
Changing several characteristics of the wireless card
	
Basic tools
To	retrieve	a	list	of	interfaces	(even	the	inactive	ones)	
ifconfig	–a	
	

	
	
Typically,	wireless	interfaces	are	represented	as	wlanXX	
	
If	the	wireless	interface	is	on	the	DOWN	state	(disabled),	then	we	should	enable	it	before	doing	
anything	meaningful	with	it	
ifconfig	<interface>	up	
	
To	see	the	characteristics	of	the	wireless	extensions	of	the	interfaces	on	our	system		
iwconfig	

	
	
In	the	case	of	our	example	the	only	wireless	interface	is	the	wlan1	
	
Changing the channel
To	change	the	channel	of	the	card	
iwconfig	<interface>	channel	<channel	number>	
	
After	doing	so,	if	you	run	the	iwconfig	command	again	you	will	notice	that	the	card	is	set	to	
2.412	GHz	which	corresponds	to	the	frequency	of	the	first	channel.		

	
	
Changing the transmission power
The	region	of	the	device	is	an	important	setting	which	indirectly	dictates	the	strength	of	the	
signal	in	which	the	card	transmits.	Different	countries	have	different	legislations	regarding	the	
maximum	strength	of	the	signal	of	a	wireless	card.	For	pen	testing	purposes	it	is	to	the	best	
benefit	to	have	a	card	set	to	the	maximum	supporting	power.	
	
To	get	the	current	region	
iw	reg	get	

	
	
To	change	the	region	thus,	the	transmission	power	of	the	card	
ifconfig	<interface>	down	
iw	reg	set	<region	code>	
ifconfig	<interface>	up		
iw	reg	get	
	

	

	
A	comprehensive	list	of	region	codes	can	be	retrieved	here:	
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2	

Changing the operation mode
Typically,	wireless	cards	are	set	to	managed	mode,	so	they	can	function	as	clients	to	
infrastructure	based	networks.	Monitor	mode	allows	cards	to	read	all	traffic	including	packets	
that	originate	from	non-associated	networks.	
	
To	set	the	card	in	monitor	mode	one	can	rely	on	the	tool	airmon-ng	of	the	aircrack	suite	
airmon-ng	start	<interface>	
	
Changing the mac address
It	is	possible	to	change	the	MAC	address	of	the	NIC	card	
Ifconfig	<interface>	down	
macchanger	–m	<new	mac	address>	<interface>	
Ifconfig	<interface>	up	
		

Analyzing Traffic
	
When	a	wireless	card	is	set	in	monitor	mode	it	captures	all	packets	from	the	air	interface.	It	is	
possible	with	the	right	tools	to	view,	analyze	and	store	these	packets.		
	
The airodump-ng tool
	
To	view	a	list	of	all	the	APs	in	the	area	and	the	STAs	connected	to	each	one			
airodump-ng	<interface	in	monitor	mode>		
	

	
	
Note:	by	default,	airodump-ng	forces	the	card	to	hop	among	channels.	Keep	in	mind	that	to	
achieve	this,	the	card	spends	only	a	portion	of	time	on	each	channel.	However,	when	listening	
to	a	channel	all	packets	transmitted	to	the	rest	of	the	channels	will	evade	the	monitoring.		
	
To	restrain	the	monitoring	to	a	specific	channel	
airodump-ng	<interface	in	monitor	mode>	-c	<number	of	desired	channel>	
	
This	is	usually	done	when	the	attacker	has	located	the	victim	AP	or	STA	and	wishes	to	capture	
as	many	packets	as	possible	for	further	analysis.	
	
Airodump	has	the	capability	of	saving	all	packets	on	the	disk.		
airodump-ng	<interface	in	monitor	mode>	-c	<number	of	desired	channel>	
-w	<name	of	file>	
	
Note	that	airodump-ng	saves	packets	only	relevant	to	WEP	key	cracking	or	pen	testing.	
Therefore,	the	created	file	will	not	contain	all	the	packets	in	the	channel.		
	
For	more	information	on	the	capabilities	of	airodump-ng	tool	visit:	http://www.aircrack-
ng.org/doku.php?id=airodump-ng	
	
The Wireshark tool
	

It	is	possible	to	associate	Wireshark’s	output	with	a	wireless	network	interface	thus,	gaining	
insight	to	the	packets	of	the	live	capture.		
	
Moreover,	one	can	apply	different	kinds	of	filters	regarding	various	fields	of	the	packets	(e.g.	
their	type	and	subtype).	This	can	be	done	by	inserting	the	mnemonic	and	the	desired	value	in	
the	filter	input	field.	Alternatively,	filtering	can	be	achieved	by	locating	a	packet	with	a	desired	
attribute	and	setting	it	as	an	example	filter.	Moreover,	it	is	possible	to	combine	multiple	filters	
by	applying	the	standard	C	operators	(e.g.,	==,	!=,	>,	<=,	!,	&&,	||	etc.).		
	
Some	of	the	most	important	filters	for	wireless	capture	can	be	retrieved	from	here:		
https://www.wireshark.org/docs/dfref/w/wlan.html	
https://www.wireshark.org/docs/dfref/w/wlan_mgt.html	
	
The	subtype	codes	of	802.11	frames	can	be	retrieved	here:	
https://supportforums.cisco.com/document/52391/80211-frames-starter-guide-learn-wireless-
sniffer-traces	
	
The	traffic	captured	with	Wireshark	can	be	saved	as	a	binary	file	(pcap)	or	another	file	type	
including	textual	formats	(e.g.,	CSV).	This	is	useful	for	processing	with	conventional	tools	and	
methods.	
	
To	do	that	in	Wireshark	one	simply	can	choose	File->Export	Packet	Dissections->	as	“CSV”.	
	

	
	

Availability Attacks
	
It	is	possible	to	reduce	the	availability	of	a	wireless	network	or	cause	denial-of-service	(DoS)	
against	specific	clients	by	forging	and	transmitting	specific	management	(in	most	cases)	frames.	
This	steams	from	the	fact	that	in	802.11	networks	management	frames	are	transmitted	
unencrypted.		
	
Deauthentication attack
	
This	attack	is	based	on	the	transmission	of	deauthentication	frames.	It	is	considered	the	easiest	
and	most	effective	way	of	creating	a	DoS	attack	against	all	or	specific	clients	of	the	network.			
	
The	aircrack	suite	has	tools	that	automate	this	process.	To	unleash	a	deauthentication	attack	
against	all	clients	connected	to	a	specific	AP,	first	one	has	to	know	the	MAC	address	of	the	
victim	AP.	This	can	be	easily	done	via	airodump-ng	or	wireshark.	Then,	by	using	the	-0	(or	--
deauth)	option	of	the	aireplay-ng	tool	one	can	cause	a	flood	of	deauthentication	frames	to	be	
transmitted.	
	
aireplay-ng	--ignore-negative-one	-0	<packets	to	be	sent>	-a	<AP	MAC	
Address>	<interface	in	monitor	mode>	
	

	
	
Notice	that	you	can	insert	0	instead	of	a	predefined	number	of	packets	and	the	process	will	
carry	on	indefinitely.	
	
	
Another	tool	that	can	unleash	a	deauthetication	attack	is	mdk3.	Actually,	the	specific	tool	
follows	a	deadlier	methodology	(but	at	the	same	time	more	obvious	to	intrusion	detection	
systems)	for	this	attack.	To	execute	a	deauthentication	attack	with	mdk3	

	
mdk3	<interface>	d	

	
	
	

