
Chenxu Wang12, Fengwei Zhang1✉,Yunjie Deng1, Kevin Leach3, 

Jiannong Cao2, Zhenyu Ning4, Shoumeng Yan and Zhengyu He5

CAGE: Complementing Arm CCA with GPU Extensions

1Southern University of Science and Technology, 2The Hong Kong Polytechnic University, 
3 Vanderbilt University, 4Hunan University, 5Ant Group 



Confiden'al Compu'ng

• An emerging concept and technique for data security

• Guadually attract cloud providers and third-party developers
• Google Cloud, Micorsoft Azure, Aliyun … 

• Hardware-assisted protection
• Intel Trust Domain Extensions (TDX)
• IBM Protected Execution Facility (PEF)
• AMD Secure Encrypted Virtualization (SEV)
• … 

2/18



Arm Confidential Compute Architecture (CCA)

• Provide confidential computing for next-generation (Armv9.2) Arm devices
• New security state for confidential computing: Realm World
• Hardware-isolated Root World
• New security supports

• Granule Protection Check (GPC)
• Memory encryption

• …

3/18



Arm Confidential Computing Architecture (CCA)

• CCA is not completed: CCA on unified-memory GPUs
• These on-chip GPUs are widely used in current Arm devices
• But in Armv8 and early CCA, GPU is untrusted for Realms

• Arm introduces Device Assignment for Realm Management Extensions (RME-DA) 
to solve this problem, but …
• SXll in the early stage
• How it supports generic, on-chip GPUs is uncertain
• No real-world hardware or soYware simulaXon

4/18

RME-DA focuses on managing 
PCIe-connected device. Source from 
Arm DEN0129 manual, version B.a.



Motivation & Goals

• Providing Arm CCA with confidential, unified-memory GPU computing support
• Compatibility with Arm CCA
• Strong data security
• Low performance overhead
• No hardware changes

5/18



Threat Model & Assump'ons

• Follow Arm CCA’s threat model
• Software in Normal World and Secure World is untrusted for realms
• Peripherals except GPU are untrusted

• Assume remote attestation and secure boot support
• Trust existing CPU-side isolation firmware in Arm CCA (Monitor and RMM)

• Physical/side-channel/DoS attacks can be addressed by orthogonal works

6/18



Complemen'ng Arm CCA with GPU Extensions (CAGE)

7/18

• Monitor
• Security responsibilities
• Three mechanisms

• User-level runtime & GPU driver
• GPU functionality guarantee



Goal 1: Compatibility with Arm CCA

• CCA’s realm-style architecture
• Realms are managed by Normal World software but invisible to them
• Can we adapt it with GPU’s workflow?

• Solution: Shadow task mechanism
• Host schedules stub tasks for realms, with no sensitive data
• When task submission, replace them with real tasks

• Authentic data
• Real data buffers created in realms
• New GPU page table mappings

8/18



Goal 1: Compatibility with Arm CCA

9/18

Data buffer descriptions: critical information for creating real data buffers
(e.g., buffer size, attributes, data to be filled, signatures)



Goal 2: Strong Data Security

• RMM cannot directly manage GPUs
• Unified-memory GPUs are regarded as Normal peripherals and cannot be 

re-configured as Realm peripherals
• RMM cannot directly monitor same-layer but untrusted software 

(Normal/Secure hypervisors)

• Solution: Using GPC on MMU/SMMU to control memory access
• Use a Granule Protection Table (GPT) to manage memory security view for 

CPU’s MMU and peripherals’ SMMU
• Controlled by the highest-privilege Monitor

10/18



Goal 2: Strong Data Security

• Two Goals
• Let Normal GPU access the protected regions
• Two-way isolaXon between GPU environment and other components

• GPT for GPU:
• Protected regions are Normal
(accessible) state
• Other regions are inaccessible

• GPT for CPU and untrusted peripherals: 
• Protected regions are Realm state
• Protect GPU MMIO

11/18



Goal 2: Strong Data Security

• Overall, we achieve two-way isolaXon for GPU compuXng
• For GPU’s SMMU GPC, switch to target GPU SMMU GPT 
• Synchronize the protecXon on CPU and Untrusted peripheral GPTs

• We also ensure GPU exclusivity for each real task
• Protect GPU MMIO during the compuXng
• Check GPU status (e.g., whether hiding malicious tasks) before real task 

submission
• Clear GPU (e.g., TLB and cache) aYer real task compuXng

12/18



Goal 3: Low Performance Overhead

• Optimize GPT initialization and synchronization

13/18

Only store accessible (Normal) and 
non-accessible (Root) info in Realm’s 

GPU SMMU GPT

Use the same sub-level GPT to 
manage access from CPU and 

untrusted peripherals



Addi'onal Goal: Hardware Compa'bility

• Design and implement CAGE without hardware modificaXon
• Leverage current Realm Management Extensions (RME)
• Generic unified-memory GPU

14/18



Functionality Prototype Implementation

• Environment
• Arm FVP Base RevC-2xAEMvA, with RME enabled

• TCB:
• ATF v2.8 (0.4M LoC) with 1.3K LoC additions
• Realm isolation software (e.g., TF-RMM with 26K LoC)

• Not introduce GPU software stacks to Realms or CAGE’s TCB

15/18



Security Evalua'on

16

①: The GPC on CPU and peripheral access. ②: The integrity verificaLon. ③ The Monitor checks. 
④: The fixed MMIO address. ⑤: The hardware-assisted isolaLon of Root World. 

⑥: The TLB invalidaLon. ⑦: The CPU-side memory isolaLon.



Evalua'on

• Emulate CCA’s security operations on Armv8 Juno R2 Board
• Manage MMU/SMMU GPTs, read and write GPC registers …

• Low (2.45%) performance overhead on the selected Rodinia benchmarks

17/18



Conclusions

• CAGE provides confidential GPU computing support for Arm CCA.
• Follow Arm CCA’s realm-style architecture to manage confidential GPU 

computing
• Ensure strong data security with CCA’s existing security hardware primitive
• Adapt to Arm endpoints and servers with low performance overhead and 

no hardware modification

• Source code
• https://github.com/Compass-All/NDSS24-CAGE 

18/18



Thank You!

19/18



Performance Evalua'on

• Optimize GPT initialization and synchronization

20

Mitigate 84.63% – 96.55% performance 
overhead of GPU GPT initialization

Mitigate 50.01% – 93.65% performance 
overhead on synchronizing multiple GPTs



Granule Protec'on Check (GPC)
• GPC can be enabled in CPU MMUs and peripheral SMMUs, indicating the security view of the connected 

CPU/peripheral.
• Such security view is managed by Granule  Protection Table (GPT)
• Specifically, GPT specifies what physical address spaces (PAS) a memory page belongs to

21


