
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

DAENet: Making Strong Anonymity Scale in a
Fully Decentralized Network

Tianxiang Shen1, Jianyu Jiang1, Yunpeng Jiang, Xusheng Chen, Ji Qi, Shixiong Zhao,
Fengwei Zhang∗, Xiapu Luo, and Heming Cui∗ Member, IEEE

Abstract—Traditional anonymous networks (e.g., Tor) are vulnerable to traffic analysis attacks that monitor the whole network traffic to
determine which users are communicating. To preserve user anonymity against traffic analysis attacks, the emerging mix networks
mess up the order of packets through a set of centralized and explicit shuffling nodes. However, this centralized design of mix networks
is insecure against targeted DoS attacks that can completely block these shuffling nodes. In this paper, we present DAENet, an
efficient mix network that resists both targeted DoS attacks and traffic analysis attacks with a new abstraction called Stealthy
Peer-to-Peer (P2P) Network. The stealthy P2P network effectively hides the shuffling nodes used in a routing path into the whole
network, such that adversaries cannot distinguish specific shuffling nodes and conduct targeted DoS attacks to block these nodes. In
addition, to handle traffic analysis attacks, we leverage the confidentiality and integrity protection of Intel SGX to ensure trustworthy
packet shuffles at each distributed host and use multiple routing paths to prevent adversaries from tracking and revealing user
identities. We show that our system is scalable with moderate latency (2.2s) when running in a cluster of 10,000 participants and is
robust in the case of machine failures, making it an attractive new design for decentralized anonymous communication. DAENet’s code
is released on https://github.com/hku-systems/DAENet.

Index Terms—Scalable anonymous communication, P2P network, Mix network, SGX, Traffic analysis attack, DoS attack.

F

1 INTRODUCTION

THE Internet allows convenient communications be-
tween users, but it also leads to great concerns about

anonymity since communications can be surveilled by pow-
erful malicious attackers such as network service providers
(e.g., chatting services), Internet Service Providers and Na-
tional Security Agency (NSA). These adversaries usually
determine if two users are talking to each other by analyzing
network communication traffics [1], [2], [3]. For example,
NSA is reported to collect Internet communication (e.g.,
emails and voice-over-IP chats) for crime investigations [4],
and such information can be misused or leaked. Worse,
some governments block targeted services (e.g., Telegram)
that refuse to provide user communication data [5], so that
users can only use services that are under surveillance and
expose their identities.

To hide user identities during network communications,
more and more users turn to anonymous communication
systems (e.g., Tor [6], Loopix [7]). In practice, it is desirable
for an anonymous system to meet three requirements: low-
latency, resisting traffic analysis attacks and resisting tar-
geted Denial-of-Service (DoS) attacks. First, services that
call for anonymity, such as instant messaging and online
payments, usually tolerate only seconds of communication
latency for interactive user experience [8], [9]. Second, pow-
erful adversaries can conduct traffic analysis by tampering,
recording, and analyzing sequences of network packets.
Depending on whether the adversaries actively manipulate
network states (e.g., dropping packets), traffic analysis at-
tacks can be classified as passive attacks and active attacks.
The most powerful attackers are global attackers that can

1 Contributes equally.
∗ Corresponding authors.

monitor and manipulate network packets in the whole
network [10]. Third, users in an anonymous system may
be blocked by targeted Denial-of-Service (DoS) attacks from
powerful attackers (e.g., governments), it is important for
an anonymous system to keep serving when a portion of
mission-critical components are blocked.

Traditional relay-based systems (e.g., Tor [6], AP3 [11])
are popular for anonymous communication. For instance,
the Bitcoin community has long been seeking anonymity
communication tools such as Tor to provision stronger client
anonymity guarantees in financial transactions [12]. Specif-
ically, these systems forward encrypted messages through
several relay nodes (i.e., circuit) to hide message senders
and satisfy the low-latency requirement as users can com-
municate through a small number of relays (e.g., three
relays are usually used in Tor). However, the relay-based
approach is vulnerable to global traffic analysis attacks that
can manipulate and record network packets of the relay
circuits [13]. Worse, relay-based anonymous systems (e.g.,
Tor) usually make use of centralized directory servers and
are susceptible to targeted DoS attacks.

The emerging shuffle-based systems (e.g., Loopix [7],
Dissent [14], Karaoke [15], Riposte [16], Miranda [17]) are
established to resist traffic analysis attacks. First, shuffle-
based systems defend against passive traffic analysis at-
tacks by messing up the order of user messages to hide
corresponding message senders. In practice, either statistical
shuffles [18] or cryptographic shuffles [19], [20] is used.
To guarantee that messages are shuffled sufficiently (i.e.,
integrity), statistical shuffle assumes that the majority of
machines for message shuffles are trustworthy [7], [21], and
cryptographic shuffle requires users to verify the integrity
cryptographically [16], [22]. Second, some shuffle-based sys-

https://github.com/hku-systems/DAENet

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

tems defend against malicious packet drops by asking all
users to send messages in synchronized rounds, such that
any misbehaved users that drop packets will be detected
quickly.

Unfortunately, existing shuffle-based systems cannot de-
fend against targeted DoS attacks and achieve low latency
at the same time. To defend against targeted DoS attacks, an
anonymous system has to adopt a distributed design where
each user has the same role. Without centralized servers,
attackers can conduct DoS attacks against only some users,
while other users can still communicate. However, it is
not efficient to conduct message shuffles distributively (i.e.,
defending targeted DoS) with integrity. Both statistical and
cryptographic shuffle usually make use of only a fixed,
small number of centralized servers to conduct shuffles
efficiently.

However, these fixed, centralized servers are exposed to
targeted DoS attacks. Specifically, statistical shuffle makes
messages go through a sequence of fixed servers (e.g.,
owned by mutually untrusted parties), and each server
conducts shuffle separately. As these servers are fixed, it is
possible to assume that the majority of them are trustworthy,
and the latency is low when the number of servers used
is small. However, when a statistical shuffle is applied
distributively using users’ machines, it has to select a group
of users as shuffle nodes, and it is not possible to guarantee
that the majority of the selected nodes are trustworthy. On
the other hand, although the integrity of shuffles in crypto-
graphic shuffle can be verified, the verification cost increases
exponentially on the number of shuffle nodes. For example,
DC-Net [23] conducts shuffles in a fully distributed manner
using verifiable shuffles and all-to-all broadcasts, which
incurs severe computation costs and high communication
latency.

Recently, Trusted Execution Environment (TEE) such as
Intel SGX has been applied in various security domains
to efficiently preserve code integrity and data confidential-
ity [24], [25]. For example, SGX-Tor [26] is the first anony-
mous system that leverages SGX to hide metadata such
as identifiers of routing circuits, and efficiently improves
Tor’s abilities for defending against various attacks (e.g.,
bandwidth inflation). However, SGX-Tor is still vulnerable
to traffic analysis attacks and targeted DoS attacks inherited
from Tor. With the integrity protection of SGX, it is possible
for a shuffle-based system to shuffle messages distributively
by selecting a group of trustworthy shuffle nodes, and to
achieve anti-DoS and low-latency at the same time.

We present DAENet1, the first anonymous communica-
tion system based on SGX that can meet the three desir-
able requirements. Specifically, all users in DAENet form a
structured peer-to-peer (P2P) network with metadata (e.g.,
user identifier) shielded by SGX, and DAENet makes use of
SGX for trustworthy message shuffles. With the help of a
structured P2P network [27], [28], DAENet can achieve low-
latency as messages need to go through only log(N) users
to reach the destination. Moreover, DAENet can defend
against targeted DoS attacks that block a portion of users.
This is because there are no centralized servers in DAENet,
and a user can communicate through unblocked neighbors

1. DAENet is for a Decentralized, Anonymous and Efficient network.

in the network. However, SGX is not the silver bullet, and
DAENet still needs to handle traffic analysis attacks.

First, a structured P2P network has a static network
structure, and attacks can manipulate the structure to hurt
anonymity. Specifically, attackers can join as neighbors of
a victim to conduct eclipse attacks. To tackle this problem,
DAENet proposes a Stealthy P2P Network with two features.
First, users in DAENet are assigned with random identities
and are connected with random peers structurally. Thus,
attackers cannot determine the location of a user by the
user’s identity and cannot manipulate the user identities
to conduct eclipse attacks [29]. Second, to hide message
patterns, our stealthy P2P network enforces trustworthy
message shuffles that mess up the orders of input net-
work packets at each distributed SGX-enabled host, and
obliviously disseminates output packets to the neighbors
of each user. With the above-mentioned designs, we prove
that our stealthy P2P network produces oblivious packet
transmission under passive traffic analysis attacks for all
participants (§5.1)

Second, the static traffic patterns of a structured P2P net-
work can leak the anonymity of users. Specifically, two users
within a structured P2P network communicate through the
same circuit of relays. Therefore, attackers can conduct a
tagging attack [30] on the static circuit to identify the sender
or receiver. We propose a distributed dead drop abstraction
to adaptively change circuits in the network for each com-
munication round. Specifically, two communicating partici-
pants send their messages to a randomly selected user (i.e.,
dead drop) using a shared secret. Then, the user exchanges
the two messages’ payload and sends them back. Using this
approach, the attackers cannot determine one simple com-
municating circuit and further reveal who is communicating
with whom.

We implemented DAENet with 5.2k LoC in C++ on
Linux. We use Chord [27] as the implementation of our
structured P2P network, as it is an efficient and popular
P2P network. DAENet proposes a membership protocol
that attests the SGX code integrity and assists in user join.
Meanwhile, DAENet proposes a dialing protocol to securely
initialize conversations and exchange the shared secret
used for constructing a sequence of dead drops, without
leaking sensitive information to adversaries. DAENet also
tolerates network churn and machine failures to guarantee
the liveness. We compared DAENet with Loopix [7] and
Dissent [32], two state-of-art, open-sourced shuffle-based
anonymous systems. Loopix and Dissent make use of cen-
tralized servers for layer-based shuffles and cryptographi-
cally verifiable shuffles, respectively. Our evaluations show
that:

• DAENet is secure. DAENet can defend against various
attacks, including passive and active traffic analysis
attacks and targeted DoS attacks.

• DAENet has low latency when scaling up to a large
number of users. DAENet incurs only 2.2s end-to-
end latency with 10,000 participants. Compared with
Loopix [7], DAENet incurs 3X ∼ 7X lower communica-
tion latency, yet DAENet defends against DoS attacks.

In sum, the major contribution of this paper is DAENet,
the first anonymous system that meets three crucial re-
quirements of anonymous systems: low-latency, defending

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

Category Latency / Scale (#users)
Anti: Passive

Traffic Analysis
Anti: Active

Traffic Analysis
Anti:

Targeted DoS

Relay-based
Tor [6] 0.25s ∼ 2.5s / 8M × × ×

SGX-Tor [26] 0.525s ∼ 3.15s / 819 × × ×
ShadowWalker [31] > 4s / 1000 × ×

√

AP3 [11] N/A / N/A × ×
√

Shuffle-based

Loopix [7] 6.8s / 500
√

× ×
Riposte [16] > 3600s / N/A

√ √
×

Dissent [32] 1.3s / 500
√

× ×
Atom [33] 30.0s / 1024

√ √
×

Karaoke [15] 6.0s / 16M
√

× ×
DAENet 2.2s / 10,000

√ √ √

Table 1: Comparison of DAENet to existing anonymous communication systems. ”
√
” indicates that the system can handle such

vulnerability, while ”× ” is on the opposite.

against traffic analysis attacks, and defending against tar-
geted DoS attacks. Other contributions include analysis of
attacks in an SGX-based anonymous system, and extensive
evaluations on DAENet’s security and efficiency.

The remaining of this paper is structured as follows.
§2 describes the background. §3 introduces the security
goals. §4 describes detailed anonymous protocols. §5 gives
a security analysis. §6 is the performance evaluation. §7
discusses limitations and future directions. §8 is the related
work and §9 concludes our work.

2 BACKGROUND

2.1 Anonymous Communication Systems
Existing anonymous communication systems can be classi-
fied into two categories: relay-based systems and shuffle-
based systems. As shown in Table 1, we compare DAENet
to prior systems from the perspective of three requirements.

Among the relay-based systems, Tor [6] is the most pop-
ular anonymous network ever deployed, with an estimated
eight million daily active users [34]. Tor admits volunteer
nodes to form a static routing circuit between two users,
resulting in only seconds of communication latency. How-
ever, Tor is susceptible to traffic analysis attacks that monitor
the whole network and de-anonymize sender identities by
correlating every input and output packets [35], [36], [37].
Meanwhile, recent work also shows Tor’s susceptibility to
targeted DoS by conducting bandwidth amplification [38].
As an improved work of Tor, SGX-Tor [26] uses trusted
computing to preserve the integrity of code and hide sen-
sitive information of Tor components (e.g., circuit ID) in
enclaves. SGX-Tor incurs slightly higher latency than Tor
due to the extra overhead of entering and exiting enclaves.
However, SGX-Tor inherits Tor’s susceptibility to traffic
analysis attacks.

Other relay-based anonymous communication systems,
such as ShadowWalker [31] and AP3 [11] are built upon a
structured P2P network where every node acts as both a
client when sending own requests and as a proxy by for-
warding requests on behalf of other nodes, eliminating the
concern of targeted DoS attacks. Nevertheless, both systems
cannot defend against traffic analysis attacks because the
ordering of packets is still observable by traffic analyzers.

In contrast to relay-based systems, shuffle-based systems
resist traffic analysis attacks, more precisely, passive traffic

analysis attacks by messing up the order of input packets
and output packets (i.e., shuffling). To handle active traffic
analysis attacks, Riposte [16] uses Private Information Re-
trieval (PIR) technique to detect and stop malicious packet
drops [39], [40]. However, Riposte assumes that users can
tolerate its hours of latency to achieve strong anonymity,
violating the low-latency requirement. Atom uses crypto-
graphic shuffle to resist packet drops, but it also incurs high
communication latency because generating and verifying
Atom’s zero-knowledge proofs imposes high computational
and time cost [33]. Loopix [7], Dissent [32] and Karaoke [15]
are three shuffle-based systems that incur reasonable com-
munication latency. However, these systems are vulnerable
to active traffic analysis attacks: by arbitrarily dropping or
delaying packets in the network, adversaries can infer a
specific message sender by dropping packets and observing
which user receives fewer packets as expected [17]. Besides,
all these systems do not provide fault-tolerance, since they
use a fixed set of centralized mix servers to shuffle messages
and require all servers to be online. Thus, these mix servers
are easily targeted by DoS attacks, and all these systems
will lose their liveness even only one of the mix servers is
blocked by DoS attacks.

2.2 Structured Peer-to-Peer Network

A structured P2P network (e.g., Chord [41], Pastry [28]) is
known for its efficient membership management, practical
fault-tolerance and fast peer lookup, making it an attractive
cornerstone for building anonymous communication sys-
tems. In a structured P2P network, each participant only
needs to maintain a local view of the network to extend
the circuit [31]. Also, a structured P2P network has the
potential to hide the roles of participants by sending dummy
messages along with the links between every participant.

Specifically, a structured P2P network uses Distributed
Hash Table (DHT) for peer lookup. In a DHT, nodes are
assigned identifiers and a range of values they are respon-
sible for. Nodes only have knowledge about a fraction of
the network called neighbors which are stored in routing
tables. When a node tries to lookup a value, it first checks its
routing table and asks a neighbor who is numerically closest
to the value. The neighbor, in turn, repeats this process. The
lookup ends until the receiver that owns the value is found.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

DAENet uses Chord [42], an efficient DHT scheme as the
underlying communication protocol. In Chord, each partici-
pant joins the network by sending a join request to a known
Chord node. The Chord node will assign an identifier to
the participant and help the participant set up its routing
table. The identifier space is pictured as a ring which wraps
modulo 2b, and b is chosen according to the scale of the
network. Each participant knows only a fraction of other
participants in the network. Specifically, for a participant
with identifier idx, it is connected to b neighbor nodes who
have the numerically closest identifier to idx+2i(0 ≤ i < b).
Note that not all slots in the identifier space (i.e., [0, 2b)) have
to be used: each slot in the identifier space, named as S, is
mapped to a participant node who has numerically closest
identifier to S (i.e., Map(S) = ClosestNodeidx) by using
consistent hashing [43]. In DAENet, we call the neighbor
nodes of a participant successors and the participant itself is
called the predecessor of all its neighbor nodes. To maintain
a consistent view of membership, participants periodically
send control messages to check the liveness of their succes-
sors and will remove inactive successors from their routing
tables. Unless specifically pointed out, we denote N as the
total number of participants in the network.

Although Chord facilitates efficient lookup, Chord itself
does not provide anonymity guarantees because the net-
work topology is explicit to traffic analyzers. By analyzing
the entering and leaving time of network packets, traffic
analyzers can link the successors and predecessors of each
node and further reveal the entire topology of the network
by gathering all linking information. With an explicit net-
work topology, traffic analyzers can easily drop targeted
users’ packets to block its anonymous service.

2.3 Intel SGX

Intel Software Guard eXtension (SGX) [24], [25] is a popular
security hardware available on commodity CPUs. It pro-
vides secure execution by putting data and code inside a
container called enclave. The enclave is isolated from privi-
leged software such as the operating system (OS), firmware
and hypervisor so that the protected code and data cannot
be easily tampered with or revealed from outside. The
trusted (enclave) and untrusted (application) components
run as isolated processes, communicating through a narrow
and well-defined interface. A process running outside the
enclave can invoke an SGX ECall to switch its execution into
the enclave; a process running in an enclave can invoke an
OCall to switch its execution outside the enclave. Besides,
SGX also provides remote attestation [44] to verify that a
particular piece of code is running in a genuine SGX-enabled
host.

3 OVERVIEW

3.1 Threat Model

We consider sophisticated and well-resourced adversaries
in the network, who attempt to determine if two partici-
pants are communicating, given that the message sender
or receiver may collude with the adversaries. Therefore, we
consider adversaries with two capabilities: global observa-
tion and traffic control. Confronted with such adversaries,

AliceAlice

BobBob

DeadDead
DropDrop

Msg path: Alice -> Bob

Msg path: Bob -> Alice

dummy msg

"Hello"

"Hi"

Payload Swap

Figure 1: An example of DAENet dead drop messaging. In a communi-
cation round, Alice and Bob separately sends two close-loop messages
while exchanging their message payload at a randomly selected dead
drop node.

DAENet requires at least k · logN honest participants to
ensure complete message deliveries, where the coefficient k
depends on the communication rounds of a conversation,
and N is the total number of participants in the net-
work. Similar to other SGX-enabled systems [26], [45], SGX
firmware and the code running in SGX are trusted, SGX-
related side-channel attacks (e.g., cache and timing attacks)
are out of the scope of this paper.

3.2 Participants As Protocol Parties

Specifically, there are three roles in DAENet: Relay, Session
Node (i.e., sender/receiver) and Dead Drop Node.
Relays & Session Nodes. Relays are idle participants.
They do not hold any conversations with other participants
and are only responsible for forwarding messages in the
network, including both application messages (i.e., instant
messages) and underlying P2P control messages (i.e., mes-
sages for maintaining DAENet’s structural topology). In
contrast to relays, session nodes are participants that hold
conversations with others and keep sending application
messages in multiple communication rounds. Note that a
participant acts as either a relay or a session node in the
network.
Dead Drop Nodes. Dead drop nodes help exchange mes-
sage payload between pairs of session nodes. To initialize
a set of dead drop nodes, two DAENet participants first
negotiate a randomly generated shared secret through the
dialing protocol (§4.2). The shared secret is used for gener-
ating a sequence ofDeadDrop keys. Since DAENet enables
deterministic KEY-ID mapping by building on top of Chord
(§2.2), DeadDrop keys are deterministically mapped to a
series of nodes. Hence two session nodes can agree on the
same sequence of dead drop nodes in the network. Note
that all participants can be chosen as dead drop nodes, and
the duty of a dead drop node is ephemeral and will become
invalid as soon as the dead drop node completes payload
exchanging in a particular communication round.

Figure 1 shows the flow of communicating through a
dead drop node in DAENet’s structured P2P network. By
referring to a DeadDrop key, two session nodes named
Alice and Bob route their messages through several relays
to a designated participant (i.e., the dead drop node). The

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

dead drop node waits for two application messages coming
and then exchanges the message payload and sends them
back to corresponding senders.

3.3 Security Goals and Defending Approaches

We demonstrate the attacks thwarted by DAENet to show
the benefits of our design. Specifically, we analyze the tar-
geted DoS attack and traffic analysis attack on DAENet and
provide corresponding security analysis.

3.3.1 Defending Against Targeted DoS Attacks

Attack Assumptions: We consider an adversary who is
determined to deny services to DAENet network, and we
make two assumptions about the capabilities and makeup
of the adversary. In particular, the adversary needs not to
control a large fraction of the nodes or be able to observe
the global traffic to conduct the targeted DoS attack.

First, for the capability of such attack, we assume the
adversary has an attack budget B: the adversary can deny
the service of at most B nodes at a time. In DAENet,
B equals N1−ε− 1

d - the maximum number of concurrent
node failures that Chord can tolerate, in which d and ε
are two coefficients that indicates the intensity of Chord’s
routing table replication scheme [46]. Second, the adversary
might avoid conduct attacks from its network. Instead, the
adversary can acquire (or rent) machines in public clusters
to instantiate instances of DAENet participants and send
dummy traffic into DAENet network, making it hard to
locate the adversary.
Defending Approach: To defend against targeted DoS at-
tacks, DAENet participants have two distinct features: equal
position and ephemeral duty. First, different from prior
work that uses designated authorities such as administra-
tive servers for admitting new joining nodes, or centralized
message boxes for collecting and disseminating messages
from users, DAENet’s participants have equal position in
the network and equally act as protocol parties. Second, the
duties of roles are ephemeral. For example, DAENet uses
a dead drop node to exchange message payload between a
sender and receiver in a communication round, whereas
such exchanging duty terminates as long as the commu-
nication round ends. By running participants with equal
position and ephemeral duty, targeted DoS attackers cannot
identify specific mission-critical nodes in the network and
further block them.

3.3.2 Defending Against Passive Traffic Analysis Attacks

Attack Assumptions: Passive traffic analysis attacks inter-
cept network packets to observe traffic patterns in order
to de-anonymize participants. We assume the most strong
passive attacker, Global Passive Attackers (GPAs) in the
network who keep eavesdropping on network traffic among
all the participants and trying to find circuits of particular
communications and link corresponding session nodes.

Specifically, to determine if two participants are in com-
munication, GPAs may conduct prefix hijacking [47] to
intercept network traffic and then use off-path statistical
analysis [48] to sort messages. For example, in a typical
passive traffic analysis attack, GPAs inspect every message

of the network and keep observing the load of each partic-
ipant. Since network packets’ dissemination always follows
the First-In-First-Out (FIFO) principle, GPAs can correlate
every input and output message by recording the entering
and leaving time and further restore a routing circuit. Given
sufficient time, GPAs can restore all circuits for all commu-
nication sessions. Besides, GPAs can also learn the emitting
rate of messages at each host. A high emitting rate might
reveal a potential message sender when other parts of the
network are idle.
Defending Approach: To defend against passive traffic
analysis attacks from correlating any pairs of senders and
receivers in conversations, our design point is to enable
trustworthy message shuffling at each distributed SGX-
enabled host. The shuffling process works as follows: A
participant Alice maintains shuffle pools for each of its
successor node. Upon receiving a message m, Alice searches
for m’s next-hop by conducting a Chord lookup. If the next-
hop of m is the ith successor of Alice, then the message
is pushed to the ith shuffle pool belonging to Alice’s ith
successor.

In each protocol run, Alice pulls messages from each suc-
cessor’s shuffle pool and sends them out with a probability
p. Given a threshold α, if p is smaller than α, Alice will not
pull a message from the ith successor’s shuffle pool. Instead,
Alice encapsulates a dummy message with the same size
as a real message and sends the dummy message to its
ith successor. Note that Alice may hold no messages in its
ith shuffle pool at a particular protocol run. If that corner
case happens, Alice needs not to pull messages from its ith
shuffle pool, and will directly send a dummy message to its
ith successor (§4.3).

3.3.3 Defending Against Active Traffic Analysis Attacks
Attack Assumptions: We assume active attackers that con-
duct long-term traffic analysis attacks, involving dropping
or delaying packets. Such attacks have severe repercussions
for anonymity guarantees of anonymous networks and are
difficult to detect. For example, a disclosure attack in which
active attackers strategically drop messages from a specific
message sender allows the attacker to infer with whom the
sender is communicating, by observing which participant
has received fewer messages than expected [49]. We illus-
trate our technique to resist the disclosure attack because
such an attack can be stealthy and hard to detect. Also, we
discuss the mitigation of other aggressive active attacks that
are detectable such as traffic watermarking attacks [50] and
packet hijacking attacks [51] with security analysis.

Specifically, the disclosure attack poses a threat to sender
anonymity in DAENet: the location of a targeted sender
could be revealed if active attackers collaborate with a
compromised receiver and then drop messages between the
targeted sender and the compromised receiver. To conduct
such an attack, a compromised receiver holds a long-term
connection with a targeted participant in the network and
keeps sending messages to each other. During the com-
munication, active attackers drop messages between the
sender and receiver to reveal the routing circuit, based on
the observation of whether the compromised receiver has
received the message from the sender in time or not. We
formally define such attack in §4.4.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

Defending Approach: To defend against the disclosure at-
tack, DAENet’s core idea is to break the fixed circuit be-
tween two session nodes in the network by using a set of
randomly generated dead drop nodes as the communication
endpoints. In each communication round, two session nodes
send their messages to a dead drop node and exchange cor-
responding messages’ payload. With these dead drop nodes,
instead of directly sending messages to each other through
a fixed circuit, two session nodes send their messages to
random locations in different communication rounds, thus
formulating multiple different circuits in a conversation.
With multiple different circuits between session nodes, the
adversaries cannot reveal the location of a targeted sender
by tracing back through a fixed circuit.

4 DESIGN

This section gives a detailed discussion of DAENet’s anony-
mous communication protocol. We start from the member-
ship protocol that handles node join and introduce the di-
aling protocol to safely initialize conversations in DAENet.
Then we present the design of the stealthy P2P network to
defend against traffic analysis attacks.

4.1 Membership Protocol
DAENet handles node join by the design of the guarder node.
When a node wants to join DAENet and uses the anony-
mous service, it first finds a member node through an out-
of-band peer discovery service (e.g., a public forum). We call
that member node the guarder node. A guarder node serves
as an attestation server to verify whether an unmodified
DAENet’s program is executed inside a real SGX host. If
the node passes the attestation, the guarder node replies with
an automatically generated identifier, which indicates the
node’s location in the DAENet network.
Node Join: Specifically, node i joins DAENet with three
steps. First, i creates its DAENet enclave, generates its
symmetric key ski in the enclave and seals ski to local
storage. Second, i sends a join request to the guarder node.
The guarder node does a standard SGX remote attestation
and succeeds with a signed report from the Intel IAS. Third,
the guarder node verifies the report, generates an identifier
of node i and encrypts it with ski, and sends both the
sealed identifier and attestation report to node i. If node i
passes the attestation, it will send a lookup request with
its symmetric key ski to the guarder node to construct its
routing table. The guarder node helps node i constructs its
routing table by running a standard Chord member join
protocol, and notifies a fraction of nodes that precede i that
a new participant has joined the network. Note that ski is
distributed to all the predecessors of node i, which is used
for encrypting messages that are sent to node i.
Risks and Mitigation: Utilizing the above approach to
admit regulated participants may have a potential risk: the
channel (i.e., public forum) to join the network is public
to adversaries, thus a node may discover a fake DAENet
participant and join a fake DAENet which is monitored by
adversaries. Also, if a malicious participant is chosen as a
guarder node and serves as an attestation server to admit
new nodes, it might refuse to admit benign nodes or try to
admit specific participants (most likely be malicious).

DAENet uses mutual attestation to detect malicious
guarder nodes. A newly joined node will also serve as an
attestation server to verify the integrity of its guarder node.
The mutual attestation is triggered when a guarder node
sends the attestation report to node i, at the same time it
provisions a self-attestation request to node i. Now node i
acts as an attestation server, sends the report of the guarder
node to Intel IAS, and waits for a signed report. Note that
the attestation to a guarder node is hardcoded into the mem-
bership protocol and the execution is enforced unless the
guarder node withdraws from the network. Since SGX remote
attestation can help verify the integrity of the running SGX
code, if a malicious guarder node refuses to admit benign
nodes or tries to admit specific participants, the malicious
guarder node’s code integrity is broken. Hence the malicious
guarder node will fail to pass the attestation. The failure of
passing the SGX attestation helps the new participant take
actions quickly:

(1) Alert users in the out-of-band peer discovery service
to reduce the confidence of that malicious guarder node, or
immediately end up contacting with that guarder node.

(2) Retry the admission process by switching to a new
guarder node (hopefully, one that is not malicious).

This policy limits the influence a malicious guarder node
can do during admission, allowing DAENet to admit trust-
worthy participants running correct protocol. Note that
DAENet can only admit SGX-enabled hosts as participants
and will reject hosts without SGX.
SGX Vulnerabilities: We notice that an SGX may be com-
promised because of SGX vulnerabilities [52], further com-
promising the anonymity provided by DAENet. DAENet
solves this problem by using two approaches. First, such
vulnerabilities can usually be fixed through CPU microcode
updates [53], and such updates increase the Security Version
Number (SVN) used for attestations. DAENet’s guarder
node checks the latest SVN within the network and rejects
nodes with SVN that is smaller than this value during
attestations, such that nodes with out-of-date microcode
(i.e., contain potentially compromised SGX) cannot join the
network. Second, for vulnerabilities that cannot be fixed
through CPU microcode updates, Intel returns a revocation
certificate list during attestations. DAENet rejects attestation
reports signed by these certificates and avoids the admis-
sions of nodes with SGX vulnerabilities that cannot be fixed.

4.2 Secure Dialing: Conversation Initialization
Now that participants have joined the network, DAENet
uses a secure dialing protocol to help participants initialize
anonymous conversations with each other without leaking
private information (e.g., identities of participants) to adver-
saries.

Preventing private information leakage during the ini-
tialization process is important because a service provider
(namely sp) may want to keep anonymous in the network
and hide its identifier from the public. If sp’s identifier
is public, it may become the target of DoS attacks: sp’s
competitors can continuously send dummy messages to sp
to block its service from other benign participants.
Involving Parties: The dialing protocol involves three par-
ties. The first party is a client c who wants to start a conver-
sation with another participant in DAENet’s network. The

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

second party is a service provider sp who provides services
(e.g., secret file sharing) to participants. Since a service
provider can provide many services, a service provider
typically maintains a set of service keys. A service key SKij

denotes the ith service provided by a service provider spj .
The last party is a broker node bj which is a designated
virtual location that is responsible for receiving conversation
requests to a service provider spj in the network.
Use Broker Node for Initialization: A typical application
of DAENet is anonymous file-sharing where c tries to fetch
a secret file from spj . Since spj has to hide its identifier and
be reachable to others, we use a special dead drop node -
the broker bj to anonymously initialize conversation details
without involving direct interactions between c and spj .
The initialization mainly negotiates for three items: a shared
secret sec, session ID sid and an expiry time exp. sec is the
seed of a pseudo-random number generator. With the same
sec, c and sp agree on the same set of dead drop nodes to
exchange message payload in each communication round.
sid is the unique identity of the conversation which is used
for dead drop nodes to identify awaiting messages from the
same conversation for exchanging, and exp is the longest
duration for waiting for a reply (i.e., time-out).

Figure 2 shows the complete procedure for the dialing
protocol. Next, we introduce the steps from the perspective
of the client and the service provider respectively.
For client: To fetch the ith service from service provider spj ,
the client c first finds the service key SKij from an external
source. The source could be a database where DAENet’s
service providers put their service keys on. The client c
negotiates conversation configurations with spj ’ by sending
a Register message to spj ’s broker node bj . The Register
message contains the service key SKij to indicate c’s re-
quested service. The broker node bj receives the message
and verifies the contained service key to ensure a valid con-
nection request from c. A service provider periodically asks
its broker node whether there exist any Register messages.
When spj finds out c’s request for its ith service, it sends
a configuration file to its broker node bj . In next round, c
sends a fetch request to bj to fetch spj ’s configuration file.
When c receives the configuration file, it sends an ACK to
bj to confirm a successful dialing process. By this step, the
dialing process for a client is completed successfully.
For service provider: As a service provider, spj has two jobs:
(1) securely assign a broker node to handle its initialization
requests and (2) keep fetching initialization requests from its
broker node and negotiating configuration files with clients.
To complete the first job, spj sends an endorsement request
to a random participant in the network to register for a
broker service. If the participant replies with an acceptance,
spj encapsulates a message which contains all the service
keys it provides and sends that message to the participant.
The participant then serves as the broker node bj to han-
dle initialization requests. To complete the second job, spj
periodically asks bj if there exist any initialization requests
from clients. If spj finds any service requests, it will send
the corresponding configuration file to bj , and bj will send
the configuration file to the client. Further, spj tries to fetch
an ACK from its broker node, if spj receives an ACK, then
the dialing process is completed.

Note that the existence of broker nodes for handling

Bob Broker Alice

1. Register message.
2. Fetch message

3. Return (Fetch)

5. Configuration
6. Fetch configuration

7. Fetch configuration

9� Ack

4. creat session.config
- session ID
- shared secret
- timeout
……

3. Return (Register)

8. Fetch Ack

7. Return (Configuration)

10. Return (Ack) 10. Return (Fetch)

Exchange

Exchange

Exchange

Figure 2: Two participants of DAENet initiate their conversation
through a secure dialing protocol.

registration requests is not contradictory to the P2P feature
of DAENet due to two reasons. First, a service provider
can assign different broker nodes to serve it’s registration
requests, and these broker nodes are randomly distributed
in the fully decentralized network. Second, the broker nodes
are stealthy to the adversaries. This is because the only in-
formation the adversaries can get is the key of broker nodes.
As our stealthy P2P network hides nodes’ identities, the
adversaries cannot locate the broker nodes in the network.

With the help of a broker node, a client registers itself to a
service provider without knowing the identity of the service
provider, and the service provider can securely broadcast
its services and receive conversation initialization requests
from the network. With a negotiated configuration file for
transmission, the client and service provider can further
carry out communications.

4.3 Shuffling for Sender-Receiver Unlinkability
To prevent passive traffic analysis attacks from linking two
session nodes, DAENet’s shuffling strategy is designed so
that, for any message that traverses a participant, adver-
saries cannot identify its preceding or succeeding messages
and further reconstruct the entire routing circuit of a conver-
sation. We define Sender-Receiver Unlinkability as the inability
for passive traffic analysis attackers to distinguish whether
{Sreal −→ Rreal} or {Sreal −→ Rother, Sother −→ Rreal} for
a real message sender Sreal, a real message receiver Rreal,
and other participants Sother, Rother.
Trustworthy Message Shuffling: DAENet preserves sender-
receiver unlinkability with a trustworthy shuffling protocol.
The core idea is to mess up the message orders and hide
communication patterns with dummy messages. The shuf-
fling protocol requires each participant to maintain shuffle
pools for each of its successors. For each input message,
Alice first decrypts the message by using its symmetric key,
recalling that a sender will encrypt its messages with the
symmetric key of the next hop (i.e., successor). Then Alice

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

searches for the next hop of the message with reference
to the identifier of the receiver node. If the next hop for
that message is the ith successor of Alice, then the message
is pushed to the ith shuffle pool belonging to Alice’s ith
successor.

In each protocol run, Alice totally pulls logN messages
from each of its shuffle pool by α, which is the expected shuffle
rate - a parameter that indicates the probability of choosing
a message from a shuffle pool. In other words, the expected
shuffle rate implies whether Alice will send a message to its
ith successor or not. If Alice does not pull a message from
the shuffle pool of the ith successor, then Alice encapsulates
a dummy message and sends the dummy message to its ith
successor. Note that it’s likely for Alice to hold no messages
in its ith shuffle pool. In that case, Alice will directly send a
dummy message to its ith successor.

More precisely, when Alice receives a message x, it
(1) decrypts x by using its own symmetric key key A,
(2) discards x if x is a dummy message. Otherwise, runs

the Chord lookup protocol to search for the next hop of
message x. Let x id be the identifier of the next hop, Alice
resets x’s message header to x id, and pushes message x to
x id’s shuffle pool.

(3) randomly pulls l messages from shuffle pools of each
successor with equal probability α.

(4) encapsulates dummy message dmyi if Alice does not
pick a message from shuffle pool pi.

(5) encrypts l messages with the symmetric key of corre-
sponding successors and sends them out.

Denote N as the total number of participants in the
network and k is the number of empty shuffle pools of
Alice’s all successors. Derived from previous statements,
Alice pulls messages from logN − k shuffle pools in each
protocol run. The pulling process takes the form of Binomial
distribution X ∼ B(logN , α) where the discrete probability
α is the expected shuffle rate. In each round, the expected total
number of real application messages and dummy messages
for Alice to send is α(logN −k) and k+(1−α)(logN −k),
respectively.
Low Attack Ability: Consider the case where passive traffic
analysis attackers keep observing network traffic and are
capable to learn the exact number of messages in Alice’s
host. We define a scenario Ox,x1 as an adversary observing
Alice’s host in which message x arrives and mixes within
Alice’s shuffle pools. The adversary then observes logN
messages sending out and tries to correlate xwith one of the
outgoing message x1, which is from the same conversation.
Supposing the adversaries have high confidence of message
x being a real message (rather than a dummy message), the
following claim gives a probability on which the adversaries
correctly link the previously observed message x with one
of the outgoing messages x1.
Claim 1. Let y be the number of messages in a host in scenario
Ox,x1

. Denote the number of non-empty shuffle pools in a node as
t, and let k be the number of empty shuffle pools. After shuffling,
the probability of correctly linking x to one of the outgoing
message x1 is

Pr (x = x1) =
α[
∑y−t−1
c=1

1
cPr(Cx=c)]

t+ k
(1)

in which

Pr (Cx = c) =
(

y-t
c

)
(
1

t
)c(

t− 1

t
)y−t−c (2)

Note that t+ k is the total number of outgoing messages
from Alice’s host. All of the outgoing messages have an
equal opportunity of being the previously arrived message
x, independent of the arrival time of x. This ensures that
the arrival and departure time of the messages cannot be
linked so that adversaries learn no sensitive information
by conducting traffic analysis. Note that the probability 1

y
is the upper bound for an adversary to correctly link the
input message x and the corresponding output message x1.
We give an upper bound probability 1

y because all outgoing
messages are from the host’s shuffle pool, hence the linking
probability is limited to the total number of existing mes-
sages in the current host. As there are totally y messages
as we defined, the upper bound on the probability that
adversaries can correctly do the traffic correlation is thus 1

y .
This inference applies to other shuffled-based systems that
defend against traffic correlation attacks as well [7].

Thus, continuous observation of Alice’s traffic leaks no
sensitive information other than the present number of mes-
sages in Alice’s host.We use the above claim and a security
metric likelihood to give an end-to-end anonymity evaluation
of defending passive traffic analysis attacks in security anal-
ysis (§5). To conclude, by randomly picking real messages
from shuffle pools and disguising unpicked real messages
with dummy messages, we obfuscate the adversary’s view
and decrease the probability of successfully correlating the
input and output messages.

4.4 Hiding Sender Location from Disclosure Attacks
Attack Goal: The goal of disclosure attacks is to reveal the
location of a targeted sender in the network. Formally, in
such an attack, a malicious receiver R collaborates with
active attackers who have global observations of the net-
work to reveal the identifier of sender S. Denote a message
path ||Ci|| ⇐ < S, P 1, P 2, ..., P i−1, P i, R > as the
routing circuit that links the malicious receiver R and the
victim sender S. Since the network topology is explicit
to adversaries with a global view, R can periodically, yet
slowly drops messages from its predecessors. If R drops an
instant message from one of its predecessors and receives
no messages from S in next communication round, then R
learns that this predecessor is P i - the participant that acts as
the previous hop ofR in ||Ci||. Now that the path< P i,R >
is revealed, the adversaries try to find P i−1 by dropping or
delaying messages from P i’s predecessors. By repeating this
process, the malicious receiver R will ultimately reveal the
sender S. The disclosure attack succeeds whenR can receive
the messages even all messages from S’s predecessors are
blocked.
Straw man Approach: A straw man approach is to detect
malicious disclosure behaviors in the network. However,
detecting disclosure attacks in the network is difficult and
inefficient. First, naively setting a threshold ε as time-out
at the sender to cut off a long-term communication is
impractical because we cannot determine an average latency
of communication in the network as the scale of the network

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

is unknown to each participant, and network environment
differs in places. If ε is too large, the detection threshold is
useless because attacks can still go smoothly; Otherwise, if
ε is too small, communications become hard to carry on in
the network. Second, the loop message detection that is used
by prior work to detect malicious packet drops does not
work in this scenario. Loop message is used to prove to a
participant that a potentially withdrawn neighbor is online.
However, since the sender does not know the exact or even
relative position of the malicious receiver in the network,
loop messages cannot tell whether the message drop is due to
an offline receiver or a malicious disclosure attacker. Thus,
the straw man approaches can not trivially work here.
Round-based Dead Drop Messaging: To solve this prob-
lem, we utilize a round-based dead drop design to prevent
malicious receivers from revealing the identifier of senders.
The basic idea of this design is randomly selecting a se-
quence of participants in DAENet as destinations for two
session nodes to exchange information in several rounds,
and enabling full asynchrony to hide messaging patterns.
Next, we discuss our round-based dead drop design and how
we use SGX to hide the access pattern of dead drop nodes.

DAENet enforces communications through a sequence
of dead drop nodes. Dead drop nodes are virtual locations
where two session nodes deposit their messages (original
messages), swap message payload from the same conver-
sation and fetch messages (swapped messages) back. To
initialize a conversation, two participants first negotiate a
randomly generated shared secret. The shared secret is used for
generating a sequence of DeadDrop keys. The DeadDrop keys
are deterministically mapped to a set of nodes in the net-
work.

Two session nodes (namely Alice and Bob) commu-
nicate with each other through these dead drop nodes.
Communications happen in rounds. In round i, Alice and
Bob independently send a message to a dead drop node
Ni which is mapped from DeadDrop keyi. Each message
is labeled with a session-round pair to indicate its unique
session identity with another participant and the round of
payload exchange. When Ni receives a message m, it stores
it and waits for the coming ofm1 which has the same session-
round pair as m. When m1 arrives, Ni swaps the payload of
these two messages and sends them back to corresponding
message senders. The round-based dead drop messaging
is effective to defend against disclosure attacks because
communication circuits between session nodes change with
different dead drop nodes as destinations. By splitting the
static routing circuit into multiple unpredictable circuits,
disclosure attackers who keep monitoring the traffic cannot
reveal the previous hop in a fixed circuit by dropping
messages and observing the arrival of messages.
Conversation with Compromised Nodes: Even with some
fully-compromised dead drop nodes, DAENet can still pre-
serve anonymity due to the following reasons. First, adver-
saries cannot determine which nodes are selected as dead
drop nodes in the current conversation, and further com-
promise these nodes. This is because the DeadDrop keys
are generated inside SGX enclaves without involving an
untrusted third-party, the locations of dead drop nodes
used in the communication are kept confidential to other
participants except for the session nodes, making the com-

munication circuit unpredictable.

Second, even if the adversaries can control a fraction
of nodes in the network, and these compromised nodes
are happened to be selected as the dead drop nodes for a
conversation, the anonymity guarantee still holds as long
as one node in the circuit is honest. This is because our
distributed shuffling protocol guarantees oblivious traffic
pattern, and such oblivious traffic pattern offers strong
anonymity against traffic analysis: a single honest partic-
ipant in a circuit that correctly executes message shuffles
is enough to ensure anonymity. Thus, even if all dead
drop nodes are compromised, these dead drop nodes still
cannot determine who is communicating with whom. Also,
in section §5.2.1, we prove that the adversaries have low
attack ability (i.e., small probability) to control all relays in
a circuit when DAENet scales up.

Liveness under Node Failures: Note that compromised
dead drop nodes may not execute the payload exchange and
claim to be temporarily offline. Since we cannot distinguish
whether a node is failed or compromised, DAENet treats
both cases as node failures. DAENet tolerates dead drop
node failures with a switch strategy. The core idea of the
strategy is that session nodes do not need to wait for a
successfully exchanged reply from dead drop nodes in each
communication round. If Alice’s message m was not sent
back by dead drop node Ni, Alice can resend m by switch-
ing to another unused dead drop node Nj with reference to
DeadDrop keyj .

DAENet provides such flexibility because DAENet sup-
ports reliable datagram transfer, rather than online stream-
ing that needs ordered messages. Thus, we assume partic-
ipants can tolerate a reasonable delay of some messages
and transfer other messages first when a portion of dead
drop nodes fail. In the worst case when all dead drop
nodes mapped from DeadDrop keys are compromised, no
successful payload exchange will take place. Since the dead
drop nodes are randomly selected, the failure of all dead
drop nodes indicates potential monitoring of the network.
Such vulnerability will be quickly detected by the session
nodes, and the session nodes are suggested to carry on their
conversations later.

In addition to the switch strategy, to achieve privacy even
with malicious dead drop nodes, DAENet leverages two
policies listed as follows.

Trusted Swapping: All dead drop behaviors are executed
within SGX. Since SGX guarantees the confidentiality of
decrypted messages in memory, a malicious dead drop
node cannot determine whether two messages belong to
the same conversation and which communication pairs are
being swapped.

Ephemeral Duty: Duties in DAENet are ephemeral which
means that the dead drop role does not need to persist over
time. As DAENet works in asynchronous rounds, a dead
drop node (agreed on by two participants) is only respon-
sible for handling message swap in the current communi-
cation round, unless being chosen by the two participants
again. Hence, a malicious dead drop node will not always
hold the conversation and has no chance to reveal the link
between the two participants.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

5 SECURITY ANALYSIS

5.1 Analysis of Passive Traffic Analysis Attacks
In this subsection, we first give a theoretical proof of
DAENet’s oblivious messaging pattern that makes two par-
ticipants in one conversation unlinkable, and then conduct
a experiment to test the unlinkability under passive traffic
analysis attacks with a metrics likelihood.

5.1.1 Theoretical Proof of Oblivious Messaging
DAENet requires a participant to send messages to all
its neighbors with the same probability because a biased
messaging pattern can reveal sensitive information to global
passive attackers. Next, we prove that a DAENet participant
sends messages to all its neighbors with the same probabil-
ity and thus achieves full randomness.
Proof of Oblivious Messaging: Suppose that each node in
the underlying Chord identifier ring N <= 2n − 1 sends
message to a random node in the ring. Each node id has
log2N neighbors, namely id+2i for each i <= n. Then each
neighbor of an arbitrary node id has the same expectation
on access time.
Claim 3. Each neighbor of an arbitrary node id, denoted as
id+ 2i(0 <= i < n), has the same number of access.

Proof. Suppose that two node x and y are two identical
nodes in the ring, we evaluate one node id, where

x→ ...→ id→ ...→ y. (3)

and the identifier of node x may be equal to id.
As the routing from x to y will pass id to y, then we have

x = id−(
∑n
i=0Xi2

i), and y = id+(
∑n
i=0 Yi2

i).Xi and Yi is
a selection variable. If a message is routing from x to y, and
passes id to its ith0 neighbor of node id, then Xi = 0, i <= i0
and Yi = 0, i > i0. Therefore, for a neighbour id+2i of node
id, the total number of (x, y) pair that passes id and id+ 2i

is

(
n−1−i∑
k=0

Ckn−1−i)(
i∑

k=0

Cki) = 2n−1−i2i = 2n−1 (4)

, which is identical to all id’s neighbors.

Limited Observable Variables: With the full randomness
proved above, DAENet’s protocol reveals only a small, yet
insensitive set of variables to global passive attackers. First,
DAENet’s shuffling protocol, used for hiding communica-
tion circuits, makes all participants run in a stealthy P2P
network and exposes just two variables to adversaries: the
total number of sent-out messages in each round and the
output rate of participants. These two variables are insensi-
tive because they cannot reveal which participant is actually
talking, as adversaries cannot distinguish an application
message. Also, since we achieve full randomness of sending
messages, observing the output rate does not reveal any
sensitive information as well.

Second, by running code inside SGX, we prevent adver-
saries from directly intervening in the protocol execution
and seeing the decrypted plaintext of messages. Malicious
participants can monitor traffic links and deduce a set of
participants’ predecessors and successors under DAENet’s

1000 2000 3000 4000 5000 6000 7000 8000
Number of nodes (msg rate = 50ms)

0.26

0.27

0.28

0.29

0.30

0.31

lik
el

ih
oo

d
di

ffe
re

nc
e

Figure 3: Likelihood difference ε depending on the number of
participants in the network.

0.40.50.60.70.8
Shuffle rate of nodes

0.0

0.2

0.4

0.6

0.8

1.0

lik
el

ih
oo

d
di

ffe
re

nc
e

Figure 4: Likelihood difference ε depending on the shuffle rate
for each participant in the network.

Chord topology. However, adversaries cannot distinguish
whether a received message from a predecessor is a dummy
message or an application message.

5.1.2 Experimental Proof of Defending Traffic Analysis

This subsection gives an end-to-end anonymity evaluation
to analyze the impact of global passive attacks in DAENet.
As the strongest traffic analyzer, GPAs monitor global traffic
and observe messages entering and exiting a participant,
in order to link the corresponding message sender and
receiver.

Thus, we analyze the unlinkability between senders
and receivers by using an empirical analysis tool, used by
Loopix, to study the correlation probability of two messages
in the network. The security metrics that we use is called
likelihood difference, which reveals the probability of linking
a leaving message to a sender S0 in comparison to another
sender S1. Denote the likelihood difference as ε, the two prob-
abilities that a message is sent by S0 and S1 as p0 = Pr[S0]
and p1 = Pr[S1]. Our evaluated likelihood difference is

ε = | log(p0 / p1) | (5)

in which p0 and p1 can be calculated from Equation (1) and
Equation (2). To study the probabilities, we run DAENet
in a local cluster, ranging from 1,024 participants to 8,192
participants that generate and send messages simultane-
ously with a unified messaging rate 50ms. Among the par-
ticipants, 10% participants hold on communications while
the left 90% participants do not communicate. We challenge
the two senders S0 and S1 to analyze the probability: First,
all participants wait for a membership warm-up time until

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

the network becomes steady to test. All the 10% communi-
cation holders, except for S0 and S1, simultaneously send
messages to the network. Then, let S0 and S1 encapsulate
two messages, tag the two messages and send them to the
network as well.

Now that there are two messages sent by S0 and S1 in
the network which are manually labeled, while the remain-
ing messages sent by other participants are not labeled. At
each hop, we track the probability that an exiting message is
labeled S0 or S1, and calculate the probability of being one
of the senders through Theorem 2 (§4.3). As we pick S0 and
S1 in their final destination, we calculate ε in Equation (5).

Varying the parameter of message emitting rate and
shuffle rate, we average the evaluation results over 1000
repetitions and illustrate them in Figure 3 and Figure 4. Our
experiment shows that the expected likelihood difference is
small (lower than 0.31).
More participants, stronger anonymity: As we can see from
Figure 3, ε degrades almost linearly with more participants.
This indicates that, by increasing the number of users of
DAENet, the anonymity of participants can be further im-
proved. When DAENet scales out to a large number of
users, participants in the network process more messages.
As all the messages are fully mixed in shuffle pools, the
likelihood difference of two senders decreases, indicating
that GPAs have less probability to link message senders and
receivers.
Parameter selection: Figure 4 shows that the expected likeli-
hood difference decreases (0.30199 to 0.2409) with decreasing
shuffle rate. This figure illustrates that (1) decreasing the
probability of pulling a message from shuffle pools (by
decreasing the shuffle rate) with respect to the message
emitting rate increases anonymity and (2) the shuffle rate
has a small impact on the anonymity of participants. As
the shuffler rate decreases, DAENet requires participants to
send more dummy messages. To save the bandwidth cost,
we consider shuffle rate = 0.8 to be a good choice in terms
of anonymity.
Comparison with Loopix: Loopix also uses likelihood to
evaluate its defending capability against global traffic at-
tacks. Even if Loopix’s likelihood can be smaller than
DAENet, it incurs additional delay in each mix node.
Specifically, in Loopix’s likelihood evaluation setup (i.e., a
topology of 3 layers with 3 mix nodes per layer), when
Loopix achieves comparable likelihood as DAENet (0.25),
it incurs an additional 1s delay in each mix node. Thus,
Loopix sacrifices at least 3s latency throughout all three
layers of shuffles which is larger than DAENet’s end-to-end
communication latency (see §6).

5.2 Analysis of Active Traffic Analysis Attacks
In this subsection, we analyze the impact of active traffic
analysis attacks in DAENet. First, we analyze active attacks
that compromise a proportion of nodes to increase the
chance of choosing a fully malicious routing circuit. We
continue by evaluating the security of anti-disclosure attack
and other relevant active attacks.

5.2.1 Resisting Fully Controlled Circuits
Anonymous communication systems defend against active
attacks with the assumption that messages will not be

relayed via a fully malicious routing circuit, which is entirely
controlled by the adversary. If a routing circuit is fully
controlled, the adversary can trivially track all traffic and
deduce that the sender and receiver are within a small
anonymity set. In other words, the sender will be one of
the predecessors of the entry node of the circuit, and the
receiver is considered to be one of the successors of the exit
node of the circuit.

Because routing circuits are chosen by the underlying
P2P lookup protocol, which is enforced to execute inside
SGX, the only way the adversary can succeed in conducting
targeted DoS attacks is by adding more compromised nodes,
in order to increase the probability of choosing compro-
mised relays in a circuit.

DenoteMadv as the set of compromised nodes controlled
by the adversary, N is the total number of nodes in the
network and pm as the proportion of compromised nodes.
During the circuit generation process, the probability of
choosing a fully malicious routing circuit is

Pr(circuit ∈Madv) ≤ (pm)LogN (6)

Equation (6) indicates that adding more compromised
nodes only slightly increases the probability of choosing
a fully malicious routing circuit. When the network scales
to 10,000 participants, even with a large compromised rate
(pm = 0.8 or 0.5), the probability of successfully conducting
targeted DoS is less than 0.05 and 0.0001, respectively. In
DAENet, even with a fully controlled routing circuit, the
adversary still cannot distinguish whether a participant is
talking to someone else or not. To further de-anonymize
a message sender and receiver, the adversary has to make
sure that a conversation indeed traverses through this fully
compromised circuit, which is hard to realize in practice.

5.2.2 Resisting Aggresive Active Attacks
In this subsection, we discuss other relevant active attacks
that try to de-anonymize DAENet participants.
Defeating DAENet Anti-Disclosure Protocol: As we dis-
cussed in §3.3, a fixed circuit in a P2P network gives chances
to attackers to hierarchically reconstruct the message path.
By using the dialing protocol (§4.2) to agree on a set of dead
drop nodes in the network, DAENet prohibits adversaries
from tracking an honest participant and revealing its iden-
tity. Also, since we can trust the PRNG used inside SGX
to generate a series of DeadDrop keys, adversaries cannot
predict every dead drop node used for exchanging message
payload.

Therefore, defeating DAENet’s anti-disclosure protocol
requires active attackers to precisely delay all the on-path
application messages in each communication round. Denote
the normal averaged end-to-end communication latency
as l1, the delay time as Td and the expected path length
through dead drop as l2. As the expected communica-
tion time through dead drop nodes is fixed, if the disclo-
sure attacker receives a delayed message whose latency is
l1 + (Td × l2), then the attacker might have the confidence
to reveal the message sender.

However, precisely blocking all the on-path messages
is difficult and the usable attack time is short. As we will
show in §6.1, the expectation of averaged end-to-end latency
is less than 2.2s. To successfully defeat the protocol, the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

adversary is supposed to precisely predict and delay all
the on-path application messages with probability 1/logN
for each link within 2.2s, where N is the total number of
participants. making it impractical to conduct.
Traffic Watermarking Attacks: Pointed out by Xinyuan [54],
many proposed low-latency anonymous communication
systems are vulnerable to traffic watermarking attacks. In
the attack, a compromised service provider tags watermarks
at messages from suspected clients, and determines if the
suspected client visited the service by checking if that user
has received the watermarked traffic. DAENet can defend
against traffic watermarking attacks because (1) DAENet’s
anonymous traffic flow and the application traffic flow is
mixed by trustworthy message shuffles. Thus, a watermark-
ing attacker cannot precisely tag an application message and
track that message. (2) Even if watermarking attackers can
tag application messages, they cannot reveal clients because
clients are not the destinations in each round of communica-
tion, instead, attackers can only reveal the set of randomly
selected dead drop nodes for exchanging messages.
Aggresive Hijacking Packets: To de-anonymize network
participants, a more aggressive approach is to drop a signif-
icant number of messages. For example, active attackers can
launch (n − 1) attack [55] to track a specific message from
Alice by blocking other messages to an honest participant.
Also, network adversaries can inject malformed messages
to replace ordinary messages. Note that in this scenario, an
honest participant can easily detect such misbehavior and
notice a compromised successor in the network. Honest par-
ticipants can simply rejoin the network to switch to a new
location and fetch a new list of neighbors for anonymous
messaging.

In addition, active attackers might occasionally drop
some underlying P2P control messages that are used for
maintaining the membership, causing eclipse attacks that
partition some nodes from the network. In that case, other
nodes will lose connection with these attacked nodes and
remove these attacked nodes from the routing table, which
is just the same consequence as nodes are under targeted
DoS attacks or failed. As a result, the partitioned nodes can
simply wait for a short time and then rejoin the network.
Under Attack or Network Congestion: One possible ques-
tion in DAENet is how to differentiate between message
dropping due to compromised participants or network con-
gestion. In theory, both of them can make DAENet lose
its liveness while malicious message drop may also lead
to privacy leakage (shown in §4.4). In DAENet, it is not
a critical issue to differentiate between these two circum-
stances because DAENet is not a penalty-based system
(e.g., Miranda) that makes compromised participants lose
their connections in the network. On the contrary, DAENet
detects messages drops to maintain a consistent view of
membership in the network, caused by either misbehavior
or network congestion, thus honest participants will not be
wrongly punished.

6 EVALUATION

Our evaluation was conducted on 20 computers with SGX-
equipped Intel(R) Xeon(R) CPU E3-1280 v6 with 24 cores,
64GB RAM and 2TB SSD. All computers form a cluster with

0 2500 5000 7500
Number of nodes (ping latency=80ms)

1000

2000

La
te

nc
y

(m
s)

Figure 5: Latency of DAENet when 50 to 8000 participants
simultaneously send traffic at rate µ = 50ms and shuffle
messages with probability δ = 0.8. We assume that there is
no additional delay add by participants.

40Gbps network. In our cluster, each machine runs multiple
(up to 400) instances of DAENet client. We used Linux
Traffic Control (TC) to set the network latency between
clients as 40ms to simulate the Internet environment.

We compared DAENet’s performance with two state-
of-art shuffle-based anonymous communication systems:
Loopix and Dissent. Loopix is a popular open-sourced
anonymous network that leverages Poisson-mixing shuffle
strategy to protect users in the same conversation from
being observed by global passive attackers, which is also
guaranteed by DAENet and has been proved in §5.1.1. We
also compared DAENet’s performance with Dissent. Dissent
is another open-sourced anonymous network that leverages
verifiable shuffles to defend against global passive attacks.
Although Dissent suffers from long-term active intersection
attacks [56], it is well-known for its support of low-latency
communications compared to other shuffle-based systems
(e.g., Riposte, Atom). Other shuffle-based systems such as
Karaoke and Vuvuzela are not evaluated because they are
not open-sourced.

We built an anonymous chatting application to evalu-
ate the performance of DAENet and our baseline systems.
In our chatting application, two participants communicate
with each other by sending close-loop messages through a
set of dead drop nodes. To match the real-world workload of
online communications, we sampled X% of all participants
as active message senders while other participants still work
as normal relays. The ratio X% is set to 10% by default, with
reference to the Daily Active Users (DAU) of the popular
WhatsApp application [57]. As Loopix has a slightly dif-
ferent architecture, we modified Loopix’s code and wrote
interfaces to forward the chatting traffic in Loopix’s private
cluster. Except for the client scalability evaluation, we run
50 clients on each machine (totally 1,000 clients) to evaluate
the performance.

Our evaluation answers the following questions:
§6.1 Can DAENet support a large number of partici-
pants and provide acceptable performance?
§6.2 How sensitive is DAENet to its parameters?
§6.3 How robust is DAENet to network churn and
machine failure?

6.1 Efficiency and Scalability
To analyze the efficiency and scalability of DAENet, we
answer the following three questions in this subsection:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

Proportion of Session(%)

2500

5000

7500

La
te

nc
y

(m
s)

DAE
Loopix

Figure 6: Latency of DAENet for anonymous communicating
for varying number of sessions. The latency does not increases
as the number of session grows.

250 500 750
Number of nodes (ping latency=80ms)

1500

3000

4500

6000

La
te

nc
y

(m
s)

DAE
Loopix
Dissent

Figure 7: Latency comparison. We measured Loopix and Dis-
sent - two state-of-art scalable anonymous messaging systems.

• Can DAENet support a large number of users and scale
horizontally?

• How does DAENet compare to prior systems?
• Will DAENet slow down the communication?

Horizontal scalability: To demonstrate that DAENet scales
horizontally, we measured the end-to-end latency for par-
ticipants to route million messages as the number of partic-
ipants varied. As shown in Figure 5, the latency increases
logarithmically with an increasing number of users. When
8000 participants send traffic simultaneously the latency is
nearly 2000ms.

Note that the latency overhead increases logarithmically
with the total number of participants. This is because the
underlying topology of DAENet is a structured P2P net-
work, where the expected path length for one lookup request
grows logarithmically. In DAENet we utilize Chord, the
expected path length for a lookup is logN , where N is the
total number of participants in the network. When DAENet
scales to 1M participants, the expected path length for a
lookup only grows to 20.
Number of messages: To evaluate how the number of active
nodes affects latency, we increased the proportion of active
nodes (i.e., nodes in communication sessions) from 10% to
95%, and measured the network latency, as shown in Fig-
ure 6. As the proportion of active node increases, DAENet’s
latency does not increase much, while Loopix’s increases
dramatically. This is because Loopix incurs larger shuffle
overhead with a growing number of messages through its
centralized mix servers. On the contrary, participants in
DAENet still send dummy messages even if there are no
application messages to send, hence increasing the portion
of active nodes does not produce additional network over-

instance/machine 20 40 60 80 100
bandwidth/instance (MB/s) 0.14 0.14 0.14 0.14 0.13

Table 2: Bandwidth cost of running DAENet.

2000 3000 4000 5000 6000 7000
Number of Nodes

0

500

1000

1500

2000

2500

3000

3500

La
te

nc
y

(m
s)

p2p send (sender to dead drop)
dead drop swap
shuffle
p2p receive (dead drop to receiver)

Figure 8: Breakdown of DAENet latency.

head because the previous idle participants just change a
kind of emitted messages.
Comparison to prior work: To compare DAENet’s scala-
bility we ran an experiment in our cluster with 20 servers.
To evaluate the support for growing participants, we sim-
ulated clients by running multiple (10 ∼ 600) instances on
each machine. For comparison, we also include the latency
of Loopix and Dissent as reported in previous subsection
which are the only open-sourced anonymous messaging sys-
tem that claims to be scalable to users. We picked the system
parameters µ = 50ms as the message emitting rate of
participants in the network, and δ = 0.8 as the shuffle rate
to mix real messages and dummy messages. Figure 7 shows
that with 800 users DAENet achieves 1.5X higher latency
than Dissent, and 5X lower latency compared to Loopix.
The reason why DAENet incurs higher latency than Dissent
is that Dissent is a centralized system and it statically assigns
servers for clients to send their messages, thus clients in
Dissent doesn’t need to forward messages through several
hops and save time for lookups. However, such design
exposes attack surface to DoS all the static servers. DAENet
scales better than Loopix because all Loopix traffic must go
through a single chain of servers while DAENet requires
each participant to only process a fraction of messages in
the network.
Latency Breakdown: To investigate DAENet’s latency, we
break down DAENet’s latency incurred by shuffle, dead
drop messaging and P2P communications, as shown in
Figure 8. Around 69.1% of the latency is from P2P com-
munication, as it requires log(N) steps to locate a node in
the network. Dead drop communication contributes 8.4% of
the latency. The last source of the latency, message shuffling,
incurs only 22.5% of the latency.

As we can see from the breakdown results, DAENet
will slow down the communication by adding 30.9% more
round-trip latency. However, we believe that DAENet is use-
ful for anonymous online communications, as participants
may value a stronger privacy guarantee and tolerate the
moderate latency.
Bandwidth Usage: We test the bandwidth usage in a cluster
of 14 machine where each machine holds several instances
running independent DAENet protocol. Table 2 shows the
bandwidth usage of participants running DAENet protocol.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

0 2000 4000 6000 8000
Number of nodes (ping latency=80ms)

2000

3000

La
te

nc
y

(m
s)

Shuffle rate=0.8
Shuffle rate=0.6
Shuffle rate=0.5

Figure 9: The end-to-end latency of DAENet with unified
message emitting rate 50ms and varying shuffle rate.

Message emit rate (µs) 100 500 1000 2000 3000 5000
Latency (ms) 773 758 787 1055 1302 1594

Table 3: The end-to-end latency of DAENet with varying mes-
sage emitting rate, running in a cluster of 1000 nodes.

In this experiment, each test has one conversation between
two randomly picked participants from all instances. To
understand the minor bandwidth cost (around 0.14MB/s),
DAENet’s design crucially avoids heavy usage of network
resources for sending dummy messages. This is because we
also add P2P control messages to the shuffle pools, such that
when participants have to send out a dummy message to a
neighbor, it can just replace by sending a control message
rather than a dummy message. The sending of control
messages in DAENet follows the rules of Chord, each par-
ticipant refreshes its view of membership by sending control
messages to all its neighbors every 1 second.

6.2 Parameter Sensitivity
To understand how the parameters (i.e., shuffle rate and
message emitting rate) affects latency, we varied the mini-
mum shuffle rate and message emitting rate, and measured
the latency, as shown in Figure 9 and Table 3. With a
unified message emitting rate 50ms, the latency increases
dramatically when shuffle rate is decreased. This is because,
in each shuffle pool of a neighbor, with a smaller shuffle
rate, the probability of popping out a real message to that
neighbor becomes smaller and the probability of sending
a dummy message to that neighbor becomes larger. That
is, a real message will have less chance to be sent out to
its destination and the latency increases. Note that with a
smaller shuffle rate, DAENet guarantees more obliviousness
of output messages, since real messages are fully mixed with
dummy messages and a malicious observer is more difficult
to distinguish a real message.

When the message emitting rate increases, the latency
of messages decreases because a message is popped out of
the shuffle pool more quickly with a larger emitting rate.
However, the descending trend of latency is smoother with
a large emitting rate. This is because that the latency is also
bounded by dead drop swap and P2P communication.

6.3 Failure Recovery
Handling node churn is a major issue in P2P systems. To
evaluate the failure resilience of DAENet, we ran DAENet

0 25 50 75 100 125 150 175
Time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

timeout

La
te

nc
y(

m
s)

DAE

Figure 10: Arbitrarily killing DAENet nodes to simulate net-
work churn with a 10% killing rate.

for a period of time, with a typical message emitting rate
50ms and shuffle rate 0.8, and we arbitrarily killed 10%
of all participants three times (totally killed 30% active
participants). The killed nodes of DAENet are sampled uni-
formly from existing participants, including both active par-
ticipants (communicating) and idle participants. Figure 10
shows the latency before and after killing nodes. When
nodes are killed, DAENet’s latency becomes extremely high
because the loss of transferring message triggers timeout.
After that, DAENet’s latency resumes to normal in a short
time, as DAENet detects the failure of messages, updates
routing table and resumes processing.

7 DISCUSSION

DAENet has two limitations. First, the current DAENet
implementation does not integrate side-channel attack de-
fenses. As SGX is susceptible to side-channel attacks where
malicious software on the same platform can infer enclave
data access patterns by monitoring shared resources such as
caches [58], [59], it is fixable by using well-known Oblivious
Ram (ORAM) algorithms, such as ZeroTrace [60].

Second, DAENet currently only supports point-to-point
anonymous communication rather than anonymous broad-
cast, in which a participant can broadcast items to a set of
receivers in an anonymous manner. This limitation forbids
DAENet from supporting some security-sensitive broadcast
applications such as the transaction dissemination in Bitcoin
P2P network. Supporting anonymous broadcast in a P2P
network could be an interesting future direction of DAENet.

8 RELATED WORK

Tor Anonymous Network: Tor [6] is the most popular onion
routing system. Due to its popularity and transparent de-
velopment processes [61], many researchers have explored
attacks that can de-anonymize Tor users and hidden-service
providers by monitoring the network traffic. Recent attack
vectors for Tor include BGP-based attacks [62], [63], website
fingerprinting [64], [65], [66], [67], traffic correlation [36],
[37], [68], [69], congestion attack [70], [71] and targeted
DoS [38], [72]. Meanwhile, researchers also propose meth-
ods to enhance Tor’s security by optimizing the bandwidth
report for selecting guard nodes [73] and monitoring cir-
cuit construction [74]. Also, some recent Tor improvements
consider generating cover traffic within middle routers of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

circuits, such that the middle routers can hide any relation-
ship between compromised entry and exit nodes [75], [76].
TEE and SGX-Tor: TEE provides strong security guarantees
(i.e., confidentiality and integrity) for applications with ef-
ficiency. Intel SGX [77] is one of the most popular TEE in
the market. With the convenience and security properties
introduced by SGX, it has been adopted for secure data
analysis [45], [78], network analysis [79] and secure key-
value stores [80]. SGX-Tor [81] is the first work that applies
SGX to an anonymous network. As the first SGX enabled
anonymous network, SGX-Tor proves the feasibility of run-
ning SGX-enabled hosts to improve an anonymous commu-
nication system’s security model. As Tor relays are under
the control of world-wide users, running the Tor protocol
inside SGX effectively prevents malicious Tor relays from
gaining private information of Tor components, such as
circuit identifiers and hidden service identifiers. Although
SGX-Tor mitigates many attacks against malicious Tor com-
ponents, it cannot defend against network-level adversaries,
potentially preventing it from being a choice of users who
value strong privacy.
DAENet v.s. SGX-Tor: DAENet also leverages SGX to pre-
vent private information leakage and regulate participants’
behaviors. Moreover, we improve SGX-Tor’s security model
by protecting participants from global passive attacks and
active attacks that maliciously drop and delay messages. Al-
though DAENet incurs slightly higher end-to-end commu-
nication latency compared to SGX-Tor (shown in Table 1),
we believe that users may tolerate DAENet’s moderate
latency to achieve stronger privacy guarantees.
Comparisons to Other Mix Networks: Vuvuzela [82] is
secure against passive traffic analysis attacks. Vuvuzela’s
insight is to minimize the sensitive observable variables to
adversaries with differential privacy techniques [83], [84].
By adding noise messages and mixing them with real mes-
sages, adversaries cannot distinguish which users are com-
municating. Vuvuzela requires all messages to pass through
a single chain of mix servers, making it susceptible to
targeted DoS attacks. In contrast, DAENet does not require
a set of centralized mix servers, all messages are shuffled
through each hop inside SGX.

Loopix [7] uses cover traffic and Poisson mixing mecha-
nism to defend against passive traffic analysis attacks, and is
more scalable than Vuvuzela by using parallel mix servers.
Loopix observes that active attacks (e.g., (n-1) attack) can
break the anonymity guarantee, and uses loop messages
to detect such attacks. However, Loopix cannot detect a
stealthy active attack that drops single messages at a time.
Moreover, Loopix does not specify any after-step or how
to resist other active attacks (e.g., Disclosure attack, traffic
watermarking attack) whereas DAENet is secure against all
these attacks.

Miranda [17] is an anonymous system that focuses on
detecting active attacks in the network, including disclosure
attacks and (n-1) attacks. Miranda’s core idea is to build
a reputation system in the network in order to measure
malicious behaviors. Nevertheless, Miranda is not practical
due to several simplifying assumptions: (1) a stable and
synchronized network environment where operations are
executed in synchronized batches, and (2) a fixed set of mix
servers where a majority of them are benign. DAENet runs

in an asynchronous network so that it does not need a secure
clock synchronization protocol which is costly. DAENet can
preserve anonymity when a majority of nodes are malicious,
as long as there is one honest node in a circuit to conduct
message shuffles.

Dissent [14] is based on DC-networks [85]. It protects
users from being surveilled by passive traffic analysis
attacks and some active attacks. Compared to DAENet,
Dissent has limited scalability as it supports only several
thousand nodes.

Karaoke [15] has a similar idea of using dead drop nodes
to exchange messages in a mix network, and efficiently
adding noise messages to hide dead drop access patterns.
In the performance evaluation of Karaoke, the authors have
tested Karaoke to 16 million users which is the largest
evaluation scale to our best knowledge. However, Karaoke
has several drawbacks that prevent it from being deployed:
(1) Karaoke uses only a few mix servers to shuffle all
messages in the network and requires all servers to be on-
line, making it an attractive target of DoS attacks. DAENet
shuffles messages through a group of trustworthy shuf-
fling nodes in a fully decentralized network and provides
fault-tolerance to DoS attacks. (2) Karaoke requires users
to initialize conversations through out-of-band channels,
which may leak sensitive information to other untrusted
parties and impose unexpected bandwidth and CPU costs
for clients. In contrast, DAENet handles the initialization
and hides metadata during the dialing process.
Alternative Approaches: There are two approaches in the
literature that have the potential to be used to enable ver-
ifiable shuffling operations in mix networks. The first ap-
proach is to use zero-knowledge proofs [86] to verify that the
mix servers have correctly shuffled messages. The second
approach is randomized partial checking (RPC) pointed out
in the Miranda paper [17]. RPC helps detect packet drops
in the network so that some active attacks can be defended
with probability.

9 CONCLUSION

To provide practical anonymity guarantees to everyone on
the Internet, anonymity networks have to develop efficient
protocols to (1) accommodate a large amount of users and
incur low end-to-end communication latency, and (2) pro-
vide strong anonymity guarantees against network adver-
saries.

As a step towards this goal, we present DAENet, the first
work that enables strong anonymity in a fully decentralized
network. DAENet incurs only seconds of latency when
scales to 10,000 users, and is secure against targeted DoS
attacks and traffic analysis attacks. We present the stealthy
P2P network abstraction consisting two design points to
efficiently preserve user anonymity. First, by using SGX to
select a group of trustworthy shuffling nodes, passive traffic
analyzers cannot determine which users are communicat-
ing. Second, by safely negotiating a set of random locations
(i.e., dead drops) and using these locations for exchanging
message payload in each communication round, DAENet
forbids disclosure attacks that track and reveal sender iden-
tifiers. We evaluated the latency and bandwidth cost of
DAENet, and our evaluation results show that DAENet

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 16

scales well with moderate end-to-end latency while main-
taining constant-size bandwidth requirements for users.

ACKNOWLEDGMENTS

We thank all reviewers for their valuable comments. The
work is funded by grants partly from the Huawei Inno-
vation Research Program (HIRP) Flagship, HK RGC ECS
No.27200916, HK RGC GRF No.17207117, No. 17202318, and
Croucher Innovation Award.

REFERENCES

[1] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users
get routed: Traffic correlation on tor by realistic adversaries,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 337–348.

[2] B. Resch and J. Engdegård, “Metadata time marking information
for indicating a section of an audio object,” Aug. 11 2015, uS Patent
9,105,300.

[3] B. Harris and R. Hunt, “TCP/IP security threats and attack meth-
ods,” Computer communications, vol. 22, no. 10, pp. 885–897, 1999.

[4] M. Sageman, “Low return on investment,” Terrorism and Political
Violence, vol. 26, no. 4, pp. 614–620, 2014.

[5] P. Winter and S. Lindskog, How the great firewall of china is blocking
tor. USENIX-The Advanced Computing Systems Association,
2012.

[6] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” Naval Research Lab Washington DC,
Tech. Rep., 2004.

[7] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis,
“The loopix anonymity system,” in 26th USENIX Security Sympo-
sium USENIX Security 17), 2017, pp. 1199–1216.

[8] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measurement study
of peer-to-peer file sharing systems,” in Multimedia Computing and
Networking 2002, vol. 4673. International Society for Optics and
Photonics, 2001, pp. 156–170.

[9] M. T. Alam, H. Li, and A. Patidar, “Bitcoin for smart trading in
smart grid,” in The 21st IEEE International Workshop on Local and
Metropolitan Area Networks, 2015.

[10] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,”
in 2005 IEEE Symposium on Security and Privacy (S&P’05). IEEE,
2005, pp. 183–195.

[11] A. Mislove, G. Oberoi, A. Post, C. Reis, P. Druschel, and D. S.
Wallach, “AP3: Cooperative, decentralized anonymous commu-
nication,” in Proceedings of the 11th workshop on ACM SIGOPS
European workshop. ACM, 2004, p. 30.

[12] J. Bonneau, A. Narayanan, A. Miller, J. Clark, J. A. Kroll, and
E. W. Felten, “Mixcoin: Anonymity for bitcoin with accountable
mixes,” in International Conference on Financial Cryptography and
Data Security. Springer, 2014, pp. 486–504.

[13] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of tor,”
in 2005 IEEE Symposium on Security and Privacy (S&P’05). IEEE,
2005, pp. 183–195.

[14] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Dis-
sent in numbers: Making strong anonymity scale,” in Presented as
part of the 10th USENIX Symposium on Operating Systems Design and
Implementation OSDI 12), 2012, pp. 179–182.

[15] D. Lazar, Y. Gilad, and N. Zeldovich, “Karaoke: Distributed
private messaging immune to passive traffic analysis,” in 13th
USENIX Symposium on Operating Systems Design and Implementa-
tion OSDI 18), 2018, pp. 711–725.

[16] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An
anonymous messaging system handling millions of users,” in 2015
IEEE Symposium on Security and Privacy. IEEE, 2015, pp. 321–338.

[17] H. Leibowitz, A. M. Piotrowska, G. Danezis, and A. Herzberg, “No
right to remain silent: isolating malicious mixes,” in 28th USENIX
Security Symposium USENIX Security 19), 2019, pp. 1841–1858.

[18] U. Parampalli, K. Ramchen, and V. Teague, “Efficiently shuffling
in public,” in International Workshop on Public Key Cryptography.
Springer, 2012, pp. 431–448.

[19] L. M. Sumitra and S. C. Miller, “Pathologic gambling disorder:
How to help patients curb risky behavior when the future is at
stake,” Postgraduate medicine, vol. 118, no. 1, pp. 31–37, 2005.

[20] P. Paillier et al., “Public-key cryptosystems based on composite
degree residuosity classes,” in Eurocrypt, vol. 99. Springer, 1999,
pp. 223–238.

[21] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich, “Vu-
vuzela: Scalable private messaging resistant to traffic analysis,” in
Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 2015, pp. 137–152.

[22] S. Angel and S. Setty, “Unobservable communication over fully
untrusted infrastructure,” in 12th USENIX Symposium on Operating
Systems Design and Implementation OSDI 16), 2016, pp. 551–569.

[23] D. Chaum, “The dining cryptographers problem: Unconditional
sender and recipient untraceability,” Journal of cryptology, vol. 1,
no. 1, pp. 65–75, 1988.

[24] G. Noubir and A. Sanatinia, “Trusted code execution on untrusted
platforms using intel sgx,” Virus bulletin, 2016.

[25] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using sgx to conceal cache attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2017, pp. 3–24.

[26] S. Kim, J. Han, J. Ha, T. Kim, and D. Han, “SGX-Tor: A secure and
practical tor anonymity network with sgx enclaves,” IEEE/ACM
Transactions on Networking, vol. 26, no. 5, pp. 2174–2187, 2018.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” SIGCOMM Comput. Commun. Rev., vol. 31, no. 4,
pp. 149–160, 2001.

[28] J. Song and S. Wang, “The pastry algorithm based on dht.”
Computer and Information Science, vol. 2, no. 4, pp. 153–157, 2009.

[29] F. de Ası́s López-Fuentes, I. Eugui-De-Alba, and O. M. Ortı́z-
Ruiz, “Evaluating p2p networks against eclipse attacks,” Procedia
Technology, vol. 3, pp. 61–68, 2012.

[30] K. Park and H. Lee, “On the effectiveness of probabilistic packet
marking for ip traceback under denial of service attack,” in Pro-
ceedings IEEE INFOCOM 2001. Conference on Computer Communi-
cations. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Society (Cat. No. 01CH37213), vol. 1. IEEE, 2001,
pp. 338–347.

[31] P. Mittal and N. Borisov, “Shadowwalker: peer-to-peer anonymous
communication using redundant structured topologies,” in Pro-
ceedings of the 16th ACM conference on Computer and communications
security. ACM, 2009, pp. 161–172.

[32] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Dis-
sent in numbers: Making strong anonymity scale,” in Presented as
part of the 10th USENIX Symposium on Operating Systems Design and
Implementation OSDI 12), 2012, pp. 179–182.

[33] A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford, “Atom:
Horizontally scaling strong anonymity,” in Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 2017, pp. 406–
422.

[34] A. Mani, T. Wilson-Brown, R. Jansen, A. Johnson, and M. Sherr,
“Understanding tor usage with privacy-preserving measure-
ment,” in Proceedings of the Internet Measurement Conference 2018,
2018, pp. 175–187.

[35] M. AlSabah and I. Goldberg, “Performance and security improve-
ments for tor: A survey,” ACM Computing Surveys (CSUR), vol. 49,
no. 2, pp. 1–36, 2016.

[36] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users
get routed: Traffic correlation on tor by realistic adversaries,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 337–348.

[37] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia, “A new cell
counter based attack against tor,” in Proceedings of the 16th ACM
conference on Computer and communications security, 2009, pp. 578–
589.

[38] R. Jansen, T. Vaidya, and M. Sherr, “Point break: A study of
bandwidth denial-of-service attacks against tor,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, Aug. 2019, pp. 1823–1840.

[39] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private in-
formation retrieval,” in Proceedings of IEEE 36th Annual Foundations
of Computer Science. IEEE, 1995, pp. 41–50.

[40] R. Ostrovsky and V. Shoup, “Private information storage,” in
Proceedings of the twenty-ninth annual ACM symposium on Theory
of computing, 1997, pp. 294–303.

[41] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 17

lookup protocol for internet applications,” IEEE/ACM Transactions
on Networking (TON), vol. 11, no. 1, pp. 17–32, 2003.

[42] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” ACM SIGCOMM Computer Communication Review,
vol. 31, no. 4, pp. 149–160, 2001.

[43] T. Schutt, F. Schintke, and A. Reinefeld, “Structured overlay with-
out consistent hashing: Empirical results,” in Sixth IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CCGRID’06),
vol. 2. IEEE, 2006, pp. 8–8.

[44] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative tech-
nology for cpu based attestation and sealing,” in Proceedings of the
2nd international workshop on hardware and architectural support for
security and privacy, vol. 13. ACM New York, NY, USA, 2013.

[45] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich, “VC3: Trustworthy data
analytics in the cloud using sgx,” in Security and Privacy (SP), 2015
IEEE Symposium on. IEEE, 2015, pp. 38–54.

[46] R. Kapelko, “Towards fault-tolerant chord p2p system: analysis
of some replication strategies,” in Asia-Pacific Web Conference.
Springer, 2013, pp. 686–696.

[47] H. Ballani, P. Francis, and X. Zhang, “A study of prefix hijack-
ing and interception in the internet,” ACM SIGCOMM Computer
Communication Review, vol. 37, no. 4, pp. 265–276, 2007.

[48] Y. Gilad and A. Herzberg, “Spying in the dark: Tcp and tor
traffic analysis,” in International symposium on privacy enhancing
technologies symposium. Springer, 2012, pp. 100–119.

[49] D. Agrawal and D. Kesdogan, “Measuring anonymity: The dis-
closure attack,” IEEE Security & privacy, vol. 1, no. 6, pp. 27–34,
2003.

[50] “Adding watermarks to images using alpha channels,” http://
php.net/manual/en/image.examples-watermark.php.

[51] G. Danezis and L. Sassaman, “Heartbeat traffic to counter (n-1)
attacks: red-green-black mixes,” in Proceedings of the 2003 ACM
workshop on Privacy in the electronic society, 2003, pp. 89–93.

[52] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel sgx kingdom with
transient out-of-order execution,” in 27th USENIX Security Sympo-
sium (USENIX Security 18), 2018, pp. 991–1008.

[53] “L1 terminal fault,” https://software.intel.com/security-
software-guidance/software-guidance/l1-terminal-fault.

[54] X. Wang, S. Chen, and S. Jajodia, “Network flow watermarking
attack on low-latency anonymous communication systems,” in
2007 IEEE Symposium on Security and Privacy (SP’07). IEEE, 2007,
pp. 116–130.

[55] A. Serjantov, R. Dingledine, and P. Syverson, “From a trickle to
a flood: Active attacks on several mix types,” in International
Workshop on Information Hiding. Springer, 2002, pp. 36–52.

[56] D. Kedogan, D. Agrawal, and S. Penz, “Limits of anonymity
in open environments,” in International Workshop on Information
Hiding. Springer, 2002, pp. 53–69.

[57] C. Montag, K. Błaszkiewicz, R. Sariyska, B. Lachmann, I. Andone,
B. Trendafilov, M. Eibes, and A. Markowetz, “Smartphone usage
in the 21st century: who is active on whatsapp?” BMC research
notes, vol. 8, no. 1, p. 331, 2015.

[58] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun,
and A.-R. Sadeghi, “Software grand exposure:sgx cache attacks
are practical,” in 11th USENIX Workshop on Offensive Technologies
(WOOT 17), 2017.

[59] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks
on intel sgx,” in Proceedings of the 10th European Workshop on
Systems Security, 2017, pp. 1–6.

[60] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace: Oblivious
memory primitives from intel sgx.” IACR Cryptol. ePrint Arch., vol.
2017, p. 549, 2017.

[61] T. B. Tracker, “Wiki,” 2018.
[62] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang,

and P. Mittal, “{RAPTOR}: Routing attacks on privacy in tor,” in
24th USENIX Security Symposium (USENIX Security 15), 2015, pp.
271–286.

[63] Y. Sun, A. Edmundson, N. Feamster, M. Chiang, and P. Mittal,
“Counter-raptor: Safeguarding tor against active routing attacks,”
in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017,
pp. 977–992.

[64] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proceed-

ings of the 2012 ACM conference on Computer and communications
security, 2012, pp. 605–616.

[65] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable web-
site fingerprinting technique,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 1187–1203.

[66] D. Herrmann, R. Wendolsky, and H. Federrath, “Website finger-
printing: attacking popular privacy enhancing technologies with
the multinomial naı̈ve-bayes classifier,” in Proceedings of the 2009
ACM workshop on Cloud computing security, 2009, pp. 31–42.

[67] S. Li, H. Guo, and N. Hopper, “Measuring information leakage
in website fingerprinting attacks and defenses,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1977–1992.

[68] Z. Ling, J. Luo, W. Yu, X. Fu, W. Jia, and W. Zhao, “Protocol-level
attacks against tor,” Computer Networks, vol. 57, no. 4, pp. 869–886,
2013.

[69] S. J. Murdoch and P. Zieliński, “Sampled traffic analysis by
internet-exchange-level adversaries,” in International workshop on
privacy enhancing technologies. Springer, 2007, pp. 167–183.

[70] N. S. Evans, R. Dingledine, and C. Grothoff, “A practical con-
gestion attack on tor using long paths.” in USENIX Security
Symposium, 2009, pp. 33–50.

[71] J. Geddes, R. Jansen, and N. Hopper, “How low can you go:
Balancing performance with anonymity in tor,” in International
Symposium on Privacy Enhancing Technologies Symposium. Springer,
2013, pp. 164–184.

[72] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz, “Denial of service
or denial of security?” in Proceedings of the 14th ACM conference on
Computer and communications security, 2007, pp. 92–102.

[73] R. Snader and N. Borisov, “A tune-up for tor: Improving security
and performance in the tor network.” in NDSS, vol. 8, 2008, p. 127.

[74] A. Panchenko, F. Lanze, and T. Engel, “Improving performance
and anonymity in the tor network,” in 2012 IEEE 31st International
Performance Computing and Communications Conference (IPCCC).
IEEE, 2012, pp. 1–10.

[75] M. Soltani, S. Najafi, and R. Jalili, “Mid-defense: Mitigating
protocol-level attacks in tor using indistinguishability obfusca-
tion,” in 2014 11th International ISC Conference on Information Se-
curity and Cryptology. IEEE, 2014, pp. 214–219.

[76] M. Juárez, M. Imani, M. Perry, C. Dıaz, and M. Wright, “Wtf-pad:
toward an efficient website fingerprinting defense for tor,” CoRR,
abs/1512.00524, 2015.

[77] Intel, “Software guard extensions programming reference.”
[78] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez,

and I. Stoica, “Opaque: An oblivious and encrypted distributed
analytics platform.” in NSDI, 2017, pp. 283–298.

[79] M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska, “S-nfv: Se-
curing nfv states by using sgx,” in Proceedings of the 2016 ACM
International Workshop on Security in Software Defined Networks &
Network Function Virtualization. ACM, 2016, pp. 45–48.

[80] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure
database using sgx,” in EnclaveDB: A Secure Database using SGX.
IEEE, 2018, p. 0.

[81] S. M. Kim, J. Han, J. Ha, T. Kim, and D. Han, “Enhancing
security and privacy of tor’s ecosystem by using trusted execution
environments.” in NSDI, 2017, pp. 145–161.

[82] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich, “Vu-
vuzela: Scalable private messaging resistant to traffic analysis,” in
Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 2015, pp. 137–152.

[83] C. Clifton and T. Tassa, “On syntactic anonymity and differential
privacy,” in 2013 IEEE 29th International Conference on Data Engi-
neering Workshops (ICDEW). IEEE, 2013, pp. 88–93.

[84] T. O. Li, J. Jiang, J. Qi, C. C. So, J. Ma, X. Chen, T. Shen, H. Cui,
Y. Wang, and P. Wang, “Upa: An automated, accurate and efficient
differentially private big-data mining system,” in 2020 50th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2020, pp. 515–527.

[85] A. Sannino, G. Postiglione, and M. H. Bollen, “Feasibility of a dc
network for commercial facilities,” in Conference Record of the 2002
IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat.
No. 02CH37344), vol. 3. IEEE, 2002, pp. 1710–1717.

[86] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of
identity,” Journal of cryptology, vol. 1, no. 2, pp. 77–94, 1988.

http://php.net/manual/en/image.examples-watermark.php
http://php.net/manual/en/image.examples-watermark.php

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3052831, IEEE
Transactions on Dependable and Secure Computing

SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 18

Tianxiang Shen is a PhD student supervised
by Dr. Heming Cui in Computer Science De-
partment at the University of Hong Kong. His
research interests lie in distributed systems, with
a particular focus on the system security and
data privacy. Prior to his current program, he
received B.Eng degree from JiLin University the
Excellent Engineering Class.

Jianyu Jiang is currently a third year PhD stu-
dent in Computer Science Department at The
University of Hong Kong. He is working on topics
in large scale computation platform under the su-
pervision of Dr. Heming Cui. Prior to his current
program, Jianyu receives his Bachelor’s Degree
in Computer Science Department at Xi’an Jiao-
tong University, under the supervision of Profes-
sor Qi Yong.

Yunpeng Jiang is currently pursuing his Bache-
lor degree in information security at Department
of Computer Science and Engineering, South
China University of Technology. His research
interests includes system security and trusted
computing tecnhiques.

Xusheng Chen received his Bachelor degree in
HKU. He is currently a PhD student in Computer
Science of HKU (2017-now). He is under the
supervision of Dr. Heming Cui. His research in-
terests include distributed consensus protocols,
distributed systems and system security.

Ji Qi received his B.S (2015) degree from Bei-
jing Institude of Technology, Beijing, China, and
his M.S (2018) degree from Tsinghua University,
Beijin, China. He is currently pursuing the PhD
in computer science at the University of Hong
Kong under the supervision of Dr. Heming Cui.
His interests include domain-specific modeling,
distributed system and cloud computing.

Shixiong Zhao received his Bachelor degree in
HKU and his master degree in HKUST. He is
currently a PhD student in Computer Science of
HKU (2017-now). He is under the supervision of
Dr. Heming Cui. His research interests include
distributed systems for high performance com-
puting, distributed systems and system security.

Fengwei Zhang is an associate professor at De-
partment of Computer Science and Engineering
at Southern University of Science and Technol-
ogy (SUSTech). His primary research interests
are in the areas of systems security, with a focus
on trustworthy execution and hardware-assisted
security. Before joining SUSTech, he spent four
wonderful years as an Assistant Professor at De-
partment of Computer Science at Wayne State
University.

Xiapu Luo is an associate professor at Depart-
ment of Computing, The Hong Kong Polytechnic
University. He obtained his Ph.D. degree from
the same university and then spent two years at
the Georgia Institute of Technology as a post-
doctoral research fellow. His current research
interests include Network and System Security,
Blockchain and Smart Contract, Mobile and IoT
Securit

Heming Cui is an assistant professor in com-
puter science of HKU. His research interests
include operating systems, programming lan-
guages, distributed systems, and cloud comput-
ing, with a particular focus on building software
infrastructures and tools to improve reliability
and security of real-world software. Homepage:
https://i.cs.hku.hk/ heming/. He is a member of
IEEE.

