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Internet of Things (IoT) Market 

•  Applications	
•  Smart	Home,	Smart	City,	Agricultural	IoT,	etc.	

•  Market	growth	by	2020	
•  20.4	billion	IoT	devices	
•  $3	trillion		

•  Smart	Home	
•  $53.45	billion	by	2022	

Smart	Home	market	value		
(Source:	Zion	Research	Analysis	2017)	
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Is IoT Secure? 

•  NOT	really!	

•  Attacks:	2014-2016	
•  More	than	90	independent	IoT	attacks	[N.	Zhang	et	al.,	CoRR	2017	]	

•  Mirai	botnet	attack	on	Oct	12,	2016	
•  Online	IoT	devices	(e.g.,	IP	cameras,	home	routers,	etc.)	are	turned	into	bots	
•  Distributed	Denial-of-service	(DDoS)	attacks	on	online	services	

•  Reaper	botnet	attack	

Firmwares	of	the	IoT	devices	are	
not	properly	implemented	&	

protected!!	
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What’s Done!  

•  Few	attempts	have	been	made	that	closely	deal	with	firmwares	.	
				[Davidson	et	al.	USENIX	Sec.’13,	Cui	et	al.		NDSS’13,	Chen	Black	Hat’09,							
Shoshitaishvili	et	al.	NDSS’15]	

•  Limitations	
•  Firmware	acquisition:	vendors	may	not	make	it	public	

•  Firmware	identification	&	unpacking:	unknown	architecture,	proprietary	compression/
encryption	

•  Executable	analysis:	requires	lots	of	manual	efforts	and	is	not	accurate	
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It	is	worth	looking	into	the	
IoT	official	applications	



IoT Official Application 

•  Controls	and	manages	IoT	applications	
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Contains	rich	information	
about	the	IoT	system	

Courtesy:	Authors	



IoTFuzzer: A Firmware-free Fuzzing Framework 

•  Detects	memory	corruptions	in	IoT	devices	
•  Null-pointer	exceptions,	buffer	overflow,	out-of-bound	accesses,	etc.	

•  Leverages	official	apps	and	program	logics	to		create	meaningful	test	messages	

•  Fuzzes	in	a	protocol-guided	way	without	explicitly	reverse	engineering	the	
protocols	
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IoTFuzzer: Challenges 

•  Diverse	data	formats	and	protocols	
•  XML,	JSON,	key-value	pairs	

•  Proprietary	cryptographic	functions	

•  Crash	monitoring	
•  How	to	determine	the	real-time	status	
of	the	device?	
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TP-Link	Kasa	
Code	Snippet	



IoTFuzzer: Solutions 

•  Diverse	data	formats	and	protocols	
•  Mutate	protocol	fields	before	they	are	constructed	as	message	

•  Proprietary	cryptographic	functions	
•  Reuse	cryptographic	functions	in	the	runtime	

•  Crash	monitoring	
•  Insert	heartbeat	messages	
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IoTFuzzer: Scope and Assumptions 

•  Goal:	Automatically	generate	protocol-aware	messages	to	the	IoT	devices	to	
discover	memory	corruptions	

•  Assumptions	
•  IoT	device	under	testing	are	configurable	and	controllable	with	mobile	apps	
•  Wi-Fi	communication	protocol	
•  Android	apps	
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IoTFuzzer: Architecture 

•  2-phase	architecture	

•  Phase	1:		
•  App	analysis	
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IoTFuzzer: Architecture 

•  2-phase	architecture	

•  Phase	1:		
•  App	analysis	

•  Phase	2:		
•  Fuzzing	
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IoTFuzzer: Architecture – Phase 1 

q UI	Analysis	
•  Call	Path	Construction	

•  Identify	networking	UI	elements	by	constructing	call	paths	from	networking	APIs	to	UI	event	
handlers	

•  Networking	APIs:	URL.openConnection(),	Socket.getOutputStream(),	etc	
•  Androguard	[1]	

•  Activity	Transition	Graph	Construction	
•  To	trigger	networking	API	events	
•  Monkeyrunner	[2]	
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1.  “Androguard:	Reverse	engineering,	Malware	and	goodware	analysis	of	Android	applications,”	https://github.com/androguard/androguard	
2.						“monkeyrunner,”	https://developer.android.com/studio/test/monkeyrunner/index.html	



IoTFuzzer: Architecture – Phase 1 

•  Taint	Analysis	
•  Identify	protocol	fields	(variables)	and	functions	
•  TaintDroid	[W.	Enck	et	al.	TOCS’14]	

•  Taint	Sources:	strings,	system	APIs,	user	inputs	

•  Taint	Sinks:	data	used	at	networking	APIs	and	encryption	functions	

•  Cryptographic	Function	Identification	
•  Lots	of	related	work	
•  IoTFuzzer	employs	a	lightweight	technique	
•  Cryptographic	functions	contain	arithmetic	operations	and	called	during	the	message	
delivery	execution	
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IoTFuzzer: Architecture – Phase 1 
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Code	example	

Taint	Tracking	Output	



IoTFuzzer: Architecture – Phase 2 

q Runtime	Mutation	
•  Function	Hooking	

•  Dynamically	hooks	the	recorded	functions	and	mutate	the	protocol	fields	at	runtime	to	
generate	probe	messages	

•  	Xposed	[3]	

•  Fuzzing	Scheduling:	to	fuzz	only	a	subset	of	all	protocol	fields	

•  Fuzzing	Policy:	
•  Change	the	length	of	the	strings	to	check	overflow	and	out-of-bound	access	
•  Change	integer,	double,	or	float	(large	values)	to	check	overflow	and	out-of-bound	access	
•  Change	object	types	and	provide	empty	values	to	check	misinterpretation	and	null-pointer	
exepction	
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1.  Rovo89,	“Xposed	Module	Repository,”	http://repo.xposed.info/	



IoTFuzzer: Architecture – Phase 2 

q Response	monitoring	
•  Response	Types	

•  Expected	response	
•  Unexpected	response	
•  No	response	
•  Disconnection	

•  Crash	Detection	
•  TCP-based	connection:	disconnection	
•  UDP-based	connection:	insert	a	heartbeat	message	after	every	10	probe	messages	
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Implementation 

•  Implemented	on	17	off-the-shelf	IoT	devices	(apps	are	available	on	Google		Play)	
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Evaluation 

•  Testing	Environment	
•  UI	Analysis:	Ubuntu	14-04	Intel	Core	i7	quad-core	2.81	GHz	CPU	8GB	RAM	
•  Taint	Tracking:	Google’s	Nexus	4	
•  Network:	Fully	controlled	local	Wi-Fi		

•  15	memory	corruptions	were	found	including	8	previously	unknown	
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Evaluation 

•  Fuzzing	accuracy	
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Conclusion 

•  IoTFuzzer:	Limitations	
•  Only	support	Wi-Fi	connections	
•  Can	only	fuzz	app-related	code	in	IoT	devices	
•  Only	detects	memory	related	corruptions	that	lead	to	crashes	
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Questions? 
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