
	 2019-2020 Spring	Semester																																																																									CS102A																																																																			
	

1	
	

Introduction to Computer Programming (Java A)
Lab 10

		
[Objective]	

• Learn	inheritance.	
• Learn	protected	keyword.	
• Learn	to	use	enum	types.	

	
[Exercises]	

	
Part	1:	Enumerations	

An	 enum	 type	 is	 a	 special	 data	 type	 that	 enables	 a	 variable	 to	 be	 a	 set	 of	
predefined	constants.	The	variable	must	be	equal	to	one	of	the	values	that	have	
been	 predefined	 for	 it.	 For	 example,	 a	 week	 has	 seven	 days	 (MONDAY	 to	
SUNDAY).		
	
A	enum	type	 is	declared	using	the	enum	keyword,	not	class.	Let’s	create	a	new	
enum	type	Direction	with	four	constants	named	“NORTH”,	“SOUTH”,	“EAST”,	and	
“WEST”,	respectively.		In	IDEA,	creating	a	new	enum	type	is	similar	to	creating	a	
new	class.	The	only	difference	is	to	select	“Enum”	in	the	dropdown	list.	

	
	
package sustech.cs102a.lab10;

public enum Direction {
 NORTH, SOUTH, EAST, WEST // semicolon unnecessary
}

Variables	 of	 this	 enum	 type	 Direction	 can	 only	 receive	 the	 values	 of	 the	 four	
enum	constants.	For	example,	the	following	code	creates	an	object	of	this	enum	
type.	
	
package sustech.cs102a.lab10;

public class DirectionTest {
 public static void main(String[] args) {
 Direction d = Direction.EAST;
 System.out.println(d);

	 2019-2020 Spring	Semester																																																																									CS102A																																																																			
	

2	
	

 }
}

The	 above	 code	 prints	 “EAST”.	 The	 last	 statement	 in	 the	 main	 method	 is	
equivalent	to	System.out.println(d.toString()).	The	toString()	method	returns	the	
name	of	the	enum	constant	EAST.		
	
In	 the	 code,	 we	 cannot	 create	 an	 object	 of	 the	 enum	 type	 using	 the	 “new”	
operator	 with	 a	 constructor	 call.	 If	 you	 compile	 the	 following	 code,	 you	 will	
receive	the	error	message	“Enum	types	cannot	be	instantiated”.		
	
public Direction d = new Direction();
	
This	is	because	under	the	hood,	every	enum	type	is	internally	implemented	using	
class	(the	compiler	will	create	a	private	constructor	that	cannot	be	called	outside	
the	enum	type).	
	
public final class Direction extends Enum {

public static final Direction NORTH = new Direction();

public static final Direction SOUTH = new Direction();

public static final Direction EAST = new Direction();

public static final Direction WEST = new Direction();

} // simplified for illustration

From	this	internal	view,	we	can	see	that	NORTH,	SOUTH,	EAST,	WEST	are	no	
more	than	four	class	variables	pointing	to	four	Direction	objects.	The	final	
modifier	makes	them	constants.	
	
An	enum	type	variable	can	be	passed	as	an	argument	to	a	“switch”	statement.	

package sustech.cs102a.lab10;

public class DirectionTest {

 private Direction d;

 public DirectionTest(Direction d) {
 this.d = d;
 }

 public Direction getDirection() {
 return d;
 }

 public static void main(String[] args) {
 DirectionTest test = new DirectionTest(Direction.EAST);
 switch(test.getDirection()) {
 case EAST: // must be unqualified name of the enum constant
 System.out.println("Countries in the east: Japan, Korea");
 break;
 case WEST:
 System.out.println("Countries in the west: US, Germany");
 break;
 case SOUTH:
 System.out.println("Countries in the south: Australia, New

	 2019-2020 Spring	Semester																																																																									CS102A																																																																			
	

3	
	

Zealand");
 break;
 case NORTH:
 System.out.println("Countries in the north: Russia, Mongolia");
 break;
 }
 }
}

When	declaring	an	enum	type,	besides	the	enum	constants,	we	can	also	declare	
other	 members	 such	 as	 constructors,	 fields	 and	 methods.	 A	 enum	 type	
constructor	can	specify	any	number	of	parameters	and	can	be	overloaded,	but	it	
cannot	have	the	access	modifier	public	(must	be	private	or	no-modifier,	meaning	
package	private).	
	
package sustech.cs102a.lab10;

public enum Book {
 JHTP("Java: How to Program", "2012"),
 CHTP("C: How to Program"),
 CPPHTP("C++: How to Program", "2012"),
 VBHTP("Visual Basic: How to Program", "2011"),
 CSHARPHTP("Visual C#: How to Program");

 private final String title;
 private final String year;

 private Book(String title, String year) {
 this.title = title;
 this.year = year;
 }

 private Book(String title) {
 this.title = title;
 this.year = "no info";
 }

 public String getTitle() {
 return title;
 }

 public String getYear() {
 return year;
 }
}
	
In	the	enum	type	Book,	there	are	two	fields:	title	and	year.	They	are	declared	to	
be	 constants	 since	 enum	 type	 objects	 only	 receive	 predefined	 constant	 values	
(enum	 constants).	 There	 are	 two	 getter	 methods.	 There	 are	 two	 overloaded	
constructors.	 The	 two	 constructors	 are	 used	 in	 the	 declarations	 of	 the	 enum	
constants.	 For	 example,	 when	 declaring	 the	 enum	 constant	 CHTP,	 the	 one-
argument	constructor	is	used.	

	 2019-2020 Spring	Semester																																																																									CS102A																																																																			
	

4	
	

	
We	can	further	write	the	following	program	to	test	the	enum	type.	
	
package sustech.cs102a.lab10;
import java.util.EnumSet;

public class BookTest {
 public static void main(String[] args) {
 System.out.println("All books:");

 for (Book book : Book.values()) {
 System.out.printf("%-10s", book);
 System.out.printf("%-30s", book.getTitle());
 System.out.printf("%s\n", book.getYear());
 }

 System.out.println("\nDisplaying a range of enum
constants:");

 for(Book book : EnumSet.range(Book.JHTP, Book.CPPHTP)) {
 System.out.printf("%-10s", book);
 System.out.printf("%-30s", book.getTitle());
 System.out.printf("%s\n", book.getYear());
 }
 }
}
	
	
	
	
The	code	prints:	
	

	
	
In	the	above	example,	only	five	Book	objects	will	be	created.	The	constants	such	
as	Book.JHTP	stores	the	references	to	the	objects.		
	
The	 values()	method	 is	 a	 static	method	 that	 is	 automatically	 generated	 by	 the	
compiler	to	return	an	array	of	the	enum	constants	(an	array	of	references	to	the	
objects	of	the	enum	type).	
	

	 2019-2020 Spring	Semester																																																																									CS102A																																																																			
	

5	
	

The	 generic	 class	 EnumSet’s	 static	 method	 range()	 returns	 a	 collection	 of	 the	
enum	 constants	 in	 the	 range	 specified	 by	 two	 endpoints.	 In	 the	 above	 code,	
range()	 takes	 two	 enum	 constants	 as	 arguments.	 The	 first	 constant	 should	 be	
declared	before	the	second	(the	ordinal()	method	of	a	enum	constant	can	return	
the	 position	 of	 the	 constant	 in	 all	 declared	 constants).	 If	 this	 constraint	 is	
violated	(for	example,	when	EnumSet.range(Book.CPPHTP,	Book.JHTP)	is	used	in	
the	code),	an	java.lang.IllegalArgumentException	will	be	thrown.	
	
Lab	exercise：	
1. Create	 an	 enum	 type	 PhoneModel,	 which	 contains	 the	 following	 constants:	

IPHONE,	HUAWEI,	PIXEL,	SAMSUNG,	LG.	
2. Create	a	field	named	price	(int	type).	Write	a	getter	method	for	this	field.	
3. Create	a	one-argument	constructor	PhoneModel(int	price)	 that	 can	be	used	

to	 create	 the	 enum	 constants.	 The	 prices	 for	 the	 five	 models	 are:	 9999,	
8888,6666,	9399,	5588.	

4. Write	a	 test	program	 .It	contains	a	main	method	that	recommends	possible	
phones	for	a	user	based	on	the	user’s	budget.	

	
Three	sample	runs:	
	

	

	

	
	
	
Part	2:	Inheritance	

Copy	the	following	code	to	Circle.java		
public	class	Circle	{	
				private	double	radius;	
				private	double	x;	
				private	double	y;	
				static	final	int	DEFAULT_RADIUS	=	5;	
				private	static	int	screenSize	=	10;	
				private	ShapeColor	color	=	ShapeColor.GRAY;	
	
				public	Circle(double	radius,	double	x,	double	y)	{	
								this.radius	=	radius;	
								this.x	=	x;	

	 2019-2020 Spring	Semester																																																																									CS102A																																																																			
	

6	
	

								this.y	=	y;	
				}	
	
				public	Circle(double	radius)	{	
								this.radius	=	radius;	
								this.x	=	0;	
								this.y	=	0;	
				}	
	
				public	Circle(double	x,	double	y)	{	
								this.radius	=	DEFAULT_RADIUS;	
								this.x	=	x;	
								this.y	=	y;	
				}	
	
				public	static	int	getScreenSize()	{	
								return	screenSize;	
				}	
	
				public	static	void	setScreenSize(int	screenSize)	{	
								Circle.screenSize	=	screenSize;	
				}	
	
				public	void	checkColor()	{	
								if	(isInBoundary())	{	
												color	=	ShapeColor.GREEN;	
								}	else	{	
												color	=	ShapeColor.RED;	
								}	
				}	
	
				public	boolean	isInBoundary()	{	
								if	(-1	*	Circle.screenSize	>	this.x	-	this.radius	||	Circle.screenSize	<	this.x	+	this.radius)	{	
												return	false;	
								}	
								if	(-1	*	Circle.screenSize	>	this.y	-	this.radius	||	Circle.screenSize	<	this.y	+	this.radius)	{	
												return	false;	
								}	
								return	true;	
				}	
	
				@Override	
				public	String	toString()	{	
								return	"Circle{"	+	"radius="	+	"	x="	+	x	+	
																",	y="	+	y	+	",	color="	+	color	+	"}\n";	
				}	
	
				public	double	getRadius()	{	
								return	radius;	
				}	
	
				public	void	setRadius(double	radius)	{	
								this.radius	=	radius;	
				}	
	
				public	double	getX()	{	
								return	x;	
				}	
	
				public	void	setX(double	x)	{	
								this.x	=	x;	
				}	
	
				public	double	getY()	{	
								return	y;	
				}	
	
				public	void	setY(double	y)	{	
								this.y	=	y;	
				}	
	
				public	void	draw()	{	
								StdDraw.setPenColor(color.getColor());	
								StdDraw.filledCircle(x,	y,	radius);	

	 2019-2020 Spring	Semester																																																																									CS102A																																																																			
	

7	
	

				}	
}	

	
Copy	the	following	code	to	Rectangle.java		

public	class	Rectangle	{	
	 private	double	x;	
	 private	double	y;	
	 private	double	width;	
	 private	double	height;	
	 private	static	int	screenSize	=	10;	
	 private	ShapeColor	color	=	ShapeColor.GRAY;	
	
	 public	Rectangle(double	x,	double	y)	{	
	 	 this.x	=	x;	
	 	 this.y	=	y;	
	
	 }	
	
	 public	Rectangle(double	x,	double	y,	double	width,	double	height)	{	
	 	 this.x	=	x;	
	 	 this.y	=	y;	
	 	 this.width	=	width;	
	 	 this.height	=	height;	
	
	 }	
	
	 public	static	int	getScreenSize()	{	
	 	 return	screenSize;	
	 }	
	
	 public	static	void	setScreenSize(int	screenSize)	{	
	 	 Rectangle.screenSize	=	screenSize;	
	 }	
	
	 public	void	checkColor()	{	
	 	 if	(isInBoundary())	{	
	 	 	 color	=	ShapeColor.GREEN;	
	 	 }	else	{	
	 	 	 color	=	ShapeColor.RED;	
	 	 }	
	 }	
	
	 public	boolean	isInBoundary()	{	
	 	 if	(-1	*	Rectangle.screenSize	>	this.x	-	this.width	/	2	||	Rectangle.screenSize	<	this.x	
+	this.width	/	2)	{	
	 	 	 return	false;	
	 	 }	
	 	 if	(-1	*	Rectangle.screenSize	>	this.y	-	this.height	/	2	||	Rectangle.screenSize	<	this.y	
+	this.height	/	2)	{	
	 	 	 return	false;	
	 	 }	
	 	 return	true;	
	 }	
	
	 public	double	getX()	{	
	 	 return	x;	
	 }	
	
	 public	void	setX(double	x)	{	
	 	 this.x	=	x;	
	 }	
	
	 public	double	getY()	{	
	 	 return	y;	
	 }	
	
	 public	void	setY(double	y)	{	
	 	 this.y	=	y;	
	 }	
	
	 public	double	getWidth()	{	
	 	 return	width;	
	 }	

	 2019-2020 Spring	Semester																																																																									CS102A																																																																			
	

8	
	

	
	 public	void	setWidth(double	width)	{	
	 	 this.width	=	width;	
	 }	
	
	 public	double	getHeight()	{	
	 	 return	height;	
	 }	
	
	 public	void	setHeight(double	height)	{	
	 	 this.height	=	height;	
	 }	
	
	 public	String	toString()	{	
	 	 return	"Rectangle{"	+	"width="	+	width	+	",	height="	+	height	+	"	x="	+	x	+	
	 	 	 	 ",	y="	+	y	+	",	color="	+	color	+	"}\n";	
	 }	
	
	 public	void	draw()	{	
	 	 StdDraw.setPenColor(color.getColor());	
	 	 StdDraw.filledRectangle(x,	y,	this.width	/	2,	this.height	/	2);	
	 }	
	
}	

	
Copy	the	following	code	to	ShapeColor.java		

import	java.awt.Color;	
	
public	enum	ShapeColor	{	
	 GREEN("The	shape	is	in	the	Screen",	Color.GREEN),	RED("The	shape	is	not	in	the	Screen",	
	 	 	 Color.RED),	GRAY("Haven't	tested",	Color.GRAY);	
	
	 private	String	desc;		//	The	description	of	instance	
	 private	Color	color;		//	The	color	of	instance	
	
	 ShapeColor	(String	desc,	Color	color)	{	
	 	 this.desc	=	desc;	
	 	 this.color	=	color;	
	 }	
	
	 public	String	getDesc()	{	
	 	 return	this.desc;	
	 }	
	
	 public	Color	getColor()	{	
	 	 return	this.color;	
	 }	
}	

	
Download	StdDraw.java	from	the	internet	or	from	our	course	site	
(blackboard	/sakai)	.	Place	it	at	the	same	location	as	the	above	3	java	files.		
	
	
Now,	you	should	have	4	java	files	prepared	and	start	the	following	exercises.	
	
1. Inheritance	
	
From	the	source	code,	it	is	observed	that	the	two	classes:	Circle	and	Rectangle	
have	a	lot	of	common	fields,	e.g.,	screenSize,	x,	y	and	ShapeColor,	and	a	lot	of	
similar	methods.	It	is	a	good	time	to	practice	inheritance	by	refactoring	the	code.		

The	idea	of	inheritance	is	simple	but	powerful:	When	you	want	to	create	a	new	
class	and	there	is	an	existing	class	which	includes	some	of	the	code	that	you	want,	
you	can	extend	your	new	class	from	the	existing	class.	In	doing	this,	you	can	

	 2019-2020 Spring	Semester																																																																									CS102A																																																																			
	

9	
	

reuse	the	fields	and	methods	of	the	existing	class	without	having	to	write	(and	
debug!)	them	yourself.	

A	subclass	inherits	all	the	members	(fields,	methods,	and	nested	classes)	from	its	
superclass.	Constructors	are	not	members,	so	they	are	not	inherited	by	
subclasses,	but	the	subclass	must	invoke	one	of	the	constructors	in	its	superclass.	
(https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html)	
	
We	found	that,	the	attributes	x,	y,	color	and	screenSize	are	both	in	Circle	and	
Rectangle,	then	for	those	common	attributes	are	more	appropriated	to	be	
extracted	into	a	super	class	named	Shape,	from	which	the	subclass	can	use	all	
attributes	and	methods.	
	
Create	a	class	Shape,	which	contains	following	members:	

	
(1) 	Adding	attributes:	

private double x;
private double y;
private ShapeColor color = ShapeColor.GRAY;
private static int screenSize = 10;
	

(2) 	Adding	constructors	with	two	parameters	x	and	y	in	the	Shape	class.	
public Shape(double x, double y) {
 this.x = x;
 this.y = y;
}
	

(3) 	Adding	getter/setter	methods	for	the	private	variable;		
(4) 	Adding	toString()	method	(override	the	method	of	the	Object	class)	to	output	

the	property	of	the	Shape	object;		
@Override
public String toString() {
 return " x=" + x + ", y=" + y + ", color=" + color;
}
	

	
Now,	modify	class	Circle.		
Let	it	inherit	class	Shape	by	using	the	keyword	extends.	
Remove	those	methods	and	attributes	which	can	be	inherited	from	class	
Shape.	
Now	class	Circle	only	needs	to	define	two	specific	attributes:	radius	and	
DEFAULT_RADIUS.	
private double radius;
private static final int DEFAULT_RADIUS = 5;

Modify	the	constructor	of	class	Circle	as	follows	and	use	super	().	

	 2019-2020 Spring	Semester																																																																									CS102A																																																																			
	

10	
	

	
	
	
Now,	x	and	y	are	the	attributes	inherited	from	Shape.	A	recommend	way	is	use	the	
constructor	of	super	class	to	initial	the	supper	class.	
For	example:	

public Circle(double radius) {
 super(0,0);
 this.radius = radius;
}

	
this	serves	as	the	current	object,	while	super	serves	as	the	only	supper	class	for	
current	object.	
Rewrite	other	constructors	in	the	same	way.	
	
	
Learn	how	to	access	the	instance	fields	and	static	fields	of	super	class	in	a	
subclass.	
	
We	will	find	that	some	errors	occur	in	other	methods,	for	example:

	
Change	Circle.screenSize	to	Shape.getScreenSize()	since	screenSize	is	a	
private	static	field.	
Change	this.x	to	super.getX()	since	x	is	a	private	field	of	supper	class,	and	so	on.		

	
Change	other	methods	in	the	same	way.	

	 2019-2020 Spring	Semester																																																																									CS102A																																																																			
	

11	
	

	
Learn	protected	keyword	
We	can	find	that	Circle	is	inconvenient	to	access	the	private	attributes	of	
superclass,	so	we	can	consider	making	these	frequent-used	attributes	accessible	
to	subclass.	
Protected	can	help	us.	
Step1:	Change	x,	y	and	color	from	private	to	protected.		

	
	
Step2:	Then	we	change	the	isInBoundary()	back	to	the	original	one	except	
Shape.getScreenSize(),	it	can	work	well	.	

	
Change	other	methods	in	the	same	way.	
	
The	access	right	of	each	access	modifier	is	shown	as	follows:	
	
	 private	 default	 protected	 public	
Same	package	
same	class	

√	 √	 √	 √	

Same	package	
other	classes	

	 √	 √	 √	

Other	packages	
Other	classes	
Inheritance	

	 	 Inherit	but	
cannot	access	
directly	

√	

Other	packages	
Other	classes	
No	inheritance	

	 	 	 √	

	
Lab	exercise：	
	
Now,	modify	the	given	class	Rectangle	to	make	it	inherits	from	class	Shape	

a. Make	Rectangle	extends	Shape.		
b. Modify	the	constructors	of	Rectangle	
c. Modify	other	methods	of	Rectangle.	
d. Modify	toString()	method.	
	

Run	the	following	ShapeTest	to	test	your	modifications.	
public	class	ShapeTest	{	
	
	 public	static	void	main(String[]	args)	{	
	 	 Circle	c1=new	Circle(0.1,1,1);	

	 2019-2020 Spring	Semester																																																																									CS102A																																																																			
	

12	
	

	 	 Circle	c2=new	Circle(0.1,0.5,2);	
	 	 Circle.setScreenSize(2);	
	 	 System.out.print(c1);	
	 	 c1.checkColor();	
	 	 c2.checkColor();	
	 	 System.out.print(c1);	
	 	 System.out.print(c2);	
	 	 	
	 	 Rectangle	r1=new	Rectangle(0,0,0.5,0.5);	
	 	 Rectangle	r2=new	Rectangle(2,1,0.5,0.5);	
	 	 Rectangle.setScreenSize(2);	
	 	 System.out.print(r1);	
	 	 r1.checkColor();	
	 	 r2.checkColor();	
	 	 System.out.print(r1);	
	 	 System.out.print(r2);	
	 	 	
	 	 StdDraw.setXscale(-Circle.getScreenSize(),	Circle.getScreenSize());	
	 	 StdDraw.setYscale(-Circle.getScreenSize(),	Circle.getScreenSize());	
	 	 c1.draw();	
	 	 c2.draw();	
	 	 r1.draw();	
	 	 r2.draw();	
	 	 Circle	c3=new	Circle(0.1,0.5,-2);	
	 	 Rectangle	r3=new	Rectangle(-2,1,0.5,0.5);	
	 	 c3.draw();	
	 	 r3.draw();	
	 }	
	
}	

	
Output:		
Circle{radius=0.1,	x=1.0,	y=1.0,	color=GRAY}	
Circle{radius=0.1,	x=1.0,	y=1.0,	color=GREEN}	
Circle{radius=0.1,	x=0.5,	y=2.0,	color=RED}	
Rectangle{width=0.5,	height=0.5	x=0.0,	y=0.0,	color=GRAY}	
Rectangle{width=0.5,	height=0.5	x=0.0,	y=0.0,	color=GREEN}	
Rectangle{width=0.5,	height=0.5	x=2.0,	y=1.0,	color=RED}	

	
	

