
Lab	2:	Buffer	Overflows	

Fengwei	Zhang	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 1	

Buffer	Overflows	

•  One	of	the	most	common	vulnerabiliCes	in	
soGware	

•  Programming	languages	commonly	associated	
with	buffer	overflows	including	C	and	C++	

•  OperaCng	systems	including	Windows,	Linux	
and	Mac	OS	X	are	wriOen	in	C	or	C++	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 2	

How	It	Works	

•  ApplicaCons	define	buffers	in	the	memory	
– unsigned	int	char	[10]	
	

•  ApplicaCons	use	adjacent	memory	to	store	
variables,	arguments,	and	return	address	of	a	
funcCon.			

•  Buffer	Overflows	occurs	when	data	wriOen	to	
a	buffer	exceeds	its	size.		

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 3	

Overflowing	A	Buffer	

•  Defining	a	buffer	in	C	
– char	buf[10];	

•  Overflowing	the	buffer	
– Char	buf	[10]	=	‘x’;	
– strcpy(buf,	“AAAAAAAAAAAAAAAAAAAAAAA”)	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 4	

Why	We	Care	

•  Because	adjacent	memory	stores	program	
variables,	parameters,	and	arguments	

•  AOackers	can	change	these	values	through	
overflowing	a	buffer	

•  AOackers	can	gain	control	over	the	program	
flow	to	execute	arbitrary	code	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 5	

Process	Memory	Layout	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 6	

Stack	

Heap	

Data	Segment	

Text	Segment	

High	memory	

Low	memory	

Memory	Layout	for	32-bit	Linux	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 7	

Kernel	Space	

Stack	

Heap	

BSS	Segment	

Data	Segment	

Text	Segment	(ELF)	

1GB	

3GB	

Local	variable:	int	a	

FuncCon	malloc()	

UniniCalized	staCc	variables:	staCc	char	*u	

staCc	char	*s	=	“Hello	world”	

Binary	of	the	program	

Virtual	Memory	Layout	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 8	

Stack	Frame	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 9	

•  The	stack	contains	acCvaCon	frames	including	
local	variables,	funcCon	parameters,	and	
return	address	

•  StarCng	at	the	highest	memory	address	and	
growing	downwards	

•  Last	in	first	out	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 10	

Add	(2,3)	

3	
2	

Ret	Address	
EBP	
C	

High	memory	

Low	memory	 ESP	

int	add	(int	a,	int	b)	
{	

	int	c;	
	c	=	1+b;	
	return	c;	

}	

A	Simple	Program	

Another	Program	
int	func	(char	*	str)	
{	

	char	mybuff[512];	
	strcpy(myBuff,	str);	
	return	1;	

}	
	
int	main	(int	argc,	char	**	argv)	
{	

	func	(argv[1]);	
	return	1;	

}	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 11	

Draw	the	Stack	Frame!	

Overflowing	“myBuff”	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 12	

(A)	
str(A)	

Ret	addr(A)	
EBP(A)	

A	

A	
A	
A	

A	
A	

High	memory	

Low	memory	 ESP	

Buffer	Overflow	Defenses	
•  The	aOack	described	is	a	classical	stack	smashing	
aOack	which	execute	the	code	on	the	stack	

•  It	does	not	work	today	
– NX	–	non-executable	stack.	Most	compilers	now	
default	to	a	non-executable	stack.	Meaning	a	
segmentaCon	fault	occurs	if	running	code	from	the	
stack	(i.e.,	Data	ExecuCon	PrevenCon	-	DEP)	
•  Disable	it	with	–zexecstack	opCon	
•  Check	it	with	readelf	–e	<PROGRAM>	|	grep	STACK	

–  StackGuard:	Cannaries	
•  Disable	it	with	–fno-stack-protector	opCon	
•  Enable	it	with	–fstack-protector	opCon	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 13	

Stack	Canaries	

•  Stack	smashing	aOacks	do	two	things	
– Overwrite	the	return	address	
– Wait	for	algorithm	to	complete	and	call	RET	

•  Stack	Canaries:	Stack	Smashing	Protector	(SSP)	
–  Placing	a	integer	value	to	stack	just	before	the	return	
address	

–  To	overwrite	the	return	address,	the	canary	value	
would	also	be	modified	

–  Checking	this	value	before	the	funcCon	returns	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 14	

Stack	Canaries	(cont’d)	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 15	

(A)	
str(A)	

Ret	addr(A)	
EBP(A)	

Canary(A)	

A	
A	
A	

A	
A	

High	memory	

Low	memory	 ESP	

Bypassing	NX	and	Canaries	

•  NX	-	non-executable	stack	
– ExecuCng	code	in	the	heap	
– Data	ExecuCon	PrevenCon	(DEP)	
– Return	Oriented	Programming	(ROP)		
	

•  Stack	Canaries	
– OverwriCng	the	Canary	with	the	same	value	
– Brute	force	aOack	(e.g.,	DynaGuard	in	ACSAC’15)	
	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 16	

•  Lab	0	
– Turn	in	the	class	agreement	

•  Lab	1	
– Due	today	at	11:59pm	
– Late	assignment	policy	
– Submit	it	via	Blackboard	

•  Lab	2	instrucCons	

Wayne	State	University	 CSC	5991	Cyber	Security	PracCce	 17	

Reminders	

