K\T\(lﬁ

WAYNE STATE
UNIVERSITY

COLLEGE OF ENGINEERING
CSC 5991 Cyber Security Practice

Lab 5: Android Application Reverse Engineering
and Obfuscation

Introduction

Reverse Engineering is a popular hacking approach that extracts the knowledge and
design of a system and reproduces its behavior based on the extracted information. To
prevent the reverse engineering, we often use the obfuscation to raise the bar of the
difficulty of this process.

In this lab, you will learn how to do reverse engineering and obfuscation for Android
applications. First, you will need to write a simple Android application. Then, you will
reverse the byte code of the application by adding a malicious function. Lastly, you will
use packers to obfuscate the application and protect it from reverse engineering.

Software Requirements

All required files are packed and configured in the provided virtual machine image.

The VMWare Software
http://apps.eng.wayne.edu/MPStudents/Dreamspark.aspx

- The Kali Linux, 64 bit, Penetration Testing Distribution
https://www.kali.org/downloads/

- Java SE Development Kit (JDK)
http://www.oracle.com/technetwork/java/javase/downloads/index.html

- Android Software Development Kit (SDK)
http://developer.android.com/sdk/index.html

- Android Studio Integrated Development Environment (IDE) or Eclipse
http://developer.android.com/sdk/index.html

Android Emulator System or Android Device

Fengwei Zhang - CSC 5991 Cyber Security Practice 1

Ksz)/
. NV g
http://developer.android.com/sdk/index.html

Starting the Lab 5 Virtual Machine

The Kai Linux VM has all the required files. Select the VM named “Lab5”. Due to
performance limitation, | recommend that you work on the lab assignment on your
laptop without virtual machine.

Virtual Machine Library
> A = @

StartUp Settings Snapshots Delete

% Kali Linux >
Debian 7.x

> X
n = { o« @ < @ ‘

Login the Kali Linux with username root, and password [TBA in the class]. Below is the
screen snapshot after login.

Fengwei Zhang - CSC 5991 Cyber Security Practice 2

[XON J [®) Kali Linux
n = A) [© i 0 <

Applications ¥ Places ¥

Setting up the Environment

This lab requires a few tools to be installed. Fortunately, | have installed and setup
these tools for you. If you want to finish this lab on your own laptop or desktops without
virtual machine, please follow the steps below to setup the environment.

Install Java SE Development Kit (JDK)

First, you need to install the Java SE Development Kit (JDK) on your system. After you
install the JDK, this should also provide the jarsigner and keytool utilities. The latest
JDK can be found at the following URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

The JDK supports multiple OSes including Windows, Linux, and Mac OS. If you use Kali
Linux, you need to extract the JDK folder and switch the default OpenJDK to Java SE
JDK. The instructions for that can be find here:

http://www.blackmoreops.com/2015/08/15/how-to-install-java-in-kali-linux-2-0-kali-sana/

Install Android Studio

Android Studio includes Android Integrated Development Environment (IDE), Software
Development Kit (SDK) tools, and an emulator system. You can download it from the
following URL:

http://developer.android.com/sdk/index.html

Fengwei Zhang - CSC 5991 Cyber Security Practice 3

$z/
NV
Then you extract the android-studio file. In our Kali Linux image, | extracted under

/root/Documents/android-studio. To run the Android Studio, just go to the bin directory
and run studio.sh.

$ cd /root/Documents/android-studio/bin
$./studio.sh

If you run the studio.sh at the first time, it would setup the Android SDK for you. The
screenshot below shows the Android Studio Setup Wizard when running at the first
time.

Android Studio Setup Wizard © ® 0

N

H‘ Downloadina Components

Unzipping Android Support Repository, revision 25
(@

Show Details

Previous H Next H Cancel |‘ Finish |

Android SDK Tools

In our Kali Linux image, the Android SDK is at /root/Android/Sdk. All of the SDK tools
are under this directory. Below are some tools that you will use in the lab.

$ android sdk: Android SDK manager; it is under Android/Sdk/tools/ directory

$ android avd: Android Virtual Device manager; it is under Andorid/Sdk/tools/ directory;
you can create an virtual device using the AVD manager.

Fengwei Zhang - CSC 5991 Cyber Security Practice 4

\Cyz)/

I'IN\EI%E:
$ emulator -avd <avd_name> [<options>]: Start an emulator with a configured virtual
device; it is under the Andorid/Sdk/tools/ directory

$ adb: Android Debug Bridge. You can gain a shell by running $ adb shell. It is under
Android/Sdk/platform-tools/

$ zipalign: Optimizes .apk files by ensuring that all uncompressed data starts with a
particular alignment. It is under the Android/Sdk/build-tools/23.0.2/ directory.

You can find a full list of SDK tools from here:

http://developer.android.com/tools/help/index.html

For easy access to the SDK tools from a command line, we add the location of the
SDK's tools/, platform-tools/, and build-tools/ to your PATH environment variable.

$ vim ~/.bashrc

$ [Edit the file as the screenshot below]
$ source ~/.bashrc
bashrc+ () -VIM - X=X
File Edit View Search Terminal Help

Add for ANdorid SDK tools -Fengwei Zhang
113 export ANDROIDSDK="/roc droid/Sdk"

export PATH=$PATH:$AND F-:_'if' IDSDK/tools: $ANDROIDSDK/plat form-tools

Android Studio IDE vs. Eclipse IDE

For this lab, you can use either Android Studio IDE or Eclipse IDE. To use Eclipse, you
need to install the Android ADT plugins. In this lab instruction, | will use Android Studio
IDE as an example.

Android Emulator vs. Android Device

You can use a real android device to test the applications in this lab. If you do not have
an Android device or do not want to use your Android device, then you can use the
emulator. The instructions for creating and using the emulator are at the URL below.

http://developer.android.com/tools/devices/emulator.html

Fengwei Zhang - CSC 5991 Cyber Security Practice 5

K\T\(/ﬁ

Creating an Android Application

The goal of this exercise is to familiarize you with Android development and get started
with a simple Login application. The following are the steps to build this app. You also
can find similar instructions from here:

http://developer.android.com/training/basics/firstapp/creating-project.html

1. Start the Android Studio IDE
$ cd /root/Documents/android-studio/bin/

$./studio.sh &

Fengwei Zhang - CSC 5991 Cyber Security Practice 6

K\T\(/ﬂ

Android Studio @ 0

Welcome to Android Studio

Recent Projects Quick Start

=
E&. Start a new Android Studio project
=
= Open an existing Android Studio project
VCS : :

No Proje o Vet - Check out project from Version Control
[

a.lﬂ;

Import project (Eclipse ADT, Gradle, etc.)

il

Ehw Import an Android code sample

}‘Q Configure 2

r;? Docs and How-Taos 2

2. Start a new Android Studio Project

Click on Start a new Android Studio Project. Input the application name and the
company domain. Note that the package name is the reversal of domain name and the
application name. The screenshot below shows an example.

Fengwei Zhang - CSC 5991 Cyber Security Practice 7

Kxﬁ

Create New Project

7’(New Proiect

Android Studio

Configure your new project

Application name: [Csc5991

Companv Domain: ‘ wavne.edu

Package name: edu.wayne.csc5991

Proiject location:

/root/AndroidStudioProjects/Csc5991

Previous | Cancel ‘ Finish

3. Select the Form Factors Your App Will Run On

Check the Phone and Tablet box, and select the minimum SDK as API 19. Android 4 .4.

Fengwei Zhang - CSC 5991 Cyber Security Practice

K\T\(/ﬁ

Create New Project

A Taraet Android Devices

Select the form factors your app will run on

Different platforms mav reauire separate SDKs

Phone and Tablet

Minimum SDK IAPI 19: Android 4 .4 (KitKat) ﬂ

Lower AP| levels taraet more devices. but have fewer features available.

By targeting AP| 19 and later, your app will run on approximately 62.6% of the devices
that are active on the Gooale Plav Store.

Help me choose
[wear

Minimum SDK IAPI 21: Android 5.0 (Lollipop) S
Orv
Minimum SDK ‘API 21: Android 5.0 (Lollipop)

[J Android Auto
[Glass

Minimum SDK | Glass Development Kit Preview n

4. Add the Login Activity to Mobile

Create New Project

A Add an activity to Mobile

La

Add No Activity

Blank Activity Empty Activity Fullscreen Activity

’

Google AdMob Ads Activity Google Maps Activity

EEE $#ESE @ 2CEm o

Master/Detail Flow

[erevious | [FFE [concel | [<

Fengwei Zhang - CSC 5991 Cyber Security Practice 9

Kyz/)/
NV
5. Customize the Activity

Create New Project

/_)(Customize the Activitv

Creates a new login activity, allowing users to optionally sign in with Google+ or enter an

email address and password to log in to or register with your application

Activity Name: [LoainActivity]

Lavout Name: ‘ activitv_loain ‘

Title: ‘ Sianin ‘

Loain Activity

The name of the activitv class to create

F’revious] | Next] l Cancel] m

6. Finish Creating the Application

The screenshot in the next page shows the GUI interface of Android Studio IDE. You
can see that the LoginActivity.java source code is the login activity you just created. The
default usernames and passwords are defined in LoginActivitly java.

JEE

* A dummy authentication store containing known user names and passwords.
* JODO: remove after conmecting to a real authentication system.

:tjf

rivate static final String[] DUMMY CREDENTIALS = new String[]{
“foogexample.com:hello™, “bargexample.com:world"

[

:

Fengwei Zhang - CSC 5991 Cyber Security Practice 10

\SnoZj
wALAYAR
Csc5991 - [~/AndroidStudioProjects/Csc5991] - [app] - ~/AndroidStudioProjects/Csc5991/app/src/main/java/edu/... — 5 %
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
ODHO ¢~ XHol QRA & > W[Fapp-) > % & ¥E SRS & ? Q
[iCse5991 Ciapp Bl sre) Bl main) B java\’ == wayne Elesc5991) © LoginActivity) X

o . ndroi vl Qx| © LoginActivity java * ‘ m
é_' E.‘gp package edu.wayne.csc5991; §
50 » ifest
U manifests) I
+import ... -3
®| v Ojava ¥ o
v [EJ edu.wayne.csc5991 /¥% 2.
% * A login screen that offers login via emsil/password. o
= - */
o« » [EJedu.wayne csc5991 (androidTest) @ public class LoginActivity extends AppCompatActivity implements Loader _
=il > Chres g’
n. > @ . [HF]
o Gradle Script . . L
- radie scrpts * Id to identity READ CONTACTS permission reguest. ?&
v */ !
E private static final inmt REQUEST_READ CONTACTS = 0O;
=1
a /',Qut o
I~ * A dummy authentication store containing known user names and T8
v * JODO: remove after connecting to a real authentication system.
.0./
" private static final String[] DUMMY CREDENTIALS = new String[]{
-] “foogexample.com:hello”, *bargexample.com:world™
5 +
; VES:
:l * Keep track of the login task to ensure we can cancel it iIf regu &
*/
<) =
* private UserlLoginTask mAuthTask = null; 2
—3
£ // UI references. a
g private AutoCompleteTextView mEmailView; _§
© private EditText mPasswordView; (2
> . . . L}
o private View mProgressView;
Terminal | 0: Messages # 6: Android Monitor =2 TODO " Event Log [Z] Gradle Console
O Gradle build finished in 8s 811ms (6 minutes ago) 1:1 |LF* |UTF-8* | Context: <no context> | B &

Fengwei Zhang - CSC 5991 Cyber Security Practice 11

VRS
K\I V/V
Creating an Android Virtual Device (AVD) with AVD Manager

To run your application, you need to create a virtual device. If you want to run the
application on your physical Android device, you can skip to next section. You can start
the AVD manager by typing $ android avd in a terminal. Then, it should pop-up the AVD
manager window as the screenshot below.

$ android avd

Android Virtual Device (AVD) Manager © ® O

Tools

Android Virtual Devices| Device Definitions

List of existing Android Virtual Devices located at /root/.android/avd

AVD Name [e me Pla 1| APl Le PUSAE ‘Create..‘

k ‘ Refresh

& A repairable Android Virtual Device. 2 An Android Virtual Device that failed to load. Click 'Details' 1

Click on “Create...” to create a new Android Virtual Device. If you create a virtual device
first time, you may need to run $ android sdk to install the packets for CPU/ABI. The
Kali VM image should have installed the required packets. The screenshot below shows
creating a virtual device.

Fengwei Zhang - CSC 5991 Cyber Security Practice 12

After you specify the settings for the Android virtual device, you can click “OK”. Then,
the device you just created will show on the AVD manager as the screenshot below.

Fengwei Zhang - CSC 5991 Cyber Security Practice 13

Android Virtual Device (AVD) Manager
Tools A

Android Virtual Devices Device Definitions

List of existing Android Virtual Devices located at /root/.android/avd

AVD Name Target Name Platfor APl Le' CPU/ABI

¢sc5991-av Android 6.0 : ARM (armeabi-v7a)

K\T\(/ﬁ

e 0

Create...

Start...

Edit...

Delete...

Details...

Refresh

& A repairable Android Virtual Device. { An Android Virtual Device that failed to load. Click 'Details’-

Next, you can click “Start...” to launch the virtual device using the emulator system.
Note that it may take sometime to open the emulator. Be patient! The screenshots

below show the Android Virtual Device in an emulator.

5554:cs¢5991-avd ©0

5554:csc5991-avd

FRIDAY, FEBRUARY 5

Charging

3

Fengwei Zhang - CSC 5991 Cyber Security Practice

14

K\T\(/ﬂ

Running an Android Application

Next, you need to run the application that you just created. You can choose to run it on
your own Android device or an emulator. In this lab instruction, we will show how to run

it in an emulator.

Csc5991 - [~/AndroidStudioProjects/Csc5991] - [app] - ~/AndroidStudioProjects/Csc5991/app/src/main/java/edu/wayne/csc5991/LoginActivity.java - Android ...@ © ©
File Edit View Navigate Code Analyze Refactor Build m Tools VCS Window Help

ODHO ¢« X000 QR & > LMT; a

¥ Debug app’ Shift+F9

Ci€sc5991) Ciapp) D src) Dimain) Dljava) Bl edu) E1v |, = o 2 a
o m = un ‘app’ with Coverage

w| . v == - I+ c

g 'r:ndmld exlw! LOIPACEY b R, Alt+Shift+F10 m
v iee Package € g pebug. Alt+Shift+F9 5
= manifests ~import .. [Edit Configurations..]
® Cjava B <t e =3
" 1 edu wayne csc5991 hi — = = 2
2z € & LoginActivity ;A logy Reload e &
o “ndroidTed ¥ =

& EJ edu wayne.csc5991 ‘\jijuLTf:E public cl —— - _ rCallbacks<Cursor> { a
il [ares Ey \[t+Shift+F8 (;
= 2 Gradle Scripts ‘:",, p F7 a4
» «/ | M Force Step In Alt+Shift+F o
2 priva % 5 Step Shift+F7

B 2 Step Out hift+

] *k

~l * 4 | ™ Run to Curso Alt+F9 -

v * 10 ¥ Force Run to Curso Ctrl+ALE+

|

priva
Il Pause Prog
}s 3
Ty 2P Resume Program Fo

* Ke B Evaluate Expression Alt+F8 Llested.

* - S o —
priva__ " - =X - —
pri{a Toggle Line Breakpoint Ctrl+F8
priva Toggle Me Breakpo
::i:: Toggle Temporary Line Breakpoint Ctrl+Alt+Shift+F8

Toggle Breakpoint Enabled
" @ver 82 View Breakpoints Ctrl+Shift+F8
z sl prote _
g sm oset thread dump
@ s [k Attach debugger to Android process
e / Ser up tn 7 Torm.
::" nEmailView = (AutoCompleteTextView) findViewById(R.id.email):
* populateAutoComplete();
£ nPasswordView = (EditText) findviewById(R.id.password); ki
i of mPasswordView.setOnEditorActionListener((textView, id, keyEvent) - { =
5 if (id == R.id.login || id == EditorInfo.IME_NULL) { —5
= attemptLogin(); a
3 return true; 3
= ¥ 2
" return false; =
1
Terminal [/ 0: Messages ' 6: Android Monitor %2 TODO EventLog [E Gradle Console
O Run selected configuration 46:1 |LF |UTF-8% Context: <no context v &

Click on “Run” tab and then select “Run “app™. Then, you will see a pop-up Window to
ask you to choose a device. You can choose the running device. Click “OK”.

Fengwei Zhang - CSC 5991 Cyber Security Practice 15

K\T\(/ﬁ

Device Chooser (%]
k

© Choose a running device

Device State Compatible Serial Number
BB . 2tor unknown Andhoid 6.0, API 23 online . [Yes |emlator-5554 [

O Launch emulator

Android virtual device: ‘ [none” n‘ ‘

[] Use same device for future launches

m ’ Cancel ’ ’ Help ’

If you didn’t open the emulator yet, you can mark the radio button “Launch emulator”
and select the name of the AVD you just created. It is csc5991-avd in the example of
this lab instruction. Note that it takes some time to open up an emulator, especially in a

VM. Screenshots below show the Csc5991 application is running in the emulator.

5554:csc5991-avd

5554:csc5991-avd

Csc5991

Email

Password (optional)

&

BACKUP TEST

APl Demos Browser Calculator

| = — /'\‘
Te 9B
.

Calendar Camera Clock Contacts

SIGN IN OR REGISTER

- O e
—_— g »
N 2
Csc5991 Custom Locale Dev Settings Dev Tools

O B %

Downloads Email Gallery Gestures Builder

Ol wm

Music Phone Search Settings

Fengwei Zhang - CSC 5991 Cyber Security Practice

16

You can use the default

usernames and passwords

Kxﬂ

to login.

foo@example.com: hello and bar@example.com: world.

They are

The Android Studio IDE shows the runtime information including Logcat message. We
will use Logcat to show the login username and password later in this lab. The
screenshot below shows the interface of Android Studio IDE whiling running the

Csc5991 application.

Csc5991 - [~/AndroidStudioProjects/Csc5991] - LoginActivity.java - Android Studio 1.5.1 (- o]
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
DEHG €A %00 QRAED | ([Bapp > ¥ b @ SRS ? Q
[i€se5991) Caapp ' M src) Cmain) Ejava ' 1 edu ' BT wayne ' £1csc5991 /€ LoginActivity
o 1" Android M @ = | #- I* | © LoginActivity java ¥ ‘ m
5 :
Aé E-'gp package edu.wayne.csc5991; 23,
4] manifests . @
" +import ... -3
® Cjava P R
" 1 edu wayne csc5991 Ve =
ko ©/6 LoginActivity : | et &
o
a EJ edu.wayne.csc5991 Hmr@‘ﬂ“ﬁf?_; public class LoginActivity extends AppCompatActivity implements LoaderCallbacks<Cursor> { >
=il Cires .
® & o o
** Gradle Scripts ¥ Id to i cquest g
@
w */
g private static final int REQUEST READ_CONTACTS = 0;
=i
~| * A dummy authentication store containing known user names an 55 —
v * JODO: remove after connecting to a real authentication system. -
%/
private static final String[] DUMNY CREDENTIALS = new String[]{
"foogexample.com:hello”, "bar@example.com:world™"
-
* Keep track of the login task to ensure we can cancel it if
"y
private UserLoginTask mAuthTask = null;
// UI references —
private AutoCompleteTextView mEmailView;
private EditText mPasswordView;]
private View mProgressView;
private View mLoginFormView;
Android Monitor - L
& ‘ T8 Emulator csc5991-avd Android 6.0, AP| 23 n edu.wayne.cs¢5991 (1051) n
e, . n . n @
1= i logcat | Ml Memory +°| il CPU ~*| Ml GPU +°| M Network +*| Log level: ‘Verbose Q-) Regex ‘ Show only selected application -
~i| 1l | ~ T =
* iy ©2-08 10:33:08.053 1651-1051/edu.wayne.csc5991 I/Choreographer: Skipped 78 frames! The application may be doing too much work on its main thread.
& 02-08 10:33:09.073 1051-1051/edu.wayne.csc5991 I/Choreographer: Skipped 103 frames! The application may be doing too much work on its main thread.
@ [02-08 10:33:09.378 1051-1051/edu.wayne.csc5991 I/Choreographer: Skipped 30 frames! The application may be doing too much work on its main thread. =
S| @ 02-08 10:33:09.692 1651-1051/edu.wayne.csc5991 I/Choreographer: Skipped 31 frames! The application may be doing too much work on its main thread. =
= T 02-08 10:33:00.870 1051-1061/edu.wayne.csc5991 W/art: Suspending all threads took: 95.481ms :é
= J 02-08 10:33:10.244 1051-1051/edu.wayne.csc5991 I/Choreographer: Skipped S5 frames! The application may be doing too much work on its main thread. 2
3; __ 02-08 10:33:10.334 1051-1061/edu.wayne.cscS991 W/art: Suspending all threads took: 60.624ms =z
@ & 02-08 10:33:13,393 1051-1061/edu.wayhe.csc5991 W/art: Suspending all threads took: 8.018ms g
W » =
& Terminal =/ 0: Messages % 6: Android Monitor ~ P:4:Run %2 TODO ™5 EventLog [E] Gradle Console
O session 'app': Launched on csc5991-avd [emulator-5554" (8 minutes ago) 47:37 |LF* |UTF-8°% | Context: <no context> | &

Fengwei Zhang - CSC 5991 Cyber Security Practice

17

AV
Repackage an Android Application

In this exercise, you will repackage the android application that you just created without
any modification. The goal of this exercise is to help you familiar with the repackaging
process.

1. Unzip Android Application apk File.

Find the apk file of the application you created (the name is Csc5991 in this lab
instruction). It locates at /root/AndroidStudioProjects/Csc5991/app/build/outputs/apk/
directory. The name of the apk file is app-debug.apk. The apk file is actually a zip file to
encapsulate the application code and its resource. You need to extract it to become a
normal directory and ‘cd’ into it. Then, the current directory should contain a classes.dex
file, an AndroidManifest.xml file, and additional files.

root@kali: ~/AndroidStudioProjects/Csc5991/app/build/outputs/apk QOO0

File Edit View Search Terminal Help
:~/AndroidStudioProjects/Csc5991/app/build/outputs/apk# 1s
app-debug.apk app-debug-unaligned.apk
:~/AndroidStudioProjects/Csc5991/app/build/outputs/apk# unzip -d app-debug app-debug.apk [

$ cd /root/AndroidStudioProjects/Csc5991/app/build/outputs/apk
$ unzip —d app-debug app-debug.apk
2. Convert dex to smali Format

baksmali and smali are open-source command line tools for disassembling and
reassembling Dalvik bytecode to/from an intermediate representation called smali. This
is the link to the source code

https://github.com/JesusFreke/smali

The smali format is a intermediate representation of the Dalvik bytecode and it is also
the name or the reassembler. The baksmali.jar file disassembles the classes.dex file to
a directory of smali files that are organized hierarchically according their package name.
The classes.dex file contains the Dalvik bytecode. The smali files can be modified to
remove and/or add in additional code into an application as long as it is consistent with
the smali format. After the smali files have been modified, the smali.jar file can be used
to convert the smali files back into a classes.dex file. Then additional steps are taken to
repackage the application.

Fengwei Zhang - CSC 5991 Cyber Security Practice 18

Kyz/)/
NV
| have downloaded baksmali and smali tools for you under the root desktop directory of

the VM image. You can download the baksmali-2.1.1.jar and the smali-2.1.1.jar from
this website:

https://bitbucket.org/JesusFreke/smali/downloads

Next, you need to use the baksmali.jar file to convert the classes.dex file to a directory
containing smali files that are organized hierarchically according to the package name.
This will create a directory named ‘out’ in the current directory that contains the smali
files if you do not provide an output directory.

$ java —jar ~/Desktop/baksmali.jar classes.dex

3. Examine smali Files
Open the LoginActivity.smali file at
/root/AndoridStudio/Project/Csc5991/app/build/outputs/apk/app-debug/out/edu/wayne/csc5991

And get familiar with the Dex instructions. The instructions in the Dalvik bytecode are
explained in the links below.

https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html

http://pallergabor.uw.hu/androidblog/dalvik opcodes.html

4. Create a New classes.dex from smali Files.

First, delete the current classes.dex file so you can create a new classes.dex file based
on the smali files. Then, create a new classes.dex file from the directory of smali files
using the smali.jar file. Lastly, delete the ‘out’ directory since you have just created a
new classes.dex file.

$ cd /root/AndroidStudioProjects/Csc5991/app/build/outputs/apk
$ rm classes.dex
$ java —jar ~/Desktop/smali.jar —o classes.dex out

$ rm —r out
5. Encapsulate into a New apk File

Delete the directory containing the previous signature of the application’s files

$ rm —r META-INF

Fengwei Zhang - CSC 5991 Cyber Security Practice 19

Kyz/)/
NV
Zip the files in the current directory to a file name of your choosing to create a zip file of
the application.
$ zip —r app-debug.zip ./*
Change the file extension of the zip file to apk if needed.

$ mv app-debug.zip app-debug.apk

6. Sign the New apk File

Generate a private key using keytool. The command below prompts you for passwords
for the keystore and key, and to provide the Distinguished Name fields for your key. It
then generates the keystore as a file called my-release-key.keystore. The keystore
contains a single key, valid for 10000 days. The alias (i.e., csc5991-key here) is a name
that you will use later when signing your app. You can skip this step in your assignment
since | have generated this key in the VM image. You also can generate another one
with a different key name.

$ keytool -genkey -keystore my-release-key.keystore -alias csc5991 -keyalg RSA
-keysize 2048 -validity 10000

Sing your app with your private key using jarsigner. The command below prompts you
for passwords for the keystore and key. It then modifies the apk in-place to sign it. Note
that you can sign an APK multiple times with different keys.

$ jarsigner -sigalg SHA1withRSA -digestalg SHA1 -keystore my-release-
key.keystore my_application.apk csc5991-key

The screenshot below shows the signing process.

Fengwei Zhang - CSC 5991 Cyber Security Practice 20

root@kali: ~/AndroidStudioProjects/Csc5991/app/build/outputs/apk/app-debug 000
{ File Edit View Search Terminal Hel ’
:~/AndroidStudioPr 5991/app/build/outputs/apk/app-debug# keytool -genkey -keystore my-release-key.keystore -alias [g
csc5991-key -keyalg RSA -keysize -validity 10600
Enter keystore password:
What is your first and last name?
[Unknown] : Fengwei Zhang
name of your organizational unit?
G
ame of your organization?
wsu

[Unknown] : Detroit
What is the name of your State or Province?
[Unknown] : MI
What is the two-letter country code for this unit?
[Unknown] : US
Is CN=Fengwei Zhang, OU=CS, 0=WSU, L=Detroit, ST=MI, C=US correct?
[no]: vyes

Enter key password for <csc5991-key>

(RETURN if same as keystore password) :

:~/AndroidStudioProje 91/app/build/outputs/apk/app-debug# jarsigner -sigalg SHAlwithRSA digestalg SHAl -keystore my
-release-key.keystore app-debug.apk csc5991-key
Enter Passphrase for keystore:

r -tsacert is provided and this jar is not timestamped. Without a timestamp, users may not be able to validate this jar aft
er the signer certificate's expiration date (2043-06-27) or after any future revocation date.
:~/AndroidStudioProjects/Csc5991/app/build/outputs/apk/app-debug#

You can use the Android Studio to sign your app. Detailed information about signing
your application can be found here:

http://developer.android.com/tools/publishing/app-signing.html

7. Align the New apk Package

zipalign ensures that all uncompressed data starts with a particular byte alignment
relative to the start of the file, which reduces the amount of RAM consumed by an app.

$ /root/Android/Sdk/build-tools/23.0.2/zipalign —v 4 app-debug.apk app-debug-
aligned.apk

You can delete the unaligned apk and rename the aligned apk to whatever you want.
The aligned application is the final product.

$ mv app-debug-aligned.apk app-debug.apk

8. Install the App with ADB

Now you can run the app by installing it via Android Debug Bridge (ADB). To use ADB,
you will need to enable USB debugging on your Android device if you are not using the
emulator. The emulator should have ADB enabled by default. You can then use ADB to
install the app on your Android device or emulator by entering the “adb install app-
debug.apk” command to install the app. This should install the app on your Android

Fengwei Zhang - CSC 5991 Cyber Security Practice 21

oz/
NV
device or emulator. Note that you may have installed the application, so you need to
uninstall it first by executing command “adb uninstall edu.wayne.csc5991”
$ adb uninstall edu.wayne.csc5991
$ adb install app-debug.apk

You can start the emulator by AVD manager. The installed app Csc5991 will show up
on the emulator as the screenshot below.

APl Demos BACKUP TEST Browser Calculator
- w— /\\
< 0
[SF]
Calendar Camera Clock Contacts
i Q 'o 0 Q'l
- - f
Csc5991 Custom Locale Dev Settings Dev Tools
9 > g =%,
. |3 .
Downloads Email Gallery Gestures Builder
Music Phone Search Settings

Fengwei Zhang - CSC 5991 Cyber Security Practice 22

Y
S22
Repackage and Modify an Android Application

You will need to modify a smali file from the Login app to leak the username and
password to the Android log. Please follow the instructions above for the repackaging
operations as given. Any changes you make to the smali file need to be in the correct
format and syntax. If you use the correct format, the modified smali files will be
successfully converted into a classes.dex file. Locate the smali file where the login
occurs. Then use the android.util.Log.d(String, String) Android API call in smali format
to write both the username and password to the log. This is a static Android API call so
an android.utli.Log object does not need to be explicitly prior to writing to the log. The
username and password will be contained in a register that references a String. You
can create a log tag to use as well. You can declare and initialize a String and select the
register number for the log tag. Make sure that you select either a new register number
or a previously used register number that is not used in the subsequent smali method
that you are modifying. The first parameter to the android.util.Log.d(String, String)
Android API call is the log tag and the second parameter is the message to write to the
log. You should be able to identify the register that contains the login and password and
reference them in the smali. After modifying the smali and repackaging the app, it
should write the username and password to the Android log when you log in.

The LoginActivity.java source code will help you. You can see the Android runtime log
information from Android Studio IDE. Your also can use ‘adb logcat’' command to view
the Android log and then redirect the output to a file just prior to running the repackaged
application.

Dalvik bytecode: https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html

Smali registers: https://github.com/JesusFreke/smali/wiki/Registers

Types and fields: https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields

Extra Credit: Download an app from Google Play and modify its code to leak the
username and password.

Fengwei Zhang - CSC 5991 Cyber Security Practice 23

K\T\(lﬁ

Obfuscate an Android Application

The ProGuard is a built-in tool in SDK that shrinks, optimizes, and obfuscates your code
by removing unused code and renaming classes, fields, and methods with semantically
obscure names. The result is a smaller sized apk file that is more difficult to reverse
engineer.

Understand the ProGuard tool, and use it to protect your application.

http://developer.android.com/tools/help/proguard.html

Packing is used to obfuscate the code of a program. It is typically used to protect the
executable from reverse engineering. Find a commercial packer or Android obfuscation
tool, and then pack the apk file you created. Then use the baksmali and smali tools to
see if you can repackage an Android application.

Papers about unpacking Android applications
AppSpear: http://link.springer.com/chapter/10.1007%2F978-3-319-26362-5 17
DexHunter: http://link.springer.com/chapter/10.1007%2F978-3-319-24177-7 15

Assignments for Lab 5

1. Read the lab instructions above and finish all the tasks.
2. Turn in the file name and entire smali method that you modified to write the
username and password to the log from the Login App.
3. Turn in a screenshot of the captured username and password
4. Describe the process to obfuscate an Android Applcaiton
a. What tools did you use?
b. Can you still repackage the application using baksmali or smali tool?
Justify your answer.

Happy Hacking!

Fengwei Zhang - CSC 5991 Cyber Security Practice 24

