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Abstract. Linear discriminant analysis (LDA) is commonly used for dimension-
ality reduction. In real-world applications where labeled data are scarce, LDA
does not work very well. However, unlabeled data are often available in large
quantities. We propose a novel semi-supervised discriminant analysis algorithm
called SSDACCCP . We utilize unlabeled data to maximize an optimality criterion
of LDA and use the constrained concave-convex procedure to solve the optimiza-
tion problem. The optimization procedure leads to estimation of the class labels
for the unlabeled data. We propose a novel confidence measure for selecting those
unlabeled data points with high confidence. The selected unlabeled data can then
be used to augment the original labeled data set for performing LDA. We also
propose a variant of SSDACCCP , called M-SSDACCCP , which adopts the man-
ifold assumption to utilize the unlabeled data. Extensive experiments on many
benchmark data sets demonstrate the effectiveness of our proposed methods.

1 Introduction

Linear discriminant analysis(LDA) [1, 2] is a commonly used method for dimension-
ality reduction. It seeks a linear projection that simultaneously maximizes the between-
class dissimilarity and minimizes the within-class dissimilarity to increase class sepa-
rability, typically for classification applications. Despite its simplicity, the effectiveness
and computational efficiency of LDA make it a popular choice for many applications.
Nevertheless, LDA does have its limitations. One of these arises in situations when the
sample size is much smaller than the dimensionality of the feature space, leading to the
so-calledsmall sample size(SSS) problem [3] due to severe under-sampling of the un-
derlying data distribution. As a result, the within-class scatter matrix that characterizes
the within-class variability is not of full rank and hence it is not invertible. A num-
ber of methods have been proposed to overcome this problem, e.g., PseudoLDA [4],
PCA+LDA [5], LDA/QR [6], NullLDA [3], and DualLDA [7]. PseudoLDA overcomes
the singularity problem by substituting the inverse of the within-class scatter matrix
with its pseudo-inverse. PCA+LDA first applies PCA [8] to project the data into a lower-
dimensional space so that the within-class scatter matrix computed there is nonsingu-
lar, and then applies LDA in the lower-dimensional space. LDA/QR is also a two-stage
method which can be divided into two steps: first project the data to the range space
of the between-class scatter matrix and then apply LDA in this space. NullLDA first
projects the data to the null space of the within-class scatter matrix and then maximizes

∗This research has been supported by General Research Fund 621407 from the Research
Grants Council of the Hong Kong Special Administrative Region, China.



the between-class scatter in this space. It is similar to the Discriminative Common Vec-
tors method [9]. DualLDA, which combines the ideas from PCA+LDA and NullLDA,
maximizes the between-class scatter matrix in the range space and the null space of the
within-class scatter matrix separately and then integrates the two parts together to get
the final transformation. There is also another approach to address the SSS problem,
with 2DLDA [10] being the representative of this approach. The major difference be-
tween 2DLDA and the algorithms above lies in their data representation. Specifically,
2DLDA operates on data represented as (2D) matrices, instead of (1D) vectors, so that
the dimensionality of the data representation can be kept small as a way to alleviate
the SSS problem. Another limitation of LDA is that it only gives a linear projection of
the data points. Fortunately, the kernel approach can be applied easily via the so-called
kernel trick to extend LDA to its kernel version, calledkernel discriminant analysis
(KDA), that can project the data points nonlinearly, e.g., [11]. Besides addressing these
two limitations of LDA, some interesting recent works also address other issues, e.g.,
to study the relationships between two variants of LDA [12], to reformulate multi-class
LDA as a multivariate linear regression problem [13], and to learn the optimal kernel
matrix for KDA using semi-definite programming (SDP) [14, 15].

In many real-world applications, it is impractical to expect the availability of large
quantities of labeled data because labeling data requires laborious human effort. On
the other hand, unlabeled data are available in large quantities at very low cost. Over
the past decade or so, one form ofsemi-supervised learning, which attempts to uti-
lize unlabeled data to aid classification or regression tasks under situations with limited
labeled data, has emerged as a hot and promising research topic within the machine
learning community. A good survey of semi-supervised learning methods can be found
in [16]. Some early semi-supervised learnng methods include Co-Training [17] and
transductive SVM (TSVM) [18, 19]. Recently, graph-based semi-supervised learning
methods [20–22] have attracted the interests of many researchers. Unlike earlier meth-
ods, these methods model the geometric relationships between all data points in the
form of a graph and then propagate the label information from the labeled data points
through the graph to the unlabeled data points.

The objective of this paper is to alleviate the SSS problem of LDA by exploiting
unlabeled data. We propose a novelsemi-supervised discriminant analysisalgorithm
called SSDACCCP . Although there already exists another semi-supervised LDA al-
gorithm, called SDA [23], which exploits the local neighborhood information of data
points in performing dimensionality reduction, our SSDACCCP algorithm works in a
very different way. Specifically, we utilize unlabeled data to maximize an optimality
criterion of LDA and formulate the problem as a constrained optimization problem
that can be solved using theconstrained concave-convex procedure(CCCP) [24, 25].
This procedure essentially estimates the class labels of the unlabeled data points. For
those unlabeled data points whose labels are estimated with sufficiently high confidence
based on some novel confidence measure proposed by us, we select them to expand the
original labeled data set and then perform LDA again. Besides SSDACCCP , we also
propose a variant of SSDACCCP , called M-SSDACCCP , which adopts themanifold as-
sumption[20] to utilize the unlabeled data. Note that M-SSDACCCP shares the spirit
of both TSVM and graph-based semi-supervised learning methods.



The remainder of this paper is organized as follows. We first briefly review the tradi-
tional LDA algorithm in Section 2. We then present our SSDACCCP and M-SSDACCCP

algorithms in Section 3. Section 4 reports experimental results based on some com-
monly used data sets. Performance comparison with some representative methods are
reported there to demonstrate the effectiveness of our methods. Finally, some conclud-
ing remarks are offered in the last section.

2 Background

We are given a training set ofn data points,D = {x1, . . . , xn}, wherexi ∈ RN , i =
1, . . . , n. Let D be partitioned intoC ≥ 2 disjoint classesΠi, i = 1, . . . , C, where
classΠi containsni examples. The between-class scatter matrixSb and the within-
class scatter matrixSw are defined as

Sb =
C∑

k=1

nk(m̄k − m̄)(m̄k − m̄)T

Sw =
C∑

k=1

∑
xi∈Πk

(xi − m̄k)(xi − m̄k)T ,

wherem̄ = (
∑n

i=1 xi)/n is the sample mean of the whole data setD and m̄k =
(
∑

xi∈Πk
xi)/nk is the class mean ofΠk. LDA seeks to find a projection matrixW ∗

that maximizes the trace function ofSb andSw:

W ∗ = arg max
W

trace((WT SwW )−1WT SbW ), (1)

which has an analytically tractable solution. According to [26], the optimal solution
W ∗ for the problem (1) can be computed from the eigenvectors ofS−1

w Sb, whereS−1
w

denotes the matrix inverse ofSw. SinceW ∗ computed this way is computationally
simple yet effective for many applications, the optimality criterion in (1) is often used
for many applications. Because the rank ofSb is at mostC − 1, W containsC − 1
columns in most situations.

3 Semi-Supervised Discriminant Analysis via CCCP

In this section, we first present a theoretical result on the optimal solution for LDA. We
then show how to utilize unlabeled data to solve the optimization problem, leading to the
SSDACCCP algorithm. Next, we incorporate the manifold assumption into SSDACCCP

to give M-SSDACCCP . Finally we give some discussions about our methods.

3.1 Optimal Solution for LDA

In our work, we use the following optimality criterion:

W ∗ = arg max
W

trace((WT StW )−1WT SbW ), (2)



whereSt is the total scatter matrix withSt = Sb + Sw. It is easy to prove that the
optimal solution to the problem (2) is equivalent to that to the problem (1).

We assume thatSt is of full rank, or else we can apply principal component analysis
(PCA) [8] first to eliminate the null space ofSt without affecting the performance of
LDA since the null space makes no contribution to the discrimination ability of LDA
[27].

The following theorem on the optimal solution to the problem (2) is relevant here.
Theorem 1. For W ∈ RN×(C−1),

max
W

trace((WT StW )−1WT SbW ) = trace(S−1
t Sb).

The proof of this theorem can be found in [26].

3.2 SSDACCCP : Exploiting Unlabeled Data to Maximize the Optimality
Criterion

Suppose we havel labeled data pointsx1, . . . , xl ∈ RN with class labels fromC classes
Πi, i = 1, . . . , C, andm unlabeled data pointsxl+1, . . . , xl+m ∈ RN with unknown
class labels. So we have totallyn = l + m examples available for training. Usually
l � m. Whenl is too small compared with the input dimensionality, LDA generally
does not perform very well. To remedy this problem, we want to incorporate unlabeled
data to improve its performance.

Inspired by TSVM [18, 19], which utilizes unlabeled data to maximize the margin,
we use unlabeled data here to maximize the optimality criterion of LDA. Since the
optimal criterion value istrace(S−1

t Sb) (from Theorem 1), we utilize unlabeled data
to maximizetrace(S−1

t Sb) via estimating the class labels of the unlabeled data points.
We first calculateSt asSt =

∑n
i=1(xi−m̄)(xi−m̄)T , wherem̄ = (

∑n
i=1 xi)/n is

the sample mean of all the data points. We define the class indicator matrixA ∈ Rn×C ,
where the(i, j)th elementAij is given by

Aij =
{

1 if xi ∈ Πj

0 otherwise
(3)

If D = (x1, . . . , xl, xl+1, . . . , xn) is the data matrix andAk is a vector for the
kth column ofA, then the class mean can be expressed asm̄k = DAk/nk, where
nk = AT

k 1n is the number of data points that belong to thekth class and1n is ann-
dimensional column vector of ones. Similarly, we can also express the sample mean as
m̄ = D1n/n. ThenSb can be calculated as

Sb =
C∑

k=1

nk(m̄k − m̄)(m̄k − m̄)T

=
C∑

k=1

nkD

(
Ak

nk
− 1n

n

)(
AT

k

nk
− 1T

n

n

)
DT

= D

[
C∑

k=1

nk

(
Ak

nk
− 1n

n

)(
AT

k

nk
− 1T

n

n

)]
DT .



Sotrace(S−1
t Sb) can be calculated as

trace(S−1
t Sb) = trace

(
S−1

t D

[
C∑

k=1

nk

(
Ak

nk
− 1n

n

)(
AT

k

nk
− 1T

n

n

)]
DT

)

= trace

([
C∑

k=1

nk

(
Ak

nk
− 1n

n

)(
AT

k

nk
− 1T

n

n

)]
DT S−1

t D

)

= trace

(
C∑

k=1

nk

(
AT

k

nk
− 1T

n

n

)
S

(
Ak

nk
− 1n

n

))

=
C∑

k=1

1
nk

(
AT

k −
nk

n
1T

n

)
S
(
Ak −

nk

n
1n

)
,

whereS = DT S−1
t D is a positive semi-definite matrix.

Since those entries inA for the unlabeled data points are unknown, we maximize
trace(S−1

t Sb) with respect toA. By defining some new variables for the sake of nota-
tional simplicity, we formulate the optimization problem as:

max
A,Bk,tk

C∑
k=1

BT
k SBk

tk

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak −
tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ∈ {0, 1}, i = l+1, . . . , n, j = 1, . . . , C

C∑
j=1

Aij = 1, i = l+1, . . . , n. (4)

Unfortunately this is an integer programming problem which is known to be NP-
hard and often has no efficient solution. We seek to make this integer programming
problem tractable by relaxing the constraintAij ∈ {0, 1} in (4) toAij ≥ 0, giving rise



to a modified formulation of the optimization problem:

max
A,Bk,tk

C∑
k=1

BT
k SBk

tk

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak −
tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . , C

C∑
j=1

Aij = 1, i = l+1, . . . , n. (5)

With such relaxation, the matrix entries ofA for the unlabeled data points may be
interpreted as posterior class probabilities. However, even though the constraints in the
optimization problem (5) are linear, the problem seeks to maximize a convex function
which, unfortunately, does not correspond to a convex optimization problem [28]. If we
re-express the optimization problem in (5) as minimizing a concave function, we can
adopt theconstrained concave-convex procedure(CCCP) [24, 25] to solve this non-
convex optimization problem. For our case, the convex part of the objective function
degenerates to the special case of a constant function which always returns zero.

CCCP is an iterative algorithm. In each iteration, the concave part of the objective
function for the optimization problem is replaced by its first-order Taylor series approx-
imation at the point which corresponds to the result obtained in the previous iteration.
Specifically, in the(p+1)th iteration, we solve the following optimization problem:

max
A,Bk,tk

C∑
k=1

(
2(B(p)

k )T S

t
(p)
k

Bk −
(B(p)

k )T SB
(p)
k

(t(p)
k )2

tk

)
s.t. tk = AT

k 1n, k = 1, . . . , C

Bk = Ak −
tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . , C

C∑
j=1

Aij = 1, i = l+1, . . . , n, (6)

whereB
(p)
k , t

(p)
k , k = 1, . . . , C were obtained in thepth iteration. The objective func-

tion in (6) is just the first-order Taylor series approximation of that in (5) by ignoring
some constant terms.

Since the optimization problem (6) is a linear programming (LP) problem, it can be
solved efficiently and hence can handle large-scale applications. Because the optimal



solution of an LP problem falls on the boundary of its feasible set (or called constraint
set), the matrix entries of the optimalAij computed in each iteration must be in{0, 1},
which automatically satisfies the constraints in (4).

As the optimization problem is non-convex, the final solution that CCCP obtains
generally depends on its initial value. For the labeled data points, the corresponding
entries inAij are held fixed based on their class labels. For the unlabeled data points, we
initialize the corresponding entries inAij with equal prior probabilities for all classes:

A
(0)
ij =

{
1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l, j = 1, . . . , C

A
(0)
ij =

1
C

, i = l+1, . . . , n, j = 1, . . . , C. (7)

The initial values forB(0)
k andt

(0)
k can be computed based on the equality constraints

in (6) which establish the relationships betweenA, Bk andtk.

3.3 M-SSDACCCP : Incorporating the Manifold Assumption

The manifold assumption [20] is adopted by many graph-based semi-supervised learn-
ing methods. Under this assumption, nearby points are more likely to have the same
class label for classification problems and similar low-dimensional representations for
dimensionality reduction problems. We adopt this assumption to extend SSDACCCP to
M-SSDACCCP .

Given the data setD = {x1, . . . , xn}, we first construct aK-nearest neighbor graph
G = (V,E), with the vertex setV = {1, . . . , n} corresponding to the labeled and un-
labeled data points and the edge setE ⊆ V ×V representing the relationships between
data points. Each edge is assigned a weightwij which reflects the similarity between
pointsxi andxj :

wij =

{
exp

(
−‖xi−xj‖2

σiσj

)
if xi ∈ NK(xj) or xj ∈ NK(xi)

0 otherwise

whereNK(xi) denotes the neighborhood set ofK-nearest neighbors ofxi, σi the dis-
tance betweenxi and itsKth nearest neighbor, andσj the distance betweenxj and
its Kth nearest neighbor. This way of constructing the nearest neighbor graph is called
local scaling[29], which is different from that in SDA [23]. In SDA, a constant value
of 1 is set for all neighbors. This is unsatisfactory especially when some neighbors are
relatively far away.

By incorporating the manifold assumption into our problem, we expect nearby
points to be more likely to have the same class label and hence the two corresponding
rows inA are more likely to be the same. We thus modify the optimization problem (5)



by adding one more term to the objective function:

max
A,Bk,tk

C∑
k=1

BT
k SBk

tk
− λ

n∑
i=1

n∑
j=i+1

wij‖A(i)−A(j)‖1

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak −
tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . , C

C∑
j=1

Aij = 1, i = l+1, . . . , n, (8)

whereλ > 0 is a regularization parameter,A(i) denotes theith row of A, and‖x‖1 is
theL1-norm of vectorx.

Since the objective function of the optimization problem (8) is the difference of two
convex functions, we can also adopt CCCP to solve it. Similar to SSDACCCP , in each
iteration of CCCP, we also need to solve an LP problem:

max
A,Bk,tk

C∑
k=1

(
2(B(p)

k )T S

t
(p)
k

Bk −
(B(p)

k )T SB
(p)
k

(t(p)
k )2

tk

)
− λ

n∑
i=1

n∑
j=i+1

wij‖A(i)−A(j)‖1

s.t. tk = AT
k 1n, k = 1, . . . , C

Bk = Ak −
tk
n

1n, k = 1, . . . , C

Aij =
{

1 if xi ∈ Πj

0 otherwise
i = 1, . . . , l

Aij ≥ 0, i = l+1, . . . , n, j = 1, . . . , C

C∑
j=1

Aij = 1, i = l+1, . . . , n. (9)

One reason for choosing theL1-norm in the problem (8) is to keep the problem (9) as
an LP problem which has an efficient and effective solution.

3.4 Augmenting the Labeled Data Set with Unlabeled Data

For both SSDACCCP and M-SSDACCCP , CCCP estimates the class labels of all the
unlabeled data points by solving the corresponding optimization problems with respect
to A. One might then use all these unlabeled data points with estimated class labels to
expand the labeled data set and then apply LDA again. However, it should be noted that
not all the class labels can be estimated accurately. Thus, including those points with
noisy class labels may impair the performance of LDA. Here we propose an effective



method for selecting only those unlabeled data points whose labels are estimated with
sufficiently high confidence.

Since all matrix entries inAij obtained by CCCP are either 0 or 1, they cannot serve
as posterior class probabilities for defining a measure to characterize the label estima-
tion confidence. Here we propose an alternative scheme. We first use all the unlabeled
data points with their estimated labels and the original labeled data set to perform LDA.
Then, in the embedding space, we consider the neighborhood of each unlabeled data
point by taking into account unlabeled data points only. If an unlabeled point has a suf-
ficiently large proportion (determined by some thresholdθ, usually chosen to be larger
than 0.5) of neighboring unlabeled points with the same estimated class label as its own,
we consider this unlabeled point to have an estimated class label with high confidence
and hence select it to augment the labeled data set for performing LDA again.

3.5 Discussions

In order to gain some insight into our method, we investigate the dual form of the op-

timization problem (6). We denoteR(p)
k = 2(B

(p)
k )T S

t
(p)
k

andq
(p)
k = (B

(p)
k )T SB

(p)
k

(t
(p)
k )2

, for k =

1, . . . , C. We plug the first two equality constraints of the optimization problem (6) into
its objective funciton and get the following Lagrangian:

L(A,α, β) =
C∑

k=1

[(
q
(p)
k +

R
(p)
k 1n

n

)
1T

n −R
(p)
k

]
Ak −

C∑
k=1

l∑
i=1

αki(Aik − δ
c(i)
k )

−
C∑

k=1

n∑
i=l+1

αkiAik −
n∑

i=l+1

βi(
C∑

k=1

Aik − 1),

wherec(i) is the class label of labeled data pointi andδ
c(i)
k is the delta function whose

value is 1 ifc(i) = k and 0 otherwise.
So the dual form of the optimization problem (6) is

max
α,β

C∑
k=1

l∑
i=1

αkiδ
c(i)
k +

n∑
i=l+1

βi

s.t. αki = q
(p)
k −R

(p)
ki +

R
(p)
k 1n

n
, i = 1, . . . , l, k = 1, . . . , C

αki + βi = q
(p)
k −R

(p)
ki +

R
(p)
k 1n

n
, i = l+1, . . . , n, k = 1, . . . , C

αki ≥ 0, i = l+1, . . . , n, k = 1, . . . , C (10)

whereR
(p)
ki is theith element of vectorR(p)

k .
TheKarush-Kuhn-Tucker(KKT) condition [28] for the optimization problem (10)

is
αkiAik = 0, i = l+1, . . . , n, k = 1, . . . , C. (11)



From the first constraint of the optimization problem (10), we can see that eachαki

has a constant value fori = 1, . . . , l, k = 1, . . . , C. So we can simplify the optimiza-
tion problem (10) by eliminating the first summation term in the objective function and
the first constraint as

max
α,β

n∑
i=l+1

βi

s.t. αki + βi = q
(p)
k −R

(p)
ki +

R
(p)
k 1n

n
, i = l+1, . . . , n, k = 1, . . . , C

αki ≥ 0, i = l+1, . . . , n, k = 1, . . . , C, (12)

which can be further simplified as

max
β

n∑
i=l+1

βi

s.t. βi ≤ q
(p)
k −R

(p)
ki +

R
(p)
k 1n

n
, i = l+1, . . . , n, k = 1, . . . , C. (13)

So the optimal solution ofβi can be obtained asβi = mink{q(p)
k −R

(p)
ki + R

(p)
k 1n

n } for
i = l + 1, . . . , n.

For each unlabeled data point, if we assumeAik? > 0, then from the KKT condition

(11) we can getαk?i = 0 and alsoβi = q
(p)
k? − R

(p)
k?i + R

(p)
k? 1n

n according to the first
constraint of the optimization problem (12). So

q
(p)
k? −R

(p)
k?i +

R
(p)
k? 1n

n
= min

k

{
q
(p)
k −R

(p)
ki +

R
(p)
k 1n

n

}

and

k? = argmin
k

{
q
(p)
k −R

(p)
ki +

R
(p)
k 1n

n

}
.

Soq
(p)
k − R

(p)
ki + R

(p)
k 1n

n can be seen as the negative confidence that theith data point
belongs to thekth class and hence we can classify each data point to the class corre-
sponding to the minimal negative confidence. If there is a unique minimum, then we can
getAik? = 1 andAik′ = 0 for k′ 6= k?; otherwise, we can first find the set of unlabeled
data points for which there exist unique minimum andAik can be easily determined,
and then we can solve a smaller LP problem (6) by plugging in the known elements
Aij . From our experiments, the latter situation seldom occurs and this can speed up the
optimization problem (6), which even does not need to solve a LP problem.

[30] proposed a novel clustering method called DisKmeans which also maximize
the optimality criterion of LDA to do clustering. However, its purpose is very different.
In our work, M-SSDACCCP and SSDACCCP utilize unlabeled data to alleviate the SSS
problem of LDA and we formulate the learning problem under the semi-supervised



setting. On the other hand, DisKmeans aims at clustering high-dimensional data which
is an unsupervised learning problem.

The computation cost of SSDACCCP and M-SSDACCCP includes performing LDA
twice and solving the optimization problem using CCCP. The complexity of LDA
is O(N3). The LP problem inside each iteration of CCCP can be solved efficiently.
From our experimental results, CCCP converges very fast in less than 10 iterations. So
SSDACCCP and M-SSDACCCP are efficient under most situations.

Finally, we summary this section by presenting the SSDACCCP (or M-SSDACCCP )
algorithm in Table 1.

Table 1.Algorithm for SSDACCCP or M-SSDACCCP

Input: labeled dataxi (i = 1, . . . , l), unlabeled dataxi (i = l+1, . . . , n), K, θ, ε

Initialize A(0) using Eq. (7);
Initialize B

(0)
k andt

(0)
k based onA(0) for k = 1, . . . , C;

Construct theK-nearest neighbor graph;
p = 0;
Repeat

p = p + 1;
Solve the optimization problem (6) or (9);
UpdateA(p), B

(p)
k andt

(p)
k using the result of the optimization problem fork = 1, . . . , C;

Until‖A(p) −A(p−1)‖F ≤ ε
Select the unlabeled data points with high confidence based on the thresholdθ;
Add the selected unlabeled data points with their estimated labels into the labeled data set
and perform LDA on the augmented labeled data set to get the transformationW .
Output: the transformationW

4 Experiments

In this section, we first study SSDACCCP and M-SSDACCCP empirically and com-
pare their performance with several other dimensionality reduction methods, including
PCA, LDA [5] and SDA. Note that PCA is unsupervised, LDA is supervised, and SDA
is semi-supervised in nature. After dimensionality reduction has been performed, we
apply a simple nearest-neighbor classifier to perform classification in the embedding
space. We also compare SSDACCCP and M-SSDACCCP with two state-of-the-art in-
ductive semi-supervised learning methods, LapSVM and LapRLS [20].

4.1 Experimental Setup

We use MATLAB to implement all the algorithms and the CVX toolbox1 for solving the
optimization problems. We use the source code offered by Belkin et al. for LapSVM

1http://www.stanford.edu/ ∼boyd/cvx/



Table 2.Summary of data sets used and data partitioning for each data set

Data set #Dim (N ) #Inst (n) #Class (C) #Labeled (q) #Unlabeled (r)

diabetes 8 768 2 5 100
heart-statlog 13 270 2 5 100
ionosphere 34 351 2 5 50
hayes-roth 4 160 3 3 20
iris 4 150 3 3 20
mfeat-pixel 240 2000 10 5 50
pendigits 16 10992 10 5 95
vehicle 18 864 4 5 100
BCI 117 400 2 5 50
COIL 241 1500 6 5 100
PIE 1024 1470 30 2 20

and LapRLS.2 We evaluate these algorithms on 11 benchmark data sets, including 8
UCI data sets [31], a brain-computer interface dataset BCI3 and two image data sets:
COIL3 and PIE [32]. See Table 2 for more details.

For each data set, we randomly selectq data points from each class as labeled data
andr points from each class as unlabeled data. The remaining data form the test set.
Table 2 shows the data partitioning for each data set. For each partitioning, we perform
20 random splits and report the mean and standard derivation over the 20 trials. For
M-SSDACCCP , we choose the number of nearest neighborsK for constructing the
K-nearest neighbor graph to be the same as that for SDA, LapSVM, and LapRLS.

4.2 Experimental Results

We first compare our methods with dimensionality reduction methods and the exper-
imental results are listed in Table 3. There are two rows for each data set: the upper
one being the classification error on the unlabeled training data and the lower one be-
ing that on the test data. For each data set, the lowest classification error is shown
in boldface. From the results, we can see that the performance of SSDACCCP or M-
SSDACCCP is better than other methods in most situations. ForDIABETES, HEART-
STATLOG, PENDIGITS, VEHICLE and PIE, the improvement is very significant. More-
over, for the data sets such asDIABETES and HEART-STATLOG which may not con-
tain manifold structure, the performance of SSDACCCP is better than M-SSDACCCP .
For MFEAT-PIXEL, PIE and others which may contain manifold structure, the perfor-
mance of M-SSDACCCP is better than SSDACCCP . Thus for data sets such as images
which may have manifold structure, we recommend to use M-SSDACCCP . Otherwise
SSDACCCP is preferred. Compared with SDA, SSDACCCP and M-SSDACCCP are
more stable. Specifically, the performance of SSDACCCP or M-SSDACCCP is com-
parable to or better than that of LDA in most situations. For SDA, however, the per-

2http://manifold.cs.uchicago.edu/manifold regularization/manifold.html
3http://www.kyb.tuebingen.mpg.de/ssl-book/



Table 3. Average classification errors for each method on each data set. Each number inside
brackets shows the corresponding standard derivation. The upper row for each data set is the
classification error on the unlabeled training data and the lower row is that on the test data.

Data set PCA LDA SDA SSDACCCP M-SSDACCCP

diabetes 0.4335(0.0775) 0.4438(0.0878) 0.4022(0.0638)0.3898(0.0674)0.4360(0.0605)
0.4253(0.1154) 0.4311(0.0997) 0.3763(0.0864)0.3276(0.0643)0.4125(0.1074)

heart-statlog 0.4288(0.0689) 0.3978(0.0582) 0.3680(0.0564)0.3293(0.0976)0.3818(0.0662)
0.3975(0.0669) 0.3767(0.1055) 0.3783(0.1076)0.3133(0.1174)0.3258(0.1493)

ionosphere 0.2895(0.1032) 0.2850(0.0876)0.2695(0.1056)0.2860(0.1015) 0.2830(0.1029)
0.2189(0.0632)0.2365(0.0972) 0.2241(0.0863) 0.2351(0.1032) 0.2399(0.1278)

hayes-roth 0.5175(0.0571) 0.4942(0.0531) 0.5058(0.0661) 0.4867(0.0569)0.4758(0.0586)
0.5115(0.0605) 0.5165(0.0690) 0.5077(0.0752) 0.5121(0.0770)0.5060(0.0627)

iris 0.0917(0.0417) 0.0933(0.0613) 0.0825(0.0506) 0.0708(0.0445)0.0667(0.0493)
0.0907(0.0333) 0.0833(0.0586) 0.0809(0.0395) 0.0611(0.0370)0.0611(0.0454)

mfeat-pixel 0.1450(0.0232) 0.1501(0.0290) 0.2783(0.0435) 0.1501(0.0289)0.1367(0.0210)
0.1429(0.0228) 0.1486(0.0264) 0.3428(0.0298) 0.1485(0.0264)0.1329(0.0213)

pendigits 0.1724(0.0305) 0.2238(0.0364) 0.2547(0.0447) 0.1785(0.0266)0.1617(0.0242)
0.1761(0.0276) 0.2192(0.0332) 0.2544(0.0382) 0.1779(0.0190)0.1650(0.0225)

vehicle 0.5739(0.0375) 0.5741(0.0365) 0.5400(0.0402)0.4396(0.0734)0.4838(0.0901)
0.5808(0.0453) 0.5879(0.0429) 0.5462(0.0312)0.4329(0.0672)0.4739(0.0791)

BCI 0.4835(0.0460) 0.4830(0.0557) 0.4960(0.0476)0.4750(0.0432)0.4975(0.0484)
0.5000(0.0324) 0.4803(0.0249) 0.4812(0.0326)0.4732(0.0331)0.4741(0.0346)

COIL 0.4443(0.0418)0.5247(0.0371) 0.5419(0.0607) 0.5236(0.0374) 0.5193(0.0401)
0.4391(0.0364)0.5194(0.0421) 0.5461(0.04821) 0.5178(0.0434) 0.5096(0.0398)

PIE 0.6156(0.0275) 0.5055(0.1624) 0.7629(0.0377) 0.4674(0.1757)0.2381(0.0552)
0.6207(0.0251) 0.5126(0.1512) 0.8277(0.0208) 0.4777(0.1696)0.2424(0.0592)

formance degradation can sometimes be very severe, especially forMFEAT-PIXEL and
PIE.

We also investigate the selection method described in Section 3.4. We record the
mean accuracy of label estimation for the unlabeled data over 20 trials before and after
applying the selection method. The results in Table 4 show that the estimation accuracy
after applying the selection method is almost always higher, sometimes very signifi-
cantly. This confirms that our selection method for unlabeled data is very effective.

Next we compare our methods with some representative semi-supervised learn-
ing methods. The experimental settings are the same as those in the first experiment.
There are many popular semi-supervised learning methods, such as Co-Training [17],
TSVM [18, 19], methods in [21, 22], LapSVM and LapRLS [20]. Co-Training requires
two independent and sufficient views for the data, but data used in our experiment can
not satisfy this requirement. TSVM has high computation cost and hence cannot be
used for large-scale problems. Thus it is not included in our experiment. The methods
in [21, 22] can only work under the transductive setting, in which the test data, in addi-
tion to the training data, must be available during model training and the learned model
cannot be applied to unseen test data easily. So these methods can not satisfy our experi-
mental settings and are excluded in our experiments. LapSVM and LapRLS, which also



Table 4.Accuracy of label estimation for the unlabeled data before and after applying the selec-
tion method

SSDACCCP (%) M-SSDACCCP (%)
Data set Before After Before After

diabetes 64.03 66.67 54.10 51.20
heart-statlog 72.27 72.62 55.25 66.70
ionosphere 69.05 87.51 74.10 82.07
hayes-roth 46.75 52.73 42.00 42.64
iris 75.42 93.39 91.42 95.06
mfeat-pixel 32.49 100.0 94.21 98.91
pendigits 75.31 86.08 88.92 94.02
vehicle 56.30 69.88 44.80 52.26
BCI 50.75 65.42 49.00 49.15
COIL 33.57 96.07 42.64 60.03
PIE 30.48 85.00 52.64 70.41

adopt the manifold assumption, have efficient solutions and can work under the induc-
tive setting. So we have included them in our experiment for performance comparison.
The standard LapSVM and LapRLS algorithms are for two-class problems. For multi-
class problems, we adopt theone vs. reststrategy as in [20] for LapSVM and LapRLS.
Since the methods used here are all linear methods, we use a linear kernel for LapSVM
and LapRLS. The experimental results are shown in Table 5. From the experimental
results, we can see that the performance of SSDACCCP and M-SSDACCCP is compa-
rable to or even better than that of LapSVM and LapRLS. Moreover, One advantage of
SSDACCCP and M-SSDACCCP is that their formulation and optimization procedure
are the same for two-class and multi-class problems. However, this is not the case for
LapSVM and LapRLS which require training the models multiple times for multi-class
problems.

5 Conclusion

In this paper, we have presented a new approach for semi-supervised discriminant anal-
ysis. By making use of both labeled and unlabeled data in learning a transformation for
dimensionality reduction, this approach overcomes a serious limitation of LDA under
situations where labeled data are limited. In our future work, we will investigate kernel
extensions to our proposed methods in dealing with nonlinearity. Moreover, we will
also apply the ideas here to some other dimensionality reduction methods.
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