
	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 1	

	

CSC 5991 Cyber Security Practice

Lab 5: Android Application Reverse Engineering
and Obfuscation

Introduction
	

Reverse Engineering is a popular hacking approach that extracts the knowledge and
design of a system and reproduces its behavior based on the extracted information. To
prevent the reverse engineering, we often use the obfuscation to raise the bar of the
difficulty of this process.

In this lab, you will learn how to do reverse engineering and obfuscation for Android
applications. First, you will need to write a simple Android application. Then, you will
reverse the byte code of the application by adding a malicious function. Lastly, you will
use packers to obfuscate the application and protect it from reverse engineering.

Software Requirements
	

All required files are packed and configured in the provided virtual machine image.

- The VMWare Software
http://apps.eng.wayne.edu/MPStudents/Dreamspark.aspx

- The Kali Linux, 64 bit, Penetration Testing Distribution
https://www.kali.org/downloads/

- Java SE Development Kit (JDK)
http://www.oracle.com/technetwork/java/javase/downloads/index.html

- Android Software Development Kit (SDK)
http://developer.android.com/sdk/index.html

- Android Studio Integrated Development Environment (IDE) or Eclipse
http://developer.android.com/sdk/index.html

- Android Emulator System or Android Device

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 2	

http://developer.android.com/sdk/index.html

Starting the Lab 5 Virtual Machine

The Kai Linux VM has all the required files. Select the VM named “Lab5”. Due to
performance limitation, I recommend that you work on the lab assignment on your
laptop without virtual machine.

	

Login the Kali Linux with username root, and password [TBA in the class]. Below is the
screen snapshot after login.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 3	

Setting up the Environment

This lab requires a few tools to be installed. Fortunately, I have installed and setup
these tools for you. If you want to finish this lab on your own laptop or desktops without
virtual machine, please follow the steps below to setup the environment.

Install Java SE Development Kit (JDK)

First, you need to install the Java SE Development Kit (JDK) on your system. After you
install the JDK, this should also provide the jarsigner and keytool utilities. The latest
JDK can be found at the following URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

The JDK supports multiple OSes including Windows, Linux, and Mac OS. If you use Kali
Linux, you need to extract the JDK folder and switch the default OpenJDK to Java SE
JDK. The instructions for that can be find here:

http://www.blackmoreops.com/2015/08/15/how-to-install-java-in-kali-linux-2-0-kali-sana/

Install Android Studio

Android Studio includes Android Integrated Development Environment (IDE), Software
Development Kit (SDK) tools, and an emulator system. You can download it from the
following URL:

http://developer.android.com/sdk/index.html

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 4	

Then you extract the android-studio file. In our Kali Linux image, I extracted under
/root/Documents/android-studio. To run the Android Studio, just go to the bin directory
and run studio.sh.

 $ cd /root/Documents/android-studio/bin

 $./studio.sh

If you run the studio.sh at the first time, it would setup the Android SDK for you. The
screenshot below shows the Android Studio Setup Wizard when running at the first
time.

Android SDK Tools

In our Kali Linux image, the Android SDK is at /root/Android/Sdk. All of the SDK tools
are under this directory. Below are some tools that you will use in the lab.

$ android sdk: Android SDK manager; it is under Android/Sdk/tools/ directory

$ android avd: Android Virtual Device manager; it is under Andorid/Sdk/tools/ directory;
you can create an virtual device using the AVD manager.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 5	

$	emulator -avd <avd_name> [<options>]: Start an emulator with a configured virtual
device; it is under the Andorid/Sdk/tools/ directory

$ adb: Android Debug Bridge. You can gain a shell by running $ adb shell. It is under
Android/Sdk/platform-tools/

$ zipalign: Optimizes .apk files by ensuring that all uncompressed data starts with a
particular alignment. It is under the Android/Sdk/build-tools/23.0.2/ directory.

You can find a full list of SDK tools from here:

http://developer.android.com/tools/help/index.html

For easy access to the SDK tools from a command line, we add the location of the
SDK's tools/, platform-tools/, and build-tools/ to your PATH environment variable.

 $ vim ~/.bashrc

 $ [Edit the file as the screenshot below]

 $ source ~/.bashrc

Android Studio IDE vs. Eclipse IDE

For this lab, you can use either Android Studio IDE or Eclipse IDE. To use Eclipse, you
need to install the Android ADT plugins. In this lab instruction, I will use Android Studio
IDE as an example.

Android Emulator vs. Android Device

You can use a real android device to test the applications in this lab. If you do not have
an Android device or do not want to use your Android device, then you can use the
emulator. The instructions for creating and using the emulator are at the URL below.

http://developer.android.com/tools/devices/emulator.html

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 6	

Creating an Android Application
	

The goal of this exercise is to familiarize you with Android development and get started
with a simple Login application. The following are the steps to build this app. You also
can find similar instructions from here:

http://developer.android.com/training/basics/firstapp/creating-project.html

1. Start the Android Studio IDE

$ cd /root/Documents/android-studio/bin/

$./studio.sh &

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 7	

2. Start a new Android Studio Project

Click on Start a new Android Studio Project. Input the application name and the
company domain. Note that the package name is the reversal of domain name and the
application name. The screenshot below shows an example.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 8	

3. Select the Form Factors Your App Will Run On

Check the Phone and Tablet box, and select the minimum SDK as API 19. Android 4.4.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 9	

4. Add the Login Activity to Mobile

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 10	

5. Customize the Activity

6. Finish Creating the Application

The screenshot in the next page shows the GUI interface of Android Studio IDE. You
can see that the LoginActivity.java source code is the login activity you just created. The
default usernames and passwords are defined in LoginActivitly.java.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 11	

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 12	

Creating an Android Virtual Device (AVD) with AVD Manager
To run your application, you need to create a virtual device. If you want to run the
application on your physical Android device, you can skip to next section. You can start
the AVD manager by typing $ android avd in a terminal. Then, it should pop-up the AVD
manager window as the screenshot below.

 $ android avd

Click on “Create…” to create a new Android Virtual Device. If you create a virtual device
first time, you may need to run $ android sdk to install the packets for CPU/ABI. The
Kali VM image should have installed the required packets. The screenshot below shows
creating a virtual device.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 13	

After you specify the settings for the Android virtual device, you can click “OK”. Then,
the device you just created will show on the AVD manager as the screenshot below.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 14	

Next, you can click “Start…” to launch the virtual device using the emulator system.
Note that it may take sometime to open the emulator. Be patient! The screenshots
below show the Android Virtual Device in an emulator.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 15	

Running an Android Application

Next, you need to run the application that you just created. You can choose to run it on
your own Android device or an emulator. In this lab instruction, we will show how to run
it in an emulator.

Click on “Run” tab and then select “Run “app””. Then, you will see a pop-up Window to
ask you to choose a device. You can choose the running device. Click “OK”.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 16	

If you didn’t open the emulator yet, you can mark the radio button “Launch emulator”
and select the name of the AVD you just created. It is csc5991-avd in the example of
this lab instruction. Note that it takes some time to open up an emulator, especially in a
VM. Screenshots below show the Csc5991 application is running in the emulator.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 17	

You can use the default usernames and passwords to login. They are
foo@example.com: hello and bar@example.com: world.

The Android Studio IDE shows the runtime information including Logcat message. We
will use Logcat to show the login username and password later in this lab. The
screenshot below shows the interface of Android Studio IDE whiling running the
Csc5991 application.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 18	

Repackage an Android Application

In this exercise, you will repackage the android application that you just created without
any modification. The goal of this exercise is to help you familiar with the repackaging
process.

1. Unzip Android Application apk File.

Find the apk file of the application you created (the name is Csc5991 in this lab
instruction). It locates at /root/AndroidStudioProjects/Csc5991/app/build/outputs/apk/
directory. The name of the apk file is app-debug.apk. The apk file is actually a zip file to
encapsulate the application code and its resource. You need to extract it to become a
normal directory and ‘cd’ into it. Then, the current directory should contain a classes.dex
file, an AndroidManifest.xml file, and additional files.

$ cd /root/AndroidStudioProjects/Csc5991/app/build/outputs/apk

$ unzip –d app-debug app-debug.apk

2. Convert dex to smali Format

baksmali and smali are open-source command line tools for disassembling and
reassembling Dalvik bytecode to/from an intermediate representation called smali. This
is the link to the source code

https://github.com/JesusFreke/smali

The smali format is a intermediate representation of the Dalvik bytecode and it is also
the name or the reassembler. The baksmali.jar file disassembles the classes.dex file to
a directory of smali files that are organized hierarchically according their package name.
The classes.dex file contains the Dalvik bytecode. The smali files can be modified to
remove and/or add in additional code into an application as long as it is consistent with
the smali format. After the smali files have been modified, the smali.jar file can be used
to convert the smali files back into a classes.dex file. Then additional steps are taken to
repackage the application.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 19	

I have downloaded baksmali and smali tools for you under the root desktop directory of
the VM image. You can download the baksmali-2.1.1.jar and the smali-2.1.1.jar from
this website:

https://bitbucket.org/JesusFreke/smali/downloads

Next, you need to use the baksmali.jar file to convert the classes.dex file to a directory
containing smali files that are organized hierarchically according to the package name.
This will create a directory named ‘out’ in the current directory that contains the smali
files if you do not provide an output directory.

 $ java –jar ~/Desktop/baksmali.jar classes.dex

3. Examine smali Files

Open the LoginActivity.smali file at

/root/AndoridStudio/Project/Csc5991/app/build/outputs/apk/app-debug/out/edu/wayne/csc5991

And get familiar with the Dex instructions. The instructions in the Dalvik bytecode are
explained in the links below.

https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html

http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html

4. Create a New classes.dex from smali Files.

First, delete the current classes.dex file so you can create a new classes.dex file based
on the smali files. Then, create a new classes.dex file from the directory of smali files
using the smali.jar file. Lastly, delete the ‘out’ directory since you have just created a
new classes.dex file.

$ cd /root/AndroidStudioProjects/Csc5991/app/build/outputs/apk

 $ rm classes.dex

 $ java –jar ~/Desktop/smali.jar –o classes.dex out

 $ rm –r out

5. Encapsulate into a New apk File

Delete the directory containing the previous signature of the application’s files

 $ rm –r META-INF

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 20	

Zip the files in the current directory to a file name of your choosing to create a zip file of
the application.

 $ zip –r app-debug.zip ./*

Change the file extension of the zip file to apk if needed.

 $ mv app-debug.zip app-debug.apk

6. Sign the New apk File

Generate a private key using keytool. The command below prompts you for passwords
for the keystore and key, and to provide the Distinguished Name fields for your key. It
then generates the keystore as a file called my-release-key.keystore. The keystore
contains a single key, valid for 10000 days. The alias (i.e., csc5991-key here) is a name
that you will use later when signing your app. You can skip this step in your assignment
since I have generated this key in the VM image. You also can generate another one
with a different key name.

 $ keytool -genkey -keystore my-release-key.keystore -alias csc5991 -keyalg RSA
-keysize 2048 -validity 10000

Sing your app with your private key using jarsigner. The command below prompts you
for passwords for the keystore and key. It then modifies the apk in-place to sign it. Note
that you can sign an APK multiple times with different keys.

 $ jarsigner -sigalg SHA1withRSA -digestalg SHA1 -keystore my-release-
key.keystore my_application.apk csc5991-key

The screenshot below shows the signing process.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 21	

You can use the Android Studio to sign your app. Detailed information about signing
your application can be found here:

http://developer.android.com/tools/publishing/app-signing.html

7. Align the New apk Package

zipalign ensures that all uncompressed data starts with a particular byte alignment
relative to the start of the file, which reduces the amount of RAM consumed by an app.

 $ /root/Android/Sdk/build-tools/23.0.2/zipalign –v 4 app-debug.apk app-debug-
aligned.apk

You can delete the unaligned apk and rename the aligned apk to whatever you want.
The aligned application is the final product.

 $ mv app-debug-aligned.apk app-debug.apk

8. Install the App with ADB

Now you can run the app by installing it via Android Debug Bridge (ADB). To use ADB,
you will need to enable USB debugging on your Android device if you are not using the
emulator. The emulator should have ADB enabled by default. You can then use ADB to
install the app on your Android device or emulator by entering the “adb install app-
debug.apk” command to install the app. This should install the app on your Android

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 22	

device or emulator. Note that you may have installed the application, so you need to
uninstall it first by executing command “adb uninstall edu.wayne.csc5991”

 $ adb uninstall edu.wayne.csc5991

 $ adb install app-debug.apk

You can start the emulator by AVD manager. The installed app Csc5991 will show up
on the emulator as the screenshot below.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 23	

Repackage and Modify an Android Application

You will need to modify a smali file from the Login app to leak the username and
password to the Android log. Please follow the instructions above for the repackaging
operations as given. Any changes you make to the smali file need to be in the correct
format and syntax. If you use the correct format, the modified smali files will be
successfully converted into a classes.dex file. Locate the smali file where the login
occurs. Then use the android.util.Log.d(String, String) Android API call in smali format
to write both the username and password to the log. This is a static Android API call so
an android.utli.Log object does not need to be explicitly prior to writing to the log. The
username and password will be contained in a register that references a String. You
can create a log tag to use as well. You can declare and initialize a String and select the
register number for the log tag. Make sure that you select either a new register number
or a previously used register number that is not used in the subsequent smali method
that you are modifying. The first parameter to the android.util.Log.d(String, String)
Android API call is the log tag and the second parameter is the message to write to the
log. You should be able to identify the register that contains the login and password and
reference them in the smali. After modifying the smali and repackaging the app, it
should write the username and password to the Android log when you log in.

The LoginActivity.java source code will help you. You can see the Android runtime log
information from Android Studio IDE. Your also can use ‘adb logcat’ command to view
the Android log and then redirect the output to a file just prior to running the repackaged
application.

Dalvik bytecode: https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html

Smali registers: https://github.com/JesusFreke/smali/wiki/Registers

Types and fields: https://github.com/JesusFreke/smali/wiki/TypesMethodsAndFields

Extra Credit: Download an app from Google Play and modify its code to leak the
username and password.

	

	Fengwei	Zhang	-	CSC	5991	Cyber	Security	Practice	 	 24	

Obfuscate an Android Application

The ProGuard is a built-in tool in SDK that shrinks, optimizes, and obfuscates your code
by removing unused code and renaming classes, fields, and methods with semantically
obscure names. The result is a smaller sized apk file that is more difficult to reverse
engineer.

Understand the ProGuard tool, and use it to protect your application.

http://developer.android.com/tools/help/proguard.html

Packing is used to obfuscate the code of a program. It is typically used to protect the
executable from reverse engineering. Find a commercial packer or Android obfuscation
tool, and then pack the apk file you created. Then use the baksmali and smali tools to
see if you can repackage an Android application.

Papers about unpacking Android applications

AppSpear: http://link.springer.com/chapter/10.1007%2F978-3-319-26362-5_17

DexHunter: http://link.springer.com/chapter/10.1007%2F978-3-319-24177-7_15

Assignments for Lab 5
	

1. Read the lab instructions above and finish all the tasks.
2. Turn in the file name and entire smali method that you modified to write the

username and password to the log from the Login App.
3. Turn in a screenshot of the captured username and password
4. Describe the process to obfuscate an Android Applcaiton

a. What tools did you use?
b. Can you still repackage the application using baksmali or smali tool?

Justify your answer.

	

Happy	Hacking!	

