
Lab 2: Buffer Overflows

Fengwei Zhang

SUSTech CS 315 Computer Security 1

Buffer Overflows

• One of the most common vulnerabilities in
software

• Programming languages commonly associated
with buffer overflows including C and C++

• Operating systems including Windows, Linux
and Mac OS X are written in C or C++

SUSTech CS 315 Computer Security 2

How It Works

• Applications define buffers in the memory
– Unsigned char c [10]

• Applications use adjacent memory to store
variables, arguments, and return address of a
function.

• Buffer Overflows occurs when data written to
a buffer exceeds its size.

SUSTech CS 315 Computer Security 3

Overflowing A Buffer

• Defining a buffer in C
– char buf[10];

• Overflowing the buffer
– Char buf [10] = ‘x’;
– strcpy(buf, “AAAAAAAAAAAAAAAAAAAAAAA”)

SUSTech CS 315 Computer Security 4

Why We Care

• Because adjacent memory stores program
variables, parameters, and arguments

• Attackers can change these values through
overflowing a buffer

• Attackers can gain control over the program
flow to execute arbitrary code

SUSTech CS 315 Computer Security 5

Process Memory Layout

SUSTech CS 315 Computer Security 6

Stack

Heap

Data Segment

Text Segment

High memory

Low memory

Memory Layout for 32-bit Linux

SUSTech CS 315 Computer Security 7

Kernel Space

Stack

Heap

BSS Segment

Data Segment

Text Segment (ELF)

1GB

3GB

Local variable: int a

Function malloc()

Uninitialized static variables: static char *u

static char *s = “Hello world”

Binary of the program

Virtual Memory Layout

SUSTech CS 315 Computer Security 8

Stack Frame

• The stack contains activation frames including
local variables, function parameters, and
return address

• Starting at the highest memory address and
growing downwards

• Last in first out

SUSTech CS 315 Computer Security 9

A Simple Program

Add (2,3)

SUSTech CS 315 Computer Security 10

3
2

Ret Address
EBP

C

High memory

Low memory ESP

int add (int a, int b)
{

int c;
c = 1+b;
return c;

}

Another Program
int func (char * str)
{

char mybuff[512];
strcpy(myBuff, str);
return 1;

}

int main (int argc, char ** argv)
{

func (argv[1]);
return 1;

}

SUSTech CS 315 Computer Security 11

Draw the Stack Frame!

Overflowing “myBuff”

SUSTech CS 315 Computer Security 12

(A)
str(A)

Ret addr(A)
EBP(A)

A

A
A
A

A
A

High memory

Low memory ESP

Buffer Overflow Defenses

• The attack described is a classical stack smashing
attack which execute the code on the stack

• It does not work today
– NX – non-executable stack. Most compilers now

default to a non-executable stack. Meaning a
segmentation fault occurs if running code from the
stack (i.e., Data Execution Prevention - DEP)
• Disable it with –zexecstack option
• Check it with readelf –e <PROGRAM> | grep STACK

– StackGuard: Cannaries
• Disable it with –fno-stack-protector option
• Enable it with –fstack-protector option

SUSTech CS 315 Computer Security 13

Stack Canaries

• Stack smashing attacks do two things
– Overwrite the return address
– Wait for algorithm to complete and call RET

• Stack Canaries: Stack Smashing Protector (SSP)
– Placing a integer value to stack just before the return

address
– To overwrite the return address, the canary value

would also be modified
– Checking this value before the function returns

SUSTech CS 315 Computer Security 14

Stack Canaries (cont’d)

SUSTech CS 315 Computer Security 15

(A)
str(A)

Ret addr(A)
EBP(A)

Canary(A)

A
A
A

A
A

High memory

Low memory ESP

Bypassing NX and Canaries

• NX - non-executable stack
– Executing code in the heap
– Data Execution Prevention (DEP)
– Return Oriented Programming (ROP)

• Stack Canaries
– Overwriting the Canary with the same value
– Brute force attack (e.g., DynaGuard in ACSAC’15)

SUSTech CS 315 Computer Security 16

Reminders

SUSTech CS 315 Computer Security 17

