802.11 Security: WPA/WPA2 Cracking

Constantinos Kolias

George Mason University

kkolias@gmu.edu

Wireless Communications

- Transmission of data without the use of wires
 - Few cm to several km
- Modulation of radio waves
 - modulation is the process of varying one or more properties of a periodic waveform
 - with a **modulating** signal that typically contains information
- Federal Communications Commission (FCC) regulates the use of the radio specturm
 - 9kHz to 300Ghz
 - https://en.wikipedia.org/wiki/Radio_spectrum
- Parts of the radio spectrum are allocated for different applications
 - Some parts are sold or licensed to operators
 - Some parts are free

Advantages & Disadvantages

- Makes communication possible where cables don't reach
- Convenience
- The air medium is open to everyone
- The boundaries of a transmission cannot be confined

WiFi

- Commercial name of the protocol IEEE 802.11
- It is one of the most ubiquitous wireless networks
 - Home Networks
 - Enterprise Networks
- Communication is based on frames
- Essentially is sequence of bits
 - 802.11 defines the meaning
 - Vendors implement the protocol
- 2.4Ghz Industrial Scientific Medical (ISM) and 5Ghz
- Range depends on transmission power, antenna type, the country, and the environment
 - Typical 100ft

Channels

- The equipment can be set in only one channel at a time
- Each country has its own rules
 - Allowed bandwidth
 - Allowed power levels
- Stronger signal is preferred

Modes of Operation

- Master
 - Acts as an AP
- Managed
 - Acts as a client, the default mode
- Ad Hoc
 - No AP, direct communication, no multi-hop
- Mesh
 - No AP, direct communication, multi-hop
- Repeater
 - Repeats incoming signals
- Promiscuous
 - Monitor all traffic of a network, requires association
- Monitor
 - Monitor all traffic, no association required

Deployment Architectures

Infrastructure BSS ⁽Î⁾⁾∧\$TA BSS STA Distribution System BSS

Frame Types

- Management
 - Initialization, maintain and finalization
- Control
 - Management of the data exchange
- Data
 - Encapsulation of information
- http://www.willhackforsushi.com/papers/ 80211_Pocket_Reference_Guide.pdf

Subtype Description	Fra					
asociation Request						
Association Response						
e-association Request						
e-association Response						
robe Request						
obe Response	1,					
sacon						
nnouncement Traffic Indication Message (ATIM)	1					
sassociation						
Ithentication						
e-authentication	2,					
ower Save Poll (PS-Poll)						
equest to Send (RTS)						
ear to Send (CTS)	1					
sknowledgment (ACK)						
ontention Free End (CF-End)	1					
F-End + CF-ACK						
ata	3.					
ata + CF-ACK any PCF-capable STA or the Point Coordinator (PC						
ata + CF-Poll only the Point Coordinator (PC						
ata + CF-ACK + CF-Poll only the Point Coordinator (PC						
ull Function (no data)						
F-ACK (no data) any PCF-capable STA or the Point Coordinator (PC						
F-Poli (no data) only the Point Coordinator (PC						
F-ACK + CF-Poll (no data) only the Point Coordinator (PC						
oS Data	3,					
oS Data + CF-ACK any PCF-capable STA or the Point Coordinator (PC						
oS Data + CF-Poll only the Point Coordinator (PC						
oS Data + CF-ACK + CF-Poll only the Point Coordinator (PC						
oS Null Function (no data)						
oS CF-ACK (no data) any PCF-capable STA or the Point Coordinator (PC						
oS CF-Poll (no data) only the Point Coordinator (PC						
oS CF-ACK + CF-Poll (no data) only the Point Coordinator (PC						

Null

CF-Poll

May be used as a Class 1 frame only if both the ToDS and FromDS bits are clear (i.e., set to zero)

Introduction

802.11 MAC header													
	Frame Control		Duration Address		Address Addres		ess	Sequence Control	Address 4	Network Data		a FCS	\$
	2 Byte	es 2	2 Bytes	6 Bytes	6 Bytes 6 Bytes 2		2 Bytes	6 Bytes	0 to 2312 Bytes		es 4 By	tes	
Pro Ve	otocol ersion	Ту	pe	Subtype	To DS	From DS	Mor Fra	g Retry	/ Power / Mgmt	More Data	WEP	Order	
2	2 bits	2 b	oits	4 bits	1 bit	1 bit	1 bi	t 1 bit	1 bit	1 bit	1 bit	1 bit	

Beaconing

- The AP advertise their presence
- Once every 100ms
- They transmit a message of type Beacon
 - It contains the name of the network (SSID)
 - Capabilities

802.11 Security Modes: Open Access

- Open Access
 - No protection (whitelists)

802.11 Security Modes:WEP

- Based on RC4 Encryption
- Broken

802.11 Security Modes: WPA/WPA2

- Based on AES
- Much more secure
- Current standard

States of a Client

WPA2

Key Hierarchy

Computation of PSK

- Passphrase is a secret "phrase" you choose during the AP configuration
 - 8-63 characters long
- It is also the secret you insert in your device when you connect to a network
- SSID is the name of network
- PBKDF2 hashes 3 components 4096 times
- Heavy computation

Computation of PTK

- PMK is derived from the Passphrase
- Nonce_A is a random number chosen by the AP and received through the first message
- Nonce_C is a random number chosen by the client
- MAC_A the hardware address of the AP
- MAC_C the hardware address of the client

Cracking WPA/WPA2

- If attacker is present at a 4-way handshake
 - Nonce_A
 - Nonce_C
 - MAC_A
 - MAC_C
 - BUT NOT PMK
 - He must compute the PMK
- To compute the PMK(=PSK)
 - SSID
 - SSID length
 - BUT NOT passphrase
- What can he do???

Cracking WPA/WPA2

- Create a dictionary of possible passphrases
 - http://www.aircrack-ng.org/doku.php?id=faq#where_can_i_find_good_wordlists
- Choose a passphrase
- Create the PMK
- Use to PMK to produce PTK
- Use this key to generate the MIC of message 3
- If the MICs match the correct passphrase was used
- If not...repeat

Lab Setup

- External card
 - Alpha AWUS036H
 - Provides stronger signal
- AP
 - WNDR3700
 - WNR1000
 - Linksys WRT54GL
- OS
 - Kali Linux on VM
 - Software pen-testing tools

Other Attacks

- Deauthentication Flooding
 - Make everyone loose their connection
- Beacon Flooding
 - Flood a client with fake network names
- Authentication Request Flooding
 - Burden the AP with invalid authentication requests
- Evil Twin
 - Create a network with the same name in which the attacker can see everything
- Crack the key (WEP)