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Buffer Overflows

• One of the most common vulnerabilities in 
software

• Programming languages commonly associated 
with buffer overflows including C and C++

• Operating systems including Windows, Linux 
and Mac OS X are written in C or C++
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How It Works

• Applications define buffers in the memory
– Unsigned char c [10]

• Applications use adjacent memory to store 
variables, arguments, and return address of a 
function.  

• Buffer Overflows occurs when data written to 
a buffer exceeds its size. 
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Overflowing A Buffer

• Defining a buffer in C
– char buf[10];

• Overflowing the buffer
– Char buf [10] = ‘x’;
– strcpy(buf, “AAAAAAAAAAAAAAAAAAAAAAA”)
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Why We Care

• Because adjacent memory stores program 
variables, parameters, and arguments

• Attackers can change these values through 
overflowing a buffer

• Attackers can gain control over the program 
flow to execute arbitrary code
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Process Memory Layout
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Memory Layout for 32-bit Linux
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Virtual Memory Layout
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Stack Frame

• The stack contains activation frames including 
local variables, function parameters, and 
return address

• Starting at the highest memory address and 
growing downwards

• Last in first out
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A Simple Program

Add (2,3)
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int add (int a, int b)
{

int c;
c = 1+b;
return c;

}



Another Program
int func (char * str)
{

char mybuff[512];
strcpy(myBuff, str);
return 1;

}

int main (int argc, char ** argv)
{

func (argv[1]);
return 1;

}
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Overflowing “myBuff”
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Buffer Overflow Defenses

• The attack described is a classical stack smashing 
attack which execute the code on the stack

• It does not work today
– NX – non-executable stack. Most compilers now 

default to a non-executable stack. Meaning a 
segmentation fault occurs if running code from the 
stack (i.e., Data Execution Prevention - DEP)
• Disable it with –zexecstack option
• Check it with readelf –e <PROGRAM> | grep STACK

– StackGuard: Cannaries
• Disable it with –fno-stack-protector option
• Enable it with –fstack-protector option
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Stack Canaries

• Stack smashing attacks do two things
– Overwrite the return address
– Wait for algorithm to complete and call RET

• Stack Canaries: Stack Smashing Protector (SSP)
– Placing a integer value to stack just before the return 

address
– To overwrite the return address, the canary value 

would also be modified
– Checking this value before the function returns
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Stack Canaries (cont’d)
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Bypassing NX and Canaries

• NX - non-executable stack
– Executing code in the heap
– Data Execution Prevention (DEP)
– Return Oriented Programming (ROP) 

• Stack Canaries
– Overwriting the Canary with the same value
– Brute force attack (e.g., DynaGuard in ACSAC’15)
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Reminders
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