries. In contrast, though OLLVM increases the
trace data, it fails in triggering overflows. The reason is that
OLLVM introduces heavy runtime overhead (as shown in our

evaluation on SPEC2006), which slows down the bandwidth
of ETM in generating trace data. Therefore, compared to
ARMOR, existing code obfuscation techniques may be inef-
ficient in leading to the trace buffer overflow and achieving
anti-hardware tracing.

Benefiting from the numerous overflows, ARMOR effec-
tively reduces the leaked runtime information. Specifi-
cally, on average, ETM captures 171, 140 valid basic
blocks and 27, 326 addresses of indirect branches on the
ARMOR-instrumenting binaries, while 376, 192 blocks and
55, 667 addresses on the original binaries. ARMOR reduces the
number of traced blocks and addresses by 54.51% and 50.91%,
proving its effectiveness in hiding the runtime information.
However, on the programs compiled by OLLVM, ETM cap-
tures all the basic blocks and addresses. Although OLLVM
presents challenges to the analyzer in understanding program
semantics, it is not designed for anti-hardware tracing and fails
to conceal the runtime information under ETM. Attackers can
still reconstruct the control flow completely.

Moreover, we deeply analyse the successful rate of trig-
gering overflows in the loop function. On average, the tested
programs call the loop function for 44, 139 times, of which
only 8.84% calls (about 3, 904) do not incur any overflows.
91.16% of the loop function executions is under overflow or
triggering overflow, proving the efficiency of our context-based
mechanism and anti-ETM loop.

RQ2: ARMOR is effective in hiding the runtime information
with reducing 54.51% basic blocks and 50.91% addresses of
indirect branches on 16 applications.

C. Use Case: Resisting the Cryptographic Attack

The nailgun attack leverages data tracing of ETM to obtain
the memory addresses of the ASE table entries on NXP
i.MX53 Quick Start Board [30]. However, ARM Juno R2
does not support data tracing. Hence, we implement a cryp-
tographic attack based on ETM to extract the private key
of RSA in GnuPG 1.4.13 via the control-flow information.
Then we employ ARMOR to resist this attack. Moreover, the
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Fig. 6. The bits of private keys recovered in GnuPG without and with the
protection of ARMOR, respectively.

signal SPNIDEN is enabled on the ARM Juno R2 board.
Following the nailgun attack [30], we port GnuPG as a TA
running in TrustZone and conduct the attack from the Normal
world to leak the private key in the Secure world. Though
previous works demonstrated similar attacks based on the side
channel, such as FLUSH+RELOAD [45], we propose a new
perspective from hardware tracing.

Our attack utilizes the defect of square-and-multiply expo-
nentiation algorithm [64] implemented in GnuPG 1.4.13.
Specifically, RSA [65] randomly selects two prime numbers
p and q and a public exponent e and calculates a pri-
vate key d. For optimizing the decryption function, GnuPG
1.4.13 employs CRT-RSA. It splits the private key d into dp
and dq , which calculated as d mod (p−1) and d mod (q −1),
respectively. Then it decrypts the message by m p = cdp mod p
and mq = cdq mod q . To accelerate the process of integer
exponentiations, GnuPG implements the square-and-multiply
exponentiation algorithm [64] to scan each bit of the exponent
and determine whether to conduct the multiply operation.
In each bit, the algorithm performs the square operation (i.e.,
mpih_sqr_n). If the bit is 1, it will additionally perform
the multiply operation (i.e., mpihelp_mul_karatsuba_case).
Therefore, by tracing the entry addresses of these functions,
we can deduce each bit of the exponent (i.e., dp and dq in
CRT-RSA). As pointed out in [45], it is sufficient to attack
the CRT-RSA with dp and dq .

1) Attack: Since the ARM Juno R2 has supported the
OP-TEE as the TEE OS, we follow the guidance from OP-TEE
to port the GnuPG 1.4.13 as a TA running on it [66]. Then,
we use the rsa_decreypt function in GnuPG to decrypt a
pre-encrypted string with a 2, 048-bit key. We suppose that
attackers have the offsets of the entry points of the square
and multiply functions. As the program directly calls these
functions, we enable the branch broadcasting mode of ETM
to trace these addresses. Moreover, we run the TA on a
Cortex-A53 core to avoid trace buffer overflow. After one trial,
we decode the trace data to analyse the addresses of square and
multiply functions to recover the 1, 024-bit keys dp and dq .

Fig. 6 (a) shows the bits of private keys recovered from
the trace data on the original program. During this attack,
ETM generates 3, 037 Address elements of the square and
multiply functions, with 2, 044 square and 993 multiply oper-
ations, while avoids to trigger any overflows. Then we try

to recover the keys from the sequence by converting the
square operation to 0 and the square-multiply operation to 1.
Finally, we get the 2, 044 bits of the private keys, which
contains the 1, 023 bits of dp and 1, 021 bits of dq . Since the
CRT-RSA filters the zero-bits to the first non-zero bits in the
exponent, we recover all the bits in dp and dq based on this
and compare them with the ground truth. The result shows
that our attack can be carried out from the Normal world
and precisely extract the private keys in a secure software
across processes in one run, bringing significant threats to
users. We also conduct this attack on the powerful Cortex-A72
core with 1.2GHz to evaluate its efficiency under the maximum
frequency. During the 28, 888 us running of the rsa_decreypt
function, ETM generates 2, 022 and 993 Address elements of
the square and multiply functions, respectively, with triggering
2, 755 overflows. Attackers can also effectively recover 98.7%
(2, 022) bits of the keys even under the maximum CPU
frequency.

2) Protection: Since the attack is based on capturing the
entry addresses of the square and multiply functions, we
add those instructions calling these functions as instrumented
points in addition to the default instrumentation positions,
recompile the TA by ARMOR, and reconduct the attack. Due to
the detection environment mechanism in ARMOR, the program
is only allowed to be executed on the Cortex-A72 core with the
1.2GHz. Fig. 6 (b) shows result of the protected TA. Under our
protection, ETM triggers 115, 506 overflows and only traces
532 Address elements of these two functions, with 318 square
and 214 multiply functions. And the rsa_decreypt function
runs for 39, 511us, where ARMOR introduces 36.77% runtime
overhead compared to the attacks with the same configuration.
Then we can only recover 318 bits (about 15.5%) from the
sequence, which poses a significant challenge for attackers to
recover the keys from these bits. The results show that ARMOR
can effectively resist this attack and protecting some crucial
information.

RQ3: Attackers can utilize ETM to obtain the entire
2048-bit key of a secure software in one run. ARMOR can
protect 84.5% bits of keys with 36.77% runtime overhead.

D. Use Case: Anti-Fuzzing
1) Experimental Setup: To evaluate ARMOR in impeding

the hardware-assisted fuzzing. we port ARMored-CoreSight
(Edge Cov.) [8], a fuzzer based on ARM CoreSight, in AFL
on our platform as AFL-CoreSight. Due to the limitation of
computational resources, we only test the first two programs in
Table V. We compile them with gcc and ARMOR, test them by
AFL-CoreSight for 24 hours with the initial seed provided by
AFL in one Cortex-A72 1.2 GHz core, and repeat five times
to reduce the randomness introduced by fuzzing. We follow
the configuration of ETM in Section V-B.

2) Metrics: We do not consider the crashes, as it is difficult
for the fuzzer to trigger them under limited computational
resources. Instead, we utilize the throughput, path coverage,
and branch coverage as metrics and rerun all the seeds by AFL
to uniformly measure the coverage. Moreover, to analyse the
workloads brought by ARMOR to ETM, in addition to the size
of trace data, we record the time of executing a testcase and
rebuilding the coverage, respectively.
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TABLE VI
THE DETAILED RESULTS OF AFL-CORESIGHT ON ORIGINAL BINARY AND ARMOR-INSTRUMENTING BINARY

3) Result: Table VI lists the arithmetic mean of the met-
rics during five trials. Averagely, AFL-CoreSight only covers
586 paths and 3, 818 branches under ARMOR, with 73.86%
and 47.99% decreasement of the native programs. This is
mainly due to the significant decrease in throughput.

Compared to the original binaries, though ARMOR intro-
duces some runtime overhead with increasing the average
execution time from 881us to 1, 081us, the decrease in
throughput is mainly due to the heavy overhead in rebuilding
coverage. Specifically, ARMOR increases 3163.29% of the
trace data of the original programs. As a result, AFL-CoreSight
spends 1828.75% more time on rebuilding coverage. The
throughput of AFL-CoreSight on the protected binaries is only
2.93M, 89.71% less than on the original binaries.

RQ4: By generating 32.6× trace data, ARMOR brings
heavy workloads to the hardware-assisted fuzzer in rebuilding
coverage, significantly impeding AFL-CoreSight by reducing
89.71% throughput and 47.99% branches.

VI. DISCUSSION AND FUTURE WORK

A. Possible Ways of Anti-Hardware Tracing

Detecting and disabling hardware tracing can be chal-
lenging due to its transparency, especially for user-privilege
programs. This paper proposes a novel approach to bypass
the transparency and reach anti-hardware tracing by exploiting
the bandwidth issue inherent in hardware tracing instead of
explicitly detecting its presence. It is indeed a legitimate
concern to explore alternative methods apart from ARMOR
to counter hardware tracing. There are some straightforward
countermeasures which can be provided by TEE OS or the
isolated environment, such as disabling the ETM or protecting
the trace memory. However, in Section II-C, we have pointed
that these methods can be easily circumvented by attackers
and may negatively impact the normal usage of the ETM.
Notice that, though the buffer overflows brought by ARMOR
may impact the work of ETM, it is only occurring when the
protected software is traced by ETM, which we can regard as
malicious behavior. That means, the users who want to analyse
programs by hardware tracing will not be effected by ARMOR
if they do not maliciously trace the protected software. A pos-
sible solution is utilizing self-modifying code (SMC), which
can modify the instructions at runtime to obfuscate the codes.
Nevertheless, only utilizing the SMC may not lead to as signif-
icant trace data loss as ARMOR. The attackers can still obtain
the runtime information. Moreover, SMC should be employed
carefully due to the potential for false positives and bugs
introduced by runtime modifications [67]. In addition, many
compiler-level techniques, such as code obfuscation or time
obfuscation, have been proposed to reinforce the programs
against reverse-engineering or side channel attacks [1], [68],

[69], [70]. However, they are not designed initially for anti-
hardware tracing. ETM can still trace these programs and
obtain the control-flow information.

B. Overhead of ARMOR.
A potential concern may be the noticeable performance

overhead of ARMOR observed during the evaluation on
SPEC2006. However, this overhead primarily stems from
executing loop functions, which can vary significantly among
different programs. It is worth noting that ARMOR exhibited
low overhead on some programs. Additionally, since ARMOR
allows users to configure instrumentation points, we can
mitigate the performance impact by reducing the amount of
instrumentation. It should be noted that this approach may
potentially weaken ARMOR’s ability to trigger overflow. Some
overhead is necessary and unavoidable due to the requirement
of executing many branches to generate trace data and trigger
overflow quickly.

C. Cryptographic Attack
In Section V-C, we assumed that the adversaries only have

the offsets of the certain function entries. Even when using
ARMOR for protection, partial control flows may still be
leaked, potentially allowing attackers to recover additional bits
in the private keys by reverse-engineer. However, this process
is labor-intensive, providing some degree of slowdown for
attackers. It is worth noting that skilled attackers may attempt
to circumvent ARMOR by configuring the ETM only to trace
the addresses of the square and multiply functions. Fortunately,
as explained in Section V-B1, the PIE+STRIP+ASLR strategy
can hinder these attacks, as the addresses are determined
dynamically during execution and cannot be readily obtained.

D. Limitation
There are still some limitations in the current implemen-

tation of ARMOR: 1) Not 100% protection. While we have
implemented a context-based calculation mechanism for trig-
gering the overflow before executing some instructions, our
evaluation indicate that ARMOR cannot consistently guarantee
that the ETF is under overflow during the execution of these
instructions. Actually, the amount of data generated by the
ETM is influenced by the configuration, executed instructions,
and the runtime environment. Our method is limited to estimat-
ing the amount of output data rather than accurately calculating
it. This means that ARMOR hides specific information (e.g.,
control flow at the implicit-semantics points) with a high, but
not 100%, probability.

2) The high-speed execution of programs. A crucial prin-
ciple of anti-hardware tracing by triggering trace buffer
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overflows is keeping the high-speed execution of the program.
Though we utilize a detecting environment mechanism to
guarantee this principle, adversaries may bypass this mech-
anism and slow down the execution to avoid overflows. For
example, turning down the CPU frequency after passing the
detection [53], [71]. A possible way to reinforce the protection
is combining ARMOR with other anti-debugging techniques or
inserting more lightweight detection to guarantee high-speed
execution, which remains part of our future work.

3) The anti-ETM loops traced by ETM. The numerous
trace data is generated when ETM traces the anti-ETM loops
instrumented by ARMOR. Adversaries may bypass this by
excluding the addresses of anti-ETM loops from the traced
address range. However, precise address configuration requires
attackers to obtain the memory layout of secure code in
advance, which is impeded by our PIE+STRIP+ASLR strat-
egy. During a single run, attackers may fetch and analyse
part of the trace data on the fly to speculate the addresses
of anti-ETM loops and then reconfigure and restart ETM to
resume tracing. However, this process is uneasy and time-
consuming. Attackers may belatedly obtain the addresses after
the execution of some instructions in the software, where
partial secret information is still undisclosed. Another possible
way to exclude these addresses is disabling the ETM during
the anti-ETM loops and enabling it after the loops. However,
it may be challenging to conduct this attack even for timing-
aware attackers. Moreover, they need to repeatedly perform
the program to determine the window period of the loops.
However, the context-based calculation mechanism in ARMOR
calculates the times of anti-ETM loops at runtime. This
implies that the timing of entering and exiting the loop is
non-deterministic for each run (like some time obfuscation
methods [68], [69]). It may be hard for attackers to capture the
window period precisely. Inserting some lightweight random
code to improve ARMOR in resisting the time-aware attackers
is also feasible.

Particularly, the offensive and defensive sides are constantly
engaged in a game of strategy and evolution. Despite the possi-
bility of ARMOR being bypassed, we believe that implementing
anti-hardware tracing techniques from the perspective of trace
buffer overflow can provide valuable insights into security
research. Moreover, ARMOR is a software-level solution for
thwarting ETM-based attacks without modifying the hardware.
This advantage makes ARMOR facile to deploy on real-world
devices, particularly these SPNIDEN-enabled devices. It also
makes ARMOR easily combinable with specific techniques,
such as time obfuscation [68], [69], to reinforce the protection.

E. Interrupt-Capable Attacker
In our threat model, we assume the attacker cannot interrupt

the protected software running in the Secure world or isolated
environments. This assumption can be achieved by carefully
managing the priorities of the interrupts or masking specific
interrupts [28], [56], [57], [58]. However, if the attackers
can raise the non-secure interrupts to stall the protected soft-
ware, they may bring some troubles to ARMOR. Specifically,
to break the high-speed principle in ARMOR and avoid the
trace buffer overflow, they can frequently interrupt and slow
down the software after passing our detection environment

mechanism [71]. To exclude the anti-ETM loops from the
traced addresses, interrupt-capable attackers only need to inter-
rupt and jump out of the protected process once after passing
our detection. Then, they can analyse the junk addresses,
reconfigure the ETM, and resume the process. Moreover, the
attackers even can conduct interrupt-based side channel attacks
(e.g., load-step [53]) rather than utilizing ETM to steal the
secret data.

Fortunately, the interrupt-based attacks [53], [55], [72], [73]
on TEE have received significant attention from researchers,
resulting in the development of many solutions [28], [74],
[75], [76], [77]. ARM TrustZone also supports blocking the
non-secure interrupts while the TA is running [56], [57],
which effectively limits the capability of the interrupt-based
attacks on the ARM platform [76]. Notably, different ARM
architectures and devices may have different methods to
mask the non-secure interrupts. On TF-M, we can set the
AIRCR.PRIS during TF-M core initialization and the PRI-
MASK_NS in the entry of TA to achieve this [57]. On TF-A
(e.g., ARMv8-A), we can use the bits I and F in PSTATE to
mask the Interrupt Request (IRQ) and Fast Interrupt Request
(FIQ), respectively [48], [58]. For instance, on ARM Generic
Interrupt Controller (GIC) v2 mode, the non-secure and secure
interrupts are mapped as the IRQ and FIQ, respectively.
By setting the I bit as 1 and F as 0 when entering the
Secure world, we can mask the non-secure interrupts during
the execution in the Secure world [58]. In conclusion, the key
idea is to conduct specific configurations in the Secure world to
block foreign interrupts and prevent kernel-privilege attackers
from modifying the configurations. This may require support
from the secure monitor in EL3 or TEE OS in EL1. Since
blocking the malicious interrupts has become an essential
principle in designing and implementing the TEE firmware
and TEE OS [28], [57], [74], [75], [76], it is feasible and
reasonable to assume that malicious interrupts can be blocked
on the ARM platform.

F. ARMOR on Other Platforms
Similar to ARM, Intel also proposed the tracing tech-

nique Intel PT, which is popular and employed in many
researches [5], [10], [17], [24], [25]. To the best of our
knowledge, trace buffer overflow also exists on Intel PT [2],
[24]. Therefore, it may be possible to port ARMOR on Intel
PT according to our models and principles of anti-hardware
tracing. However, Though most of the features in Intel PT
are similar to those in ARM CoreSight, there is some differ-
ence between them. For example, our cryptographic attack in
Section V-C relies on the addresses of specific functions that
are directly called in native binaries. Intel PT may be unable
to capture these addresses as it only records the addresses of
indirect branches, while ARM CoreSight can achieve this as
the branch broadcasting mode of ETM. Moreover, ETM can
non-invasively trace the processes in the Secure world on some
SPNIDEN-enabled devices [30]. In contrast, to our knowledge,
Intel PT may be only able to trace the debug enclaves in Intel
SGX [26], [78]. Due to the more powerful tracing ability than
Intel PT, ARM CoreSight may bring more serious security
threats, which is one of the reasons that we conducted ARMOR
on ARM platforms.
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VII. RELATED WORK

A. Hardware Tracing
Benefiting from the low overhead and powerful runtime

information tracing capabilities, hardware tracing techniques
have been widely used in various areas [5], [6], [7], [8],
[9], [10], [11], [12], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24]. Remarkably, some works utilize hardware
tracing for conducting attacks, such as extracting private keys
of the AES algorithm in TA [30] or detecting cryptographic
algorithms [31], [32]. However, most works focus on lever-
aging hardware tracing rather than resisting it. While some
defense methods for nailgun are proposed to manage debug
authentication signals and prevent tracing the TA [30], they
do not specifically address the challenge of anti-hardware
tracing. To the best of our knowledge, ARMOR is the first
tool specifically designed for anti-hardware tracing.

B. Software Protection
Software protection techniques have been developed over

the years, such as anti-debugging [36], [37], [38], code obfus-
cation [1], [39], [40], [41], [42], [43], and anti-fuzzing [79],
[80]. Nevertheless, to our knowledge, these works lack specific
focus on anti-hardware tracing.

Anti-debugging techniques mainly focus on detecting or
preventing external debuggers, such as timing checks, process
checks, and self-debugging [14], [36], [37]. As stated in
Section I, they may not be effective in preventing attackers
who employ transparent tracing techniques [11], [14].

Code obfuscation is a popular technique used to pro-
tect software against malicious modifications or reverse-
engineering [1], [39], [40], [41], [42], [43], [44]. Some
common tricks in code obfuscation, such as inserting irrelevant
code [1], [44], is similar to those utilized in ARMOR. Our
evaluation shows that though OLLVM increases the branches
and causes ETM to generate more trace data, it is not as
efficient as ARMOR in triggering the overflow and concealing
runtime information.

C. Attacks and Defenses on TEE
Due to the rapid development and popularizing of TEE

techniques, researchers have paid many efforts on breaking the
confidentiality of TEE or reinforcing the TEE [28], [51], [52],
[53], [54], [55], [72], [73], [74], [75], [76], [77]. However,
most of these attacks or defenses around TEE focus on the side
channel attacks, such as cache or controlled side channel [28],
[51], [52], [53], [54], [72], [73], [75], while the security
threats brought by hardware tracing techniques to TEE are
ignored for a long time [30]. In fact, as demonstrated in [30]
and our evaluation, hardware tracing can conduct powerful
and high-resolution attacks due to its powerful tracing ability.
We notice this threat and propose the anti-hardware tracing
technique to provide our insights to the community.

D. Alleviating Buffer Overflow
Various techniques have been proposed to address the trace

buffer overflow issues. Hart [71] avoids the overflow in Core-
Sight by configuring the Performance Monitor Unit (PMU) to
interrupt the process before the overflow occurs. However, this

approach requires frequent interrupts and leads to a significant
slowdown in the program. As mentioned in Section VI, this
method may be resisted by managing the interrupts carefully.
JPortal [24] introduces algorithms to precisely recover the
control flow from PT traces even under some trace data
loss. However, the effectiveness of the recovery algorithm
diminishes as more data is lost. With the numerous overflows
and trace data loss caused by ARMOR, attackers may struggle
to fully recover the control flow, even with the algorithms
used in JPortal. The hardware vendors also invest efforts to
alleviate the buffer overflow. The ETMv4 specification [49]
suggests an optional feature in the TRCSTALLCTLR register
to prevent overflows by stalling the program when the trace
buffer reaches a certain threshold. However, this approach can
introduce significant runtime overhead, which can be detected
and prevented by the detection mechanism in ARMOR. Addi-
tionally, our investigation indicates that this feature is not
implemented by some platforms, such as ARM Juno R2.

VIII. CONCLUSION

In this paper, we introduce anti-hardware tracing as a novel
protection technique against hardware tracing. Unlike existing
methods, anti-hardware tracing leverages hardware limitations
to trigger overflow and safeguard the runtime information.
We build a model to analyse the trace buffer overflow and point
out three key principles for efficient anti-hardware tracing.
Then we design a framework ARMOR on ARM Juno R2.
ARMOR instruments the protection and loop functions to
support these principles and conduct some strategies such as
PID replacement and PIE+STRIP+ASLR. Through compre-
hensive evaluations, we demonstrate that ARMOR effectively
safeguards control flow from ETM and successfully resists
cryptographic attacks like the one conducted on GnuPG
1.4.13 by us. Additionally, ARMOR significantly hampers
hardware-assisted fuzzing.
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