
	 2021 Spring	Semester																																																																							CS102A																																																																	
	

1	
	

Introduction to Computer Programming (Java A)
Lab 11

	
[Objective]	

• Learn	polymorphism.	
• Learn	abstract	class.	
• Learn	how	to	define	and	implement	an	interface.	
• Learn	how	to	use	the	interface	java.long.Comparable<T>.	

	
[Before	Exercises]	
	
1.	Polymorphism.	
Create	a	class	PolymorphismTest:	
	
public class PolymorphismTest {
 public static void main(String[] args) {
 ArrayList<Shape> shapeList = new ArrayList<Shape>();

 Shape.setScreenSize(9);
 StdDraw.setXscale(-Shape.getScreenSize(), Shape.getScreenSize());
 StdDraw.setYscale(-Shape.getScreenSize(), Shape.getScreenSize());

 for (int i = 0; i < 3; i++) {
 shapeList.add(new Circle(1, 4 * i + 1, 1));
 shapeList.add(new Rectangle(4 * i + 1, -1, 1,1));
 }

 for (int i = 0; i < shapeList.size(); i++) {
 shapeList.get(i).checkColor();
 System.out.print(shapeList.get(i));
 shapeList.get(i).draw();
 }
 }
}
	
Obviously,	two	errors	would	arise	in	checkColor()	and	draw().	Although	we	
understand	that	those	two	methods	have	been	defined	in	both	Circle	and	
Rectangle	class,	we	cannot	invoke	them	directly	if	they	haven’t	been	defined	in	
their	super	class	Shape.	It	is	because	we	are	using	subclass	to	instantiate	their	
super	class.	
	
Define	these	two	methods	in	Shape:	

	
	
	
	
	
	
Run	above	code,	observe	the	result:	

	 2021 Spring	Semester																																																																							CS102A																																																																	
	

2	
	

Circle{radius=1.0	x=1.0,	y=1.0,	color=GREEN}	
Rectangle{width=1.0,	height=1.0	x=1.0,	y=-1.0,	color=GREEN}	
Circle{radius=1.0	x=5.0,	y=1.0,	color=GREEN}	
Rectangle{width=1.0,	height=1.0	x=5.0,	y=-1.0,	color=GREEN}	
Circle{radius=1.0	x=9.0,	y=1.0,	color=RED}	
Rectangle{width=1.0,	height=1.0	x=9.0,	y=-1.0,	color=RED}	
	

	
	
	
2.	Inheritance	exercise.	
Step1:	Start	from	the	codes	you	finished	in	the	previous	task.		

We	can	see	that	there	are	two	public	methods,	which	have	no	valid	code.	
public void checkColor() {
}

public void draw() {
}

	
The	most	important	thing	is	that	we	have	no	need	to	instantiate	Shape.		

In	this	case,	we	should	change	the	Shape	class	to	an	abstract	class.	
(1) Add	“abstract”	before	“class”:	
 public abstract class Shape

(2) Change	draw()	to	abstract	method:	
 abstract public void draw();

	
Step2:	In	ShapeTest,	we	try	to	write	the	following	code	in	main():	
Shape shape=new Shape();
There	will	be	an	error:	Cannot	instantiate	the	type	Shape

Step3:	Learn	how	to	use	Comparable	interface.	

Suppose	we	have	several	circles,	and	for	each	of	them	has	different	radius.	We	
want	to	sort	them	from	big	to	small	according	radius.	How	can	we	do?	

	 2021 Spring	Semester																																																																							CS102A																																																																	
	

3	
	

Comparable	is	very	useful.	This	interface	imposes	a	total	ordering	on	the	objects	
of	each	class	that	implements	it.	This	ordering	is	referred	to	as	the	class's	natural	
ordering,	and	the	compareTo	method	in	it	is	referred	to	as	its	natural	comparison	
method.	
Lists	(and	arrays)	of	objects	that	implement	this	interface	can	be	sorted	
automatically	by	Collections.sort	(and	Arrays.sort).	
	
(1) Let	Circle	implements	Comparable	

public class Circle extends Shape implements Comparable<Circle>
After	implements	the	interface	Comparable,	it	arise	a	mistake	that	if	a	class	

implements	an	interface,	it	must	override	all	abstract	methods	in	it.

(2) Override	the	method	compareTo	defined	in	Comparable.		

 @Override
public int compareTo(Circle o) {
 if(this.radius < o.radius){
 return 1;
 }else if(this.radius > o.radius){
 return -1;
 }
 return 0;
}

	Normally,	this	method	compares	current	object	with	the	parameter	object	to	
determine	a	sort	order.	The	return	value	of	the	method	can	be	a	negative	integer,	
zero,	or	a	positive	integer,	which	means	current	object	would	in	former	place,	all	
equal,	or	in	latter	place	than	parameter	respectively.	However,	in	this	case,	we	
want	to	sort	the	Circles	in	descending	order	of	its	radius,	so	that	when	the	radius	
of	current	object	is	less	than	the	parameter	object,	the	return	value	would	be	1(a	
positive	integer).	
	
(3) Rewrite	the	ShapeTest,	using	the	following	code:	

public static void main(String[] args) {
 List<Circle> circleList = new ArrayList<>();
 Circle.setScreenSize(14);
 StdDraw.setScale(-Shape.getScreenSize(), Shape.getScreenSize());
 for (int i = 0; i < Shape.getScreenSize(); i += 2) {
 circleList.add(new Circle(i, 0, -Shape.getScreenSize()));
 }
 Collections.sort(circleList);
 for (int i = 0; i < circleList.size(); i++) {
 circleList.get(i).setColor(ShapeColor.values()[i%3]);
 circleList.get(i).draw();
 }
}

	
Run	result:	

	 2021 Spring	Semester																																																																							CS102A																																																																	
	

4	
	

	
	
Step4:	In	Step3,	we	can	see	that	the	color	scheme	is	not	beautiful	and	the	
ShapeColor	is	mainly	used	to	check	if	the	shape	is	in	the	boundary.	We	can	
define	an	interface	named	ColorDraw,	in	which	declare	an	abstract	method	
customizedColor.	
	
(1) Define	an	enum	class	ColorScheme:	

public enum ColorScheme {
 SKY(new Color[]{new Color(0, 102, 204),
 new Color(0, 128, 255),
 new Color(51, 153, 255),
 new Color(102, 178, 255),
 new Color(153, 204, 255),
 new Color(204, 229, 255)}),
 RAINBOW(new Color[]{
 Color.RED,
 Color.ORANGE,
 Color.YELLOW,
 Color.GREEN,
 Color.CYAN,
 new Color(0, 128, 255),
 new Color(204, 153, 255)}),
 GRAY(new Color[]{
 Color.DARK_GRAY,
 Color.GRAY,
 Color.LIGHT_GRAY});

 Color[] colorList;

 private ColorScheme(Color[] color) {
 colorList = color;
 }

 public Color[] getColorScheme() {
 return colorList;
 }
}

	
If	you	are	using	IDE,	it	may	remind	you	to	choose	the	package	from	which	the	
Color	class	is	imported.	Here,	please	import	from	java.awt.	

	

	 2021 Spring	Semester																																																																							CS102A																																																																	
	

5	
	

	
	

(2) Define	an	interface:	
public interface ColorDraw {
 public void customizedColor(ColorScheme colorScheme, int index);
}
	
	

(3) Implement	the	ColorDraw	in	Circle	
public class Circle extends Shape implements Comparable<Circle>, ColorDraw
	
@Override
public void customizedColor(ColorScheme colorScheme, int index) {
 Color[] colorList = colorScheme.getColorScheme();
 if (index < 0){
 index = 0;
 }
 if (index >= colorList.length){
 index = index % colorList.length;
 }
 StdDraw.setPenColor(colorList[index]);
 StdDraw.filledCircle(Shape.getX(), Shape.getY(), radius);
}

(4) In	ShapeTest,	we	change	main	method	to	the	following	code:	
	
 List<Circle> circleList = new ArrayList<Circle>();
 Shape.setScreenSize(14);
 StdDraw.setScale(-Shape.getScreenSize(), Shape.getScreenSize());

 for (int i = 1; i < Shape.getScreenSize(); i += 2) {
 circleList.add(new Circle(i, 0, -Shape.getScreenSize()));
 }

 Collections.sort(circleList);

 for (int i = 0; i < circleList.size(); i++) {
 circleList.get(i).customizedColor(ColorScheme.RAINBOW, i);
 }

Run	result:

	

	 2021 Spring	Semester																																																																							CS102A																																																																	
	

6	
	

[Exercises]	
	
1. Modify	the	class	ShapeTest,	draw	some	circles	like	the	following	image:	

	
Hint:	ColorScheme.Sky	
x	 y	 radius	
0	 1	 1	
0	 3	 3	
0	 5	 5	
0	 7	 7	
0	 9	 9	
screen	size	=	9	
	

2. Modify	the	class	Rectangle	in	JavaLab10.zip.	
a. Make	Rectangle	implements	Comparable,	override	the	method	

compareTo	to	order	the	rectangles	from	the	largest	to	smallest	according	
their	area.	If	two	rectangles	have	the	same	area,	order	the	rectangles	from	
smallest	to	largest	according	x.	

b. Make	Rectangle	implements	ColorDraw,	override	the	method	
customizedColor	to	draw	the	rectangle	according	to	the	specific	
ColorScheme	and	the	index.	
	

3. Create	a	class	RectangleTest	for	test.	
	

public class RectangleTest {
 public static void main(String[] args) {
 Shape.setScreenSize(9);
 StdDraw.setScale(-Shape.getScreenSize(), Shape.getScreenSize());

 List<Rectangle> rectanglList = new ArrayList<Rectangle>();
 for (int i = -5; i < 5; i ++) {
 rectanglList.add(new Rectangle(i,2*i,Math.abs(i), 2*Math.abs(i)));
 }
 Collections.sort(rectanglList);

 for (int i = 0; i < rectanglList.size(); i++) {
 rectanglList.get(i).customizedColor(ColorScheme.GRAY, i);
 System.out.println(rectanglList.get(i));
 }
 }
}

	
Here	is	a	sample	run:	

	 2021 Spring	Semester																																																																							CS102A																																																																	
	

7	
	

4. You	can	design	yourself	pattern	that	contains	circles	and	rectangles,	or	other	

yourself	defined	shapes.	

