
Understanding the Security of ARM Debugging
Features

Zhenyu Ning and Fengwei Zhang

COMPASS Lab
Wayne State University

May 21, 2019

Understanding the Security of ARM Debugging Features, S&P 19 1



Outline

I Introduction

I Obstacles for Attacking the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Understanding the Security of ARM Debugging Features, S&P 19 2



Outline

I Introduction

I Obstacles for Attacking the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Understanding the Security of ARM Debugging Features, S&P 19 3



Introduction

Modern processors are equipped with hardware-based debugging
features to facilitate on-chip debugging process.

- E.g., hardware breakpoints and hardware-based trace.

- It normally requires cable connection (e.g., JTAG [1]) to make
use of these features.

Understanding the Security of ARM Debugging Features, S&P 19 4



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Security?

Understanding the Security of ARM Debugging Features, S&P 19 5



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Security?

Understanding the Security of ARM Debugging Features, S&P 19 6



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Security?

Understanding the Security of ARM Debugging Features, S&P 19 7



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

Security?

Understanding the Security of ARM Debugging Features, S&P 19 8



Introduction

Security? We have obstacles for attackers!

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Do these obstacles work?

Understanding the Security of ARM Debugging Features, S&P 19 9



Introduction

Security? We have obstacles for attackers!

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Do these obstacles work?

Understanding the Security of ARM Debugging Features, S&P 19 10



Outline

I Introduction

I Obstacles for Attacking the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Understanding the Security of ARM Debugging Features, S&P 19 11



Obstacles for Attacking the Traditional Debugging

Obstacles for attackers:

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Does it really require physical access?

Understanding the Security of ARM Debugging Features, S&P 19 12



Inter-Processor Debugging

We can use one processor on the chip to debug another one on the
same chip, and we refer it as inter-processor debugging.

I Memory-mapped debugging registers.

- Introduced since ARMv7.

I No JTAG, No physical access.

Understanding the Security of ARM Debugging Features, S&P 19 13



Obstacles for Attacking the Traditional Debugging

Obstacles for attackers:

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Does debug authentication work as expected?

Understanding the Security of ARM Debugging Features, S&P 19 14



Processor in Normal State

TARGET is executing instructions pointed by pc

Understanding the Security of ARM Debugging Features, S&P 19 15



Processor in Non-invasive Debugging

Non-invasive Debugging: Monitoring without control

Understanding the Security of ARM Debugging Features, S&P 19 16



Processor in Invasive Debugging

Invasive Debugging: Control and change status

Understanding the Security of ARM Debugging Features, S&P 19 17



ARM Debug Authentication Mechanism

Debug Authentication Signal: Whether debugging is allowed

Understanding the Security of ARM Debugging Features, S&P 19 18



ARM Debug Authentication Mechanism

Four signals for: Secure/Non-secure, Invasive/Non-invasive

Understanding the Security of ARM Debugging Features, S&P 19 19



ARM Ecosystem

ARM SoC Vendor OEM User

I ARM licenses technology to the SoC Vendors.

- E.g., ARM architectures and Cortex processors

I Defines the debug authentication signals.

Understanding the Security of ARM Debugging Features, S&P 19 20



ARM Ecosystem

ARM SoC Vendor OEM User

I The SoC Vendors develop chips for the OEMs.

- E.g., Qualcomm Snapdragon SoCs

I Implement the debug authentication signals.

Understanding the Security of ARM Debugging Features, S&P 19 21



ARM Ecosystem

ARM SoC Vendor OEM User

I The OEMs produce devices for the users.

- E.g., Samsung Galaxy Series and Huawei Mate Series

I Configure the debug authentication signals.

Understanding the Security of ARM Debugging Features, S&P 19 22



ARM Ecosystem

ARM SoC Vendor OEM User

I Finally, the User can enjoy the released devices.

- Tablets, smartphones, and other devices

I Learn the status of debug authentication signals.

Understanding the Security of ARM Debugging Features, S&P 19 23



Obstacles for Attacking the Traditional Debugging

Obstacles for attackers:

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication mechanism.

Does debug authentication work as expected?

Understanding the Security of ARM Debugging Features, S&P 19 24



Debug Authentication Signals

I What is the status of the signals in real-world device?

I How to manage the signals in real-world device?

Understanding the Security of ARM Debugging Features, S&P 19 25



Debug Authentication Signals

Table: Debug Authentication Signals on Real Devices.

Category Platform / Device
Debug Authentication Signals

DBGEN NIDEN SPIDEN SPNIDEN

Development
Boards

ARM Juno r1 Board 4 4 4 4

NXP i.MX53 QSB 6 4 6 6

IoT Devices Raspberry PI 3 B+ 4 4 4 4

Cloud
Platforms

64-bit ARM miniNode 4 4 4 4

Packet Type 2A Server 4 4 4 4

Scaleway ARM C1 Server 4 4 4 4

Google Nexus 6 6 4 6 6

Samsung Galaxy Note 2 4 4 6 6
Mobile
Devices Huawei Mate 7 4 4 4 4

Motorola E4 Plus 4 4 4 4

Xiaomi Redmi 6 4 4 4 4

Understanding the Security of ARM Debugging Features, S&P 19 26



Debug Authentication Signals

Table: Debug Authentication Signals on Real Devices.

Category Platform / Device
Debug Authentication Signals

DBGEN NIDEN SPIDEN SPNIDEN

Development
Boards

ARM Juno r1 Board 4 4 4 4

NXP i.MX53 QSB 6 4 6 6

IoT Devices Raspberry PI 3 B+ 4 4 4 4

Cloud
Platforms

64-bit ARM miniNode 4 4 4 4

Packet Type 2A Server 4 4 4 4

Scaleway ARM C1 Server 4 4 4 4

Google Nexus 6 6 4 6 6

Samsung Galaxy Note 2 4 4 6 6
Mobile
Devices Huawei Mate 7 4 4 4 4

Motorola E4 Plus 4 4 4 4

Xiaomi Redmi 6 4 4 4 4

Understanding the Security of ARM Debugging Features, S&P 19 27



Debug Authentication Signals

Table: Debug Authentication Signals on Real Devices.

Category Platform / Device
Debug Authentication Signals

DBGEN NIDEN SPIDEN SPNIDEN

Development
Boards

ARM Juno r1 Board 4 4 4 4

NXP i.MX53 QSB 6 4 6 6

IoT Devices Raspberry PI 3 B+ 4 4 4 4

Cloud
Platforms

64-bit ARM miniNode 4 4 4 4

Packet Type 2A Server 4 4 4 4

Scaleway ARM C1 Server 4 4 4 4

Google Nexus 6 6 4 6 6

Samsung Galaxy Note 2 4 4 6 6
Mobile
Devices Huawei Mate 7 4 4 4 4

Motorola E4 Plus 4 4 4 4

Xiaomi Redmi 6 4 4 4 4

Understanding the Security of ARM Debugging Features, S&P 19 28



Debug Authentication Signals

How to manage the signals in real-world device?

I For both development boards with manual, we cannot fully
control the debug authentication signals.

- Signals in i.MX53 QSB can be enabled by JTAG.

- The DBGEN and NIDEN in ARM Juno board cannot be
disabled.

I In some mobile phones, we find that the signals are controlled
by One-Time Programmable (OTP) fuse.

For all the other devices, nothing is publicly
available.

Understanding the Security of ARM Debugging Features, S&P 19 29



Obstacles for Attacking the Traditional Debugging

Obstacles for attackers:

I Obstacle 1: Physical access.
We don’t need physical access to debug a processor.

I Obstacle 2: Debug authentication mechanism.
The debug authentication mechanism allows us to debug the
processor.

Understanding the Security of ARM Debugging Features, S&P 19 30



Outline

I Introduction

I Obstacles for Attacking the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Understanding the Security of ARM Debugging Features, S&P 19 31



Inter-processor Debugging

Debug Target
(TARGET)

Debug Host
(HOST)

Memory-mapped
Interface

Understanding the Security of ARM Debugging Features, S&P 19 32



Inter-processor Debugging

Debug Target
(TARGET)

Debug Host
(HOST)

Memory-mapped
Interface

Understanding the Security of ARM Debugging Features, S&P 19 33



Nailgun Attack
A Multi-processor SoC System

TARGET
(Normal State)

(High Privilege)

HOST
(Normal State)

(High Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

An example SoC system:

I Two processors as HOST and TARGET, respectively.

I Low-privilege and High-privilege resource.

Understanding the Security of ARM Debugging Features, S&P 19 34



Nailgun Attack
A Multi-processor SoC System

TARGET
(Normal State)

(High Privilege)

HOST
(Normal State)

(High Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

I Low-privilege refers to non-secure kernel-level privilege

I High-privilege refers to any other higher privilege

Understanding the Security of ARM Debugging Features, S&P 19 35



Nailgun Attack
A Multi-processor SoC System

TARGET
(Normal State)
(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

Both processors are only access low-privilege resource.

I Normal state

I Low-privilege mode

Understanding the Security of ARM Debugging Features, S&P 19 36



Nailgun Attack
A Multi-processor SoC System

TARGET
(Normal State)
(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

HOST sends a Debug Request to TARGET,

I TARGET checks its authentication signal.

I Privilege of HOST is ignored.

Understanding the Security of ARM Debugging Features, S&P 19 37



Nailgun Attack
A Multi-processor SoC System

TARGET
(Debug State)

(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

TARGET turns to Debug State according to the request.

I Low-privilege mode

I No access to high-privilege resource

Understanding the Security of ARM Debugging Features, S&P 19 38



Nailgun Attack
A Multi-processor SoC System

TARGET
(Debug State)

(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

HOST sends a Privilege Escalation Request to TARGET,

I E.g., executing DCPS series instructions.

I The instructions can be executed at any privilege level.

Understanding the Security of ARM Debugging Features, S&P 19 39



Nailgun Attack
A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

TARGET turns to High-privilege Mode according to the request.

I Debug state, high-privilege mode

I Gained access to high-privilege resource

Understanding the Security of ARM Debugging Features, S&P 19 40



Nailgun Attack
A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Resource
Access
Request

HOST sends a Resource Access Request to TARGET,

I E.g., accessing secure RAM/register/peripheral.

I Privilege of HOST is ignored.

Understanding the Security of ARM Debugging Features, S&P 19 41



Nailgun Attack
A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Response

TARGET return the result to HOST,

I i.e., content of the high-privilege resource.

I Privilege of HOST is ignored.

Understanding the Security of ARM Debugging Features, S&P 19 42



Nailgun Attack
A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Response

HOST gains access to the high-privilege resource while running in,

I Normal state

I Low-privilege mode

Understanding the Security of ARM Debugging Features, S&P 19 43



Nailgun Attack

Nailgun: Break the privilege isolation of ARM platform.

I Achieve access to high-privilege resource via misusing the
ARM debugging features.

I Can be used to craft different attacks.

Understanding the Security of ARM Debugging Features, S&P 19 44



Attack Scenarios

I Implemented Attack Scenarios:

- Inferring AES keys from TrustZone.

- Read Secure Configuration Register (SCR).

- Arbitrary payload execution in TrustZone.

I Covered Architectures:

- ARMv7, 32-bit ARMv8, and 64-bit ARMv8 architecture.

I Vulnerable Devices:

- Development boards, IoT devices, cloud platforms, mobile
devices.

Understanding the Security of ARM Debugging Features, S&P 19 45



Nailgun Attack

Fingerprint extraction in commercial mobile phone.

I Deivce: Huawei Mate 7 (MT-L09)

I Firmware: MT7-L09V100R001C00B121SP05

I Fingerprint sensor: FPC1020

Understanding the Security of ARM Debugging Features, S&P 19 46



Nailgun Attack

I Step 1: Learn the location of fingerprint data in secure RAM.

- Achieved by reverse engineering.

I Step 2: Extract the data.

- With the inter-processor debugging in Nailgun.

I Step 3: Restore fingerprint image from the extracted data.

- Read the publicly available sensor manual.

Understanding the Security of ARM Debugging Features, S&P 19 47



Nailgun Attack

I The right part of the image is blurred for privacy concerns.

I Source code: https://compass.cs.wayne.edu/nailgun/

Understanding the Security of ARM Debugging Features, S&P 19 48

https://compass.cs.wayne.edu/nailgun/


Disclosure

March 2018 Preliminary findings are reported to ARM

August 2018 Report to ARM and related OEMs with enriched result

October 2018 Issue is reported to MITRE

February 2019 PoCs and demos are released

April 2019 CVE-2018-18068 is released

Understanding the Security of ARM Debugging Features, S&P 19 49



Outline

I Introduction

I Obstacles for Attacking the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Understanding the Security of ARM Debugging Features, S&P 19 50



Mitigations

Simply disable the signals?

Understanding the Security of ARM Debugging Features, S&P 19 51



Mitigations

Simply disable the authentication signals?

I Existing tools rely on the debug authentication signals.

- E.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

I Unavailable management mechanisms.

I OTP feature, cost, and maintenance.

Understanding the Security of ARM Debugging Features, S&P 19 52



Mitigations

We suggest a comprehensive defense across different roles in the
ARM ecosystem.

I For ARM, additional restriction in inter-processor debugging
model.

I For SoC vendors, refined signal management and
hardware-assisted access control to debug components.

I For OEMs and cloud providers, software-based access control.

Understanding the Security of ARM Debugging Features, S&P 19 53



Outline

I Introduction

I Obstacles for Attacking the Traditional Debugging

I Nailgun Attack

I Mitigations

I Conclusion

Understanding the Security of ARM Debugging Features, S&P 19 54



Conclusion

I We present a study on the security of hardware debugging
features on ARM platform.

I “Safe” components in legacy systems may be vulnerable in
advanced systems.

I We suggest a comprehensive rethink on the security of legacy
mechanisms.

Understanding the Security of ARM Debugging Features, S&P 19 55



References I
[1] IEEE, “Standard for test access port and boundary-scan architecture,”

https://standards.ieee.org/findstds/standard/1149.1-2013.html.

[2] D. Balzarotti, G. Banks, M. Cova, V. Felmetsger, R. Kemmerer, W. Robertson, F. Valeur, and G. Vigna, “An
experience in testing the security of real-world electronic voting systems,” IEEE Transactions on Software
Engineering, 2010.

[3] S. Clark, T. Goodspeed, P. Metzger, Z. Wasserman, K. Xu, and M. Blaze, “Why (special agent) johnny
(still) can’t encrypt: A security analysis of the APCO project 25 two-way radio system,” in Proceedings of
the 20th USENIX Security Symposium (USENIX Security’11), 2011.

[4] L. Cojocar, K. Razavi, and H. Bos, “Off-the-shelf embedded devices as platforms for security research,” in
Proceedings of the 10th European Workshop on Systems Security (EuroSec’17), 2017.

[5] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: System-wide security testing of real-world
embedded systems software,” in Proceedings of the 27th USENIX Security Symposium (USENIX
Security’18), 2018.

[6] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. A. Mohammed, and S. A. Zonouz, “Hey, my
malware knows physics! Attacking PLCs with physical model aware rootkit,” in Proceedings of 24th Network
and Distributed System Security Symposium (NDSS’17), 2017.

[7] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling near-real-time dynamic analyses of
embedded systems,” in Proceedings of the 9th USENIX Workshop on Offensive Technologies (WOOT’15),
2015.

[8] Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek, “Towards a practical solution to detect code reuse attacks
on ARM mobile devices,” in Proceedings of the 4th Workshop on Hardware and Architectural Support for
Security and Privacy (HASP’15), 2015.

[9] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy, “A security analysis of an in-vehicle infotainment and
app platform,” in Proceedings of the 10th USENIX Workshop on Offensive Technologies (WOOT’16), 2016.

Understanding the Security of ARM Debugging Features, S&P 19 56

https://standards.ieee.org/findstds/standard/1149.1-2013.html


References II
[10] Z. Ning and F. Zhang, “Ninja: Towards transparent tracing and debugging on ARM,” in Proceedings of the

26th USENIX Security Symposium (USENIX Security’17), 2017.

[11] J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti et al., “AVATAR: A framework to support dynamic security
analysis of embedded systems’ firmwares,” in Proceedings of 21st Network and Distributed System Security
Symposium (NDSS’14), 2014.

Understanding the Security of ARM Debugging Features, S&P 19 57



Thank you!

Questions?
zhenyu.ning@wayne.edu

http://compass.cs.wayne.edu

Understanding the Security of ARM Debugging Features, S&P 19 58

http://compass.cs.wayne.edu


Backup Slides

Backup Slides

Understanding the Security of ARM Debugging Features, S&P 19 59



Nailgun in different ARM architecture

I 64-bit ARMv8 architecture: ARM Juno r1 board.

- Embedded Cross Trigger (ECT) for debug request.
- Binary instruction to Instruction Transfer Register (ITR).

I 32-bit ARMv8 architecture: Raspberry PI Model 3 B+.

- Embedded Cross Trigger (ECT) for debug request.
- First and last half of binary instruction should be reversed in

ITR.

I ARMv7 architecture: Huawei Mate 7.

- Use Debug Run Control Register for debug request.
- Binary instruction to Instruction Transfer Register (ITR).

Understanding the Security of ARM Debugging Features, S&P 19 60



Instruction Execution in Debug State

In normal state, TARGET is executing instructions pointed by pc

Understanding the Security of ARM Debugging Features, S&P 19 61



Instruction Execution in Debug State

In debug state, TARGET stops executing the instruction at pc

Understanding the Security of ARM Debugging Features, S&P 19 62



Instruction Execution in Debug State

In debug state, write binary instruction to ITR for execution

Understanding the Security of ARM Debugging Features, S&P 19 63



Instruction Execution in Debug State

In debug state, write binary instruction to ITR for execution

Understanding the Security of ARM Debugging Features, S&P 19 64



Instruction Execution in Debug State

In debug state, write binary instruction to ITR for execution

Understanding the Security of ARM Debugging Features, S&P 19 65


	Introduction
	Obstacles for Attacking the Traditional Debugging
	Nailgun Attack
	Mitigations
	Conclusion
	Reference
	Thanks
	Backup Slides

	anm0: 
	anm1: 
	anm2: 
	anm3: 
	anm4: 
	anm5: 
	anm6: 
	anm7: 
	anm8: 
	anm9: 


