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Buffer	Overflows	

•  One	of	the	most	common	vulnerabiliCes	in	
soGware	

•  Programming	languages	commonly	associated	
with	buffer	overflows	including	C	and	C++	

•  OperaCng	systems	including	Windows,	Linux	
and	Mac	OS	X	are	wriOen	in	C	or	C++	
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How	It	Works	

•  ApplicaCons	define	buffers	in	the	memory	
– unsigned	int	char	[10]	
	

•  ApplicaCons	use	adjacent	memory	to	store	
variables,	arguments,	and	return	address	of	a	
funcCon.			

•  Buffer	Overflows	occurs	when	data	wriOen	to	
a	buffer	exceeds	its	size.		
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Overflowing	A	Buffer	

•  Defining	a	buffer	in	C	
– char	buf[10];	

•  Overflowing	the	buffer	
– Char	buf	[10]	=	‘x’;	
– strcpy(buf,	“AAAAAAAAAAAAAAAAAAAAAAA”)	
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Why	We	Care	

•  Because	adjacent	memory	stores	program	
variables,	parameters,	and	arguments	

•  AOackers	can	change	these	values	through	
overflowing	a	buffer	

•  AOackers	can	gain	control	over	the	program	
flow	to	execute	arbitrary	code	
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Process	Memory	Layout	
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Memory	Layout	for	32-bit	Linux	
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Kernel	Space	

Stack	
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3GB	

Local	variable:	int	a	

FuncCon	malloc()	

UniniCalized	staCc	variables:	staCc	char	*u	

staCc	char	*s	=	“Hello	world”	

Binary	of	the	program	



Virtual	Memory	Layout	
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Stack	Frame	
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•  The	stack	contains	acCvaCon	frames	including	
local	variables,	funcCon	parameters,	and	
return	address	

•  StarCng	at	the	highest	memory	address	and	
growing	downwards	

•  Last	in	first	out	
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int	add	(int	a,	int	b)	
{	

	int	c;	
	c	=	1+b;	
	return	c;	

}	

A	Simple	Program	



Another	Program	
int	func	(char	*	str)	
{	

	char	mybuff[512];	
	strcpy(myBuff,	str);	
	return	1;	

}	
	
int	main	(int	argc,	char	**	argv)	
{	

	func	(argv[1]);	
	return	1;	

}	
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Draw	the	Stack	Frame!	



Overflowing	“myBuff”	
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Buffer	Overflow	Defenses	
•  The	aOack	described	is	a	classical	stack	smashing	
aOack	which	execute	the	code	on	the	stack	

•  It	does	not	work	today	
– NX	–	non-executable	stack.	Most	compilers	now	
default	to	a	non-executable	stack.	Meaning	a	
segmentaCon	fault	occurs	if	running	code	from	the	
stack	(i.e.,	Data	ExecuCon	PrevenCon	-	DEP)	
•  Disable	it	with	–zexecstack	opCon	
•  Check	it	with	readelf	–e	<PROGRAM>	|	grep	STACK	

–  StackGuard:	Cannaries	
•  Disable	it	with	–fno-stack-protector	opCon	
•  Enable	it	with	–fstack-protector	opCon	
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Stack	Canaries	

•  Stack	smashing	aOacks	do	two	things	
– Overwrite	the	return	address	
– Wait	for	algorithm	to	complete	and	call	RET	

•  Stack	Canaries:	Stack	Smashing	Protector	(SSP)	
–  Placing	a	integer	value	to	stack	just	before	the	return	
address	

–  To	overwrite	the	return	address,	the	canary	value	
would	also	be	modified	

–  Checking	this	value	before	the	funcCon	returns	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 14	



Stack	Canaries	(cont’d)	
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Bypassing	NX	and	Canaries	

•  NX	-	non-executable	stack	
– ExecuCng	code	in	the	heap	
– Data	ExecuCon	PrevenCon	(DEP)	
– Return	Oriented	Programming	(ROP)		
	

•  Stack	Canaries	
– OverwriCng	the	Canary	with	the	same	value	
– Brute	force	aOack	(e.g.,	DynaGuard	in	ACSAC’15)	
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•  Lab	0	
– Turn	in	the	class	agreement	

•  Lab	1	
– Due	today	at	11:59pm	
– Late	assignment	policy	
– Submit	it	via	Blackboard	

•  Lab	2	instrucCons	
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Reminders	


