Scission

Paper By: Marcel Kneib and Christopher Huth Presented By: Aaron Zhang

- Background Information
- How Scission Works
- Implementation
 - Fingerprinting ECUs
 - Detecting Compromised ECUs
- Conclusion

(a) Simple

(b) Complex

Possible Attacks

- Compromised ECUs
 - Changing of a preexisting ECU
- Unmonitored ECUs
 - A read only ECU changes into a writing ECU
- Additional ECUs
 - Connecting a compromised ECU to the network

- Background Information
- How Scission Works
- Implementation
 - Fingerprinting ECUs
 - Detecting Compromised ECUs
- Conclusion

Difference in Signal Data

- Variations in Supply Voltage
- Variations in Grounding
- Variations in Resistors, Termination and Cables.
- Imperfection in Bus Topology causing reflections

Signal Bit Groups

- Dominant Bit Rising G10
- Dominant Bit not Rising G00
- Recessive Bit Falling G01
- Dominant Bit following another Dominant bit(G11) are ignored since they will always be value 0

Mean(ECU 0) = 1.286 Mean(ECU 1) = 1.285

Differences Between ECUs

- ECU 0
- Mean(G10) = 1.623
- Mean(G00) = 1.947
- Mean(G01) = 0.289

- ECU 1
- Mean(G10) = 1.691
- Mean(G00) = 1.89
- Mean(G01) = 0.275

Feature	Description
Mean	$\mu = \frac{1}{N} \sum_{i=1}^{N} x(i)$
Standard Deviation	$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x(i) - \mu)^2}$
Variance	$\sigma^2 = \frac{1}{N} \sum_{i=1}^N {(x(i) - \mu)^2}$
Skewness	skew = $\frac{1}{N} \sum_{i=1}^{N} \left(\frac{x(i) - \mu}{\sigma} \right)^3$
Kurtosis	$kurt = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x(i) - \mu}{\sigma} \right)^4$
Root Mean Square	$rms = \sqrt{\frac{1}{N} \sum_{i=1}^{N} x(i)^2}$
Maximum	$max = max(x(i))_{i=1N}$
Energy	$en = \frac{1}{N} \sum_{i=1}^{N} x(i)^2$

1	2	3	4	5	6
$max(G_{10})$	$en(G_{10}^{FFT})$	$en(G_{00})$	$max(G_{00})$	$\mu(G_{10})$	$\mu(G_{00})$
7	8	9	10	11	12
$max(G_{10}^{FFT})$	$\mu(G_{10}^{FFT})$	$skew(G_{10})$	$kurt(G_{10}^{FFT})$	$kurt(G_{10})$	$\sigma^2(G_{10}^{FFT})$
13	14	15	16	17	18
$skew(G_{10}^{FFT})$	$skew(G_{01})$	$kurt(G_{01})$	$skew(G_{01}^{FFT})$	$kurt(G_{01}^{FFT})$	$\sigma^2(G_{10})$

Deployment and Lifecycle

- The identification and fingerprinting should only be implemented in a perfect environment such as the factory in which a car is made.
- A key is assigned to each ECU.

Detecting Compromised ECUs

• The receiving ECU compares the received message to the possible messages, if it is not similar, an attack is assumed.

Detecting Unmonitored ECUs

• Frames are labelled as suspicious if no ECU can be assigned to the received message. If the amount of suspicious frames exceed an arbitrary number, an attack is assumed.

Detecting Additional ECUs

• Similar to Unmonitored, but the entirety of the CAN Network can change based on an addition ECU, increasing the total amount of suspicious frames.

- Background Information
- How Scission Works
- Implementation
 - Fingerprinting ECUs
 - Detecting Compromised ECUs
- Conclusion

Testbed of Arduinos

	ECU 0	ECU 1	ECU 2	ECU 3	ECU 4	ECU 5	ECU 6	ECU 7	ECU 8	ECU 9
ECU 0	100	0	0	0	0	0	0	0	0	0.42
ECU 1	0	100	0	0.29	0	0	0	0	0	0
ECU 2	0	0	100	0	0	0	0	0	0	0
ECU 3	0	0	0	99.71	0	0	0	0	0	0
ECU 4	0	0	0	0	100	0.18	0	0	0	0
ECU 5	0	0	0	0	0	99.82	0	0	0	0
ECU 6	0	0	0	0	0	0	100	0	0	0
ECU 7	0	0	0	0	0	0	0	100	0	0
ECU 8	0	0	0	0	0	0	0	0	100	0
ECU 9	0	0	0	0	0	0	0	0	0	99.58

Fiat 500

	ECU 0	ECU 1	ECU 2	ECU 3	ECU 4	ECU 5	ECU 6	ECU 7
ECU 0	99.90	0	0.10	0	0	0	0	0
ECU 1	0	99.89	0	0.04	0	0.97	0	1.44
ECU 2	0.10	0	99.72	0	0	0.03	0	0
ECU 3	0	0	0	99.96	0	0	0	0
ECU 4	0	0	0	0	100	0.21	0	0
ECU 5	0	0	0.18	0	0	98.75	0	0
ECU 6	0	0	0	0	0	0	100	0
ECU 7	0	0.11	0	0	0	0.03	0	98.56

Porsche Panamera

	ECU 0	ECU 1	ECU 2	ECU 3	ECU 4	ECU 5	ECU 6	ECU 7
ECU 0	100	0	0	0	0	0	0	0.42
ECU 1	0.00	100	0	0.29	0	0	0	0
ECU 2	0.00	0	100	0	0	0	0	0
ECU 3	0.00	0	0	99.71	0	0	0	0
ECU 4	0.00	0	0	0	100	0.18	0	0
ECU 5	0.00	0	0	0	0	99.82	0	0
ECU 6	0.00	0	0	0	0	0	100	0
ECU 7	0.00	0	0	0	0	0	0	99.58

- Background Information
- How Scission Works
- Implementation
 - Fingerprinting ECUs
 - Detecting Compromised ECUs
- Conclusion

		Predic	Suspicious	
		No attack	Attack	Frames
Drototuno	No attack	100	0	0
Prototype	Attack	1.5	98.5	0.2
Fiat	No attack	100	0	0.01
	Attack	0	100	0
Porsche	No attack	100	0	0.01
	Attack	3.18	96.82	3.18

- Background Information
- How Scission Works
- Implementation
 - Fingerprinting ECUs
 - Detecting Compromised ECUs
- Conclusion

Limitations

- If the attacker uses the identifier that Scission is familiar with, the attack will not be noticed.
- If the characteristics of the CANBUS is changed, Scission cannot then identify the attacks.
- The attacker can also send messages infrequently to not exceed the suspicious frames threshold.

Conclusion

- Scission is an IDS for inter-car communication.
- Utilizes the signal characteristics found in the electronic data of a CAN Network.
- Can account for unmonitored ECUs and additional ECUs