
Understanding the Security of ARM Debugging
Features

Zhenyu Ning and Fengwei Zhang

COMPASS Lab
Wayne State University

May 21, 2019

Understanding the Security of ARM Debugging Features, S&P 19 1



Outline

I Introduction

I Obstacles in Traditional Debugging Model

I Nailgun Attack

I Mitigations

I Conclusion

Understanding the Security of ARM Debugging Features, S&P 19 2



Outline

I Introduction

I Obstacles for Traditional Debugging Model

I Nailgun Attack

I Mitigations

I Conclusion

Understanding the Security of ARM Debugging Features, S&P 19 3



Introduction

Modern processors are equipped with hardware-based debugging
features to facilitate on-chip debugging process.

- e.g. debug registers, debug exceptions and hardware-based
trace.

- It normally requires JTAG [1] connection to make use of these
features.

Understanding the Security of ARM Debugging Features, S&P 19 4



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

What makes it secure?

Understanding the Security of ARM Debugging Features, S&P 19 5



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

What makes it secure?

Understanding the Security of ARM Debugging Features, S&P 19 6



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

What makes it secure?

Understanding the Security of ARM Debugging Features, S&P 19 7



Traditional Debugging

Debug
Authentication

Debug Target
(TARGET)

Debug Host
(HOST)

JTAG Interface

What makes it secure?

Understanding the Security of ARM Debugging Features, S&P 19 8



Introduction

What makes it secure?

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication.

Do these obstacles work?

Understanding the Security of ARM Debugging Features, S&P 19 9



Introduction

What makes it secure?

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication.

Do these obstacles work?

Understanding the Security of ARM Debugging Features, S&P 19 10



Outline

I Introduction

I Obstacles for Traditional Debugging Model

I Nailgun Attack

I Mitigations

I Conclusion

Understanding the Security of ARM Debugging Features, S&P 19 11



Obstacles for Traditional Debugging Model

It is due to two general assumptions:

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication.

Does it really require physical access?

Understanding the Security of ARM Debugging Features, S&P 19 12



Inter-Processor Debugging

We can use one processor on the chip to debug another one on the
same chip, and we refer it as inter-processor debugging.

I Memory-mapped debugging registers.

- Introduced since ARMv7.

I No JTAG, No physical access.

Understanding the Security of ARM Debugging Features, S&P 19 13



Obstacles for Traditional Debugging Model

It is due to two general assumptions:

I Obstacle 1: Physical access.

I Obstacle 2: Debug authentication.

Does debug authentication work as expected?

Understanding the Security of ARM Debugging Features, S&P 19 14



ARM Debug Authentication

TARGET is executing instructions pointed by pc

Understanding the Security of ARM Debugging Features, S&P 19 15



ARM Debug Authentication

Non-invasive Debugging: Monitoring without control

Understanding the Security of ARM Debugging Features, S&P 19 16



ARM Debug Authentication

Invasive Debugging: Control and change status

Understanding the Security of ARM Debugging Features, S&P 19 17



ARM Debug Authentication

Debug Authentication Signal: Whether debugging is allowed

Understanding the Security of ARM Debugging Features, S&P 19 18



ARM Debug Authentication

Four signals for: Secure/Non-secure, Invasive/Non-invasive

Understanding the Security of ARM Debugging Features, S&P 19 19



ARM Ecosystem

ARM SoC Vendor OEM User

I ARM licenses technology to the SoC Vendors.

- e.g., ARM architectures and Cortex processors

I Defines the debug authentication signals.

Understanding the Security of ARM Debugging Features, S&P 19 20



ARM Ecosystem

ARM SoC Vendor OEM User

I The SoC Vendors develop chips for the OEMs.

- e.g., Qualcomm Snapdragon SoCs

I Implement the debug authentication signals.

Understanding the Security of ARM Debugging Features, S&P 19 21



ARM Ecosystem

ARM SoC Vendor OEM User

I The OEMs produce devices for the users.

- e.g., Samsung Galaxy Series and Huawei Mate Series

I Configure the debug authentication signals.

Understanding the Security of ARM Debugging Features, S&P 19 22



ARM Ecosystem

ARM SoC Vendor OEM User

I Finally, the User can enjoy the released devices.

- Tablets, smartphones, and other devices

I Learn the status debug authentication signals.

Understanding the Security of ARM Debugging Features, S&P 19 23



Debug Authentication Signals

I What is the status of the signals in real-world device?

I How to manage the signals in real-world device?

Understanding the Security of ARM Debugging Features, S&P 19 24



Debug Authentication Signals

Table: Debug Authentication Signals on Real Devices.

Category Platform / Device
Debug Authentication Signals

DBGEN NIDEN SPIDEN SPNIDEN

Development
Boards

ARM Juno r1 Board 4 4 4 4

NXP i.MX53 QSB 6 4 6 6

IoT Devices Raspberry PI 3 B+ 4 4 4 4

Cloud
Platforms

64-bit ARM miniNode 4 4 4 4

Packet Type 2A Server 4 4 4 4

Scaleway ARM C1 Server 4 4 4 4

Google Nexus 6 6 4 6 6

Samsung Galaxy Note 2 4 4 6 6
Mobile
Devices Huawei Mate 7 4 4 4 4

Motorola E4 Plus 4 4 4 4

Xiaomi Redmi 6 4 4 4 4

Understanding the Security of ARM Debugging Features, S&P 19 25



Debug Authentication Signals

Table: Debug Authentication Signals on Real Devices.

Category Platform / Device
Debug Authentication Signals

DBGEN NIDEN SPIDEN SPNIDEN

Development
Boards

ARM Juno r1 Board 4 4 4 4

NXP i.MX53 QSB 6 4 6 6

IoT Devices Raspberry PI 3 B+ 4 4 4 4

Cloud
Platforms

64-bit ARM miniNode 4 4 4 4

Packet Type 2A Server 4 4 4 4

Scaleway ARM C1 Server 4 4 4 4

Google Nexus 6 6 4 6 6

Samsung Galaxy Note 2 4 4 6 6
Mobile
Devices Huawei Mate 7 4 4 4 4

Motorola E4 Plus 4 4 4 4

Xiaomi Redmi 6 4 4 4 4

Understanding the Security of ARM Debugging Features, S&P 19 26



Debug Authentication Signals

Table: Debug Authentication Signals on Real Devices.

Category Platform / Device
Debug Authentication Signals

DBGEN NIDEN SPIDEN SPNIDEN

Development
Boards

ARM Juno r1 Board 4 4 4 4

NXP i.MX53 QSB 6 4 6 6

IoT Devices Raspberry PI 3 B+ 4 4 4 4

Cloud
Platforms

64-bit ARM miniNode 4 4 4 4

Packet Type 2A Server 4 4 4 4

Scaleway ARM C1 Server 4 4 4 4

Google Nexus 6 6 4 6 6

Samsung Galaxy Note 2 4 4 6 6
Mobile
Devices Huawei Mate 7 4 4 4 4

Motorola E4 Plus 4 4 4 4

Xiaomi Redmi 6 4 4 4 4

Understanding the Security of ARM Debugging Features, S&P 19 27



Debug Authentication Signals

How to manage the signals in real-world device?

I For both development boards with manual, we cannot fully
control the debug authentication signals.

- Signals in i.MX53 QSB can be enabled by JTAG.

- The DBGEN and NIDEN in ARM Juno board cannot be
disabled.

I In some mobile phones, we find that the signals are controlled
by One-Time Programmable (OTP) fuse.

For all the other devices, nothing is publicly
available.

Understanding the Security of ARM Debugging Features, S&P 19 28



Obstacles for Traditional Debugging Model

To summarize,

I We don’t need physical access to debug a processor.

I The debug authentication also allows us to debug the
processor.

Understanding the Security of ARM Debugging Features, S&P 19 29



Outline

I Introduction

I Obstacles for Traditional Debugging Model

I Nailgun Attack

I Mitigations

I Conclusion

Understanding the Security of ARM Debugging Features, S&P 19 30



Nailgun Attack

Debug Target
(TARGET)

Debug Host
(HOST)

Memory-mapped
Interface

Understanding the Security of ARM Debugging Features, S&P 19 31



Nailgun Attack

Debug Target
(TARGET)

Debug Host
(HOST)

Memory-mapped
Interface

Understanding the Security of ARM Debugging Features, S&P 19 32



Nailgun Attack
A Multi-processor SoC System

TARGET
(Normal State)

(High Privilege)

HOST
(Normal State)

(High Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

An example SoC system:

I Two processors as HOST and TARGET, respectively.

I Low-privilege and High-privilege resource.

Understanding the Security of ARM Debugging Features, S&P 19 33



Nailgun Attack
A Multi-processor SoC System

TARGET
(Normal State)

(High Privilege)

HOST
(Normal State)

(High Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

I Low-privilege refers to non-secure kernel-level privilege

I High-privilege refers to any other higher privilege

Understanding the Security of ARM Debugging Features, S&P 19 34



Nailgun Attack
A Multi-processor SoC System

TARGET
(Normal State)
(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

Both processors are only access low-privilege resource.

I Normal state

I Low-privilege mode

Understanding the Security of ARM Debugging Features, S&P 19 35



Nailgun Attack
A Multi-processor SoC System

TARGET
(Normal State)
(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

HOST sends a Debug Request to TARGET,

I TARGET checks its authentication signal.

I Privilege of HOST is ignored.

Understanding the Security of ARM Debugging Features, S&P 19 36



Nailgun Attack
A Multi-processor SoC System

TARGET
(Debug State)

(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Request

TARGET turns to Debug State according to the request.

I Low-privilege mode

I No access to high-privilege resource

Understanding the Security of ARM Debugging Features, S&P 19 37



Nailgun Attack
A Multi-processor SoC System

TARGET
(Debug State)

(Low Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

HOST sends a Privilege Escalation Request to TARGET,

I e.g., executing DCPS series instructions.

I The instructions can be executed at any privilege level.

Understanding the Security of ARM Debugging Features, S&P 19 38



Nailgun Attack
A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Privilege
Escalation
Request

TARGET turns to High-privilege Mode according to the request.

I Debug state, high-privilege mode

I Gained access to high-privilege resource

Understanding the Security of ARM Debugging Features, S&P 19 39



Nailgun Attack
A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Resource
Access
Request

HOST sends a Resource Access Request to TARGET,

I e.g., accessing secure RAM/register/peripheral.

I Privilege of HOST is ignored.

Understanding the Security of ARM Debugging Features, S&P 19 40



Nailgun Attack
A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Response

TARGET return the result to HOST,

I i.e., content of the high-privilege resource.

I Privilege of HOST is ignored.

Understanding the Security of ARM Debugging Features, S&P 19 41



Nailgun Attack
A Multi-processor SoC System

TARGET
(Debug State)

(High Privilege)

HOST
(Normal State)
(Low Privilege)

High-privilege Resource
(Secure RAM/Register/Peripheral)

Low-privilege Resource
(Non-Secure RAM/Register/Peripheral)

Debug
Response

HOST gains access to the high-privilege resource while running in,

I Normal state

I Low-privilege mode

Understanding the Security of ARM Debugging Features, S&P 19 42



Nailgun Attack

Nailgun: Break the privilege isolation of ARM platform.

I Achieve access to high-privilege resource via misusing the
ARM debugging features.

I Can be used to craft different attacks.

- Inferring encryption keys
- Arbitrary payload execution in TrustZone

Understanding the Security of ARM Debugging Features, S&P 19 43



Nailgun Attack

Fingerprint extraction in commercial mobile phone.

I Deivce: Huawei Mate 7 (MT-L09)

I Firmware: MT7-L09V100R001C00B121SP05

I Fingerprint sensor: FPC1020

Understanding the Security of ARM Debugging Features, S&P 19 44



Nailgun Attack

I By reverse engineering, we learn the address to store
fingerprint data.

I With Nailgun, we extract the fingerprint data from secure
world with a non-secure kernel module.

I Finally, the fingerprint image is reconstructed from the data
with help of the publicly available sensor manual.

Understanding the Security of ARM Debugging Features, S&P 19 45



Nailgun Attack

I The right part of the image is blurred for privacy concerns.

I Source code: https://compass.cs.wayne.edu/nailgun/

Understanding the Security of ARM Debugging Features, S&P 19 46

https://compass.cs.wayne.edu/nailgun/


Outline

I Introduction

I Obstacles for Traditional Debugging Model

I Nailgun Attack

I Mitigations

I Conclusion

Understanding the Security of ARM Debugging Features, S&P 19 47



Mitigations

Simply disable the signals?

Understanding the Security of ARM Debugging Features, S&P 19 48



Mitigations

Simply disable the authentication signals?

I Existing tools rely on the debug authentication signals.

- e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

I Unavailable management mechanisms.

I OTP feature, cost, and maintenance.

Understanding the Security of ARM Debugging Features, S&P 19 49



Mitigations

We suggest a comprehensive defense across different roles in the
ARM ecosystem.

I For ARM, additional restriction in inter-processor debugging
model.

I For SoC vendors, refined signal management and
hardware-assisted access control to debug components.

I For OEMs and cloud providers, software-based access control.

Understanding the Security of ARM Debugging Features, S&P 19 50



Outline

I Introduction

I Obstacles for Traditional Debugging Model

I Nailgun Attack

I Mitigations

I Conclusion

Understanding the Security of ARM Debugging Features, S&P 19 51



Conclusion

I We present a study on the security of hardware debugging
features on ARM platform.

I It shows that the ”known-safe” or ”assumed-safe” component
in the legacy systems turns to be vulnerable while advanced
systems are deployed.

I We suggest a comprehensive rethink on the security of legacy
mechanisms.

Understanding the Security of ARM Debugging Features, S&P 19 52



References I
[1] IEEE, “Standard for test access port and boundary-scan architecture,”

https://standards.ieee.org/findstds/standard/1149.1-2013.html.

[2] D. Balzarotti, G. Banks, M. Cova, V. Felmetsger, R. Kemmerer, W. Robertson, F. Valeur, and G. Vigna, “An
experience in testing the security of real-world electronic voting systems,” IEEE Transactions on Software
Engineering, 2010.

[3] S. Clark, T. Goodspeed, P. Metzger, Z. Wasserman, K. Xu, and M. Blaze, “Why (special agent) johnny
(still) can’t encrypt: A security analysis of the APCO project 25 two-way radio system,” in Proceedings of
the 20th USENIX Security Symposium (USENIX Security’11), 2011.

[4] L. Cojocar, K. Razavi, and H. Bos, “Off-the-shelf embedded devices as platforms for security research,” in
Proceedings of the 10th European Workshop on Systems Security (EuroSec’17), 2017.

[5] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: System-wide security testing of real-world
embedded systems software,” in Proceedings of the 27th USENIX Security Symposium (USENIX
Security’18), 2018.

[6] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. A. Mohammed, and S. A. Zonouz, “Hey, my
malware knows physics! Attacking PLCs with physical model aware rootkit,” in Proceedings of 24th Network
and Distributed System Security Symposium (NDSS’17), 2017.

[7] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling near-real-time dynamic analyses of
embedded systems,” in Proceedings of the 9th USENIX Workshop on Offensive Technologies (WOOT’15),
2015.

[8] Y. Lee, I. Heo, D. Hwang, K. Kim, and Y. Paek, “Towards a practical solution to detect code reuse attacks
on ARM mobile devices,” in Proceedings of the 4th Workshop on Hardware and Architectural Support for
Security and Privacy (HASP’15), 2015.

[9] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy, “A security analysis of an in-vehicle infotainment and
app platform,” in Proceedings of the 10th USENIX Workshop on Offensive Technologies (WOOT’16), 2016.

Understanding the Security of ARM Debugging Features, S&P 19 53

https://standards.ieee.org/findstds/standard/1149.1-2013.html


References II
[10] Z. Ning and F. Zhang, “Ninja: Towards transparent tracing and debugging on ARM,” in Proceedings of the

26th USENIX Security Symposium (USENIX Security’17), 2017.

[11] J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti et al., “AVATAR: A framework to support dynamic security
analysis of embedded systems’ firmwares,” in Proceedings of 21st Network and Distributed System Security
Symposium (NDSS’14), 2014.

Understanding the Security of ARM Debugging Features, S&P 19 54



Thank you!

Questions?
zhenyu.ning@wayne.edu

http://compass.cs.wayne.edu

Understanding the Security of ARM Debugging Features, S&P 19 55

http://compass.cs.wayne.edu


Backup Slides

Backup Slides

Understanding the Security of ARM Debugging Features, S&P 19 56



Nailgun in different ARM architecture

I 64-bit ARMv8 architecture: ARM Juno r1 board.

- Embedded Cross Trigger (ECT) for debug request.
- Binary instruction to Instruction Transfer Register (ITR).

I 32-bit ARMv8 architecture: Raspberry PI Model 3 B+.

- Embedded Cross Trigger (ECT) for debug request.
- First and last half of binary instruction should be reversed in

ITR.

I ARMv7 architecture: Huawei Mate 7.

- Use Debug Run Control Register for debug request.
- Binary instruction to Instruction Transfer Register (ITR).

Understanding the Security of ARM Debugging Features, S&P 19 57



Instruction Execution in Debug State

In normal state, TARGET is executing instructions pointed by pc

Understanding the Security of ARM Debugging Features, S&P 19 58



Instruction Execution in Debug State

In debug state, TARGET stops executing the instruction at pc

Understanding the Security of ARM Debugging Features, S&P 19 59



Instruction Execution in Debug State

In debug state, write binary instruction to ITR for execution

Understanding the Security of ARM Debugging Features, S&P 19 60



Instruction Execution in Debug State

In debug state, write binary instruction to ITR for execution

Understanding the Security of ARM Debugging Features, S&P 19 61



Instruction Execution in Debug State

In debug state, write binary instruction to ITR for execution

Understanding the Security of ARM Debugging Features, S&P 19 62



Disclosure

I March 2018: Preliminary findings are reported to ARM.

I August 2018: Report to ARM with enriched result.

I August 2018: Report our findings to related OEMs.

I October 2018: Issue is reported to MITRE.

I February 2019: PoCs and demos are released.

I April 2019: CVE-2018-18068 is released.

Understanding the Security of ARM Debugging Features, S&P 19 63


	Introduction
	Obstacles for Traditional Debugging Model
	Nailgun Attack
	Mitigations
	Conclusion
	Reference
	Thanks
	Backup Slides

	anm0: 
	anm1: 
	anm2: 
	anm3: 
	anm4: 
	anm5: 
	anm6: 
	anm7: 
	anm8: 
	anm9: 


