
IoTFuzzer: Discovering Memory Corruptions in IoT
Through App-based Fuzzing

Jiongyi Chen1, Wenrui Diao2, Qingchuan Zhao3, Chaoshun Zuo3, Zhiqiang Lin3,4, XiaoFeng Wang5,

Wing Cheong Lau1, Menghan Sun1, Rongai Yang1, and Kehuan Zhang1

Chinese University of Hong Kong1, Jinan University2, University of Texas at
Dallas3, Ohio State University4, Indiana University Bloomington5

NDSS	2018	
	

Presented	By	
Md	Mahbubur	Rahman	

Wayne	State	University	

Outline

•  IoT	Trend	
•  Motivation	
•  IoTFuzzer	(This	paper)	
•  Challenges	
•  Architecture:	IoTFuzzer	
•  Implementation	and	Evaluation	
•  Conclusion	

2	

Internet of Things (IoT) Market

•  Applications	
•  Smart	Home,	Smart	City,	Agricultural	IoT,	etc.	

•  Market	growth	by	2020	
•  20.4	billion	IoT	devices	
•  $3	trillion		

•  Smart	Home	
•  $53.45	billion	by	2022	

Smart	Home	market	value		
(Source:	Zion	Research	Analysis	2017)	

3	

Is IoT Secure?

•  NOT	really!	

•  Attacks:	2014-2016	
•  More	than	90	independent	IoT	attacks	[N.	Zhang	et	al.,	CoRR	2017]	

•  Mirai	botnet	attack	on	Oct	12,	2016	
•  Online	IoT	devices	(e.g.,	IP	cameras,	home	routers,	etc.)	are	turned	into	bots	
•  Distributed	Denial-of-service	(DDoS)	attacks	on	online	services	

•  Reaper	botnet	attack	

Firmwares	of	the	IoT	devices	are	
not	properly	implemented	&	

protected!!	

4	

What’s Done!

•  Few	attempts	have	been	made	that	closely	deal	with	firmwares	.	
				[Davidson	et	al.	USENIX	Sec.’13,	Cui	et	al.		NDSS’13,	Chen	Black	Hat’09,							
Shoshitaishvili	et	al.	NDSS’15]	

•  Limitations	
•  Firmware	acquisition:	vendors	may	not	make	it	public	

•  Firmware	identification	&	unpacking:	unknown	architecture,	proprietary	compression/
encryption	

•  Executable	analysis:	requires	lots	of	manual	efforts	and	is	not	accurate	

5	

It	is	worth	looking	into	the	
IoT	official	applications	

IoT Official Application

•  Controls	and	manages	IoT	applications	

6	

Contains	rich	information	
about	the	IoT	system	

Courtesy:	Authors	

IoTFuzzer: A Firmware-free Fuzzing Framework

•  Detects	memory	corruptions	in	IoT	devices	
•  Null-pointer	exceptions,	buffer	overflow,	out-of-bound	accesses,	etc.	

•  Leverages	official	apps	and	program	logics	to		create	meaningful	test	messages	

•  Fuzzes	in	a	protocol-guided	way	without	explicitly	reverse	engineering	the	
protocols	

7	

IoTFuzzer: Challenges

•  Diverse	data	formats	and	protocols	
•  XML,	JSON,	key-value	pairs	

•  Proprietary	cryptographic	functions	

•  Crash	monitoring	
•  How	to	determine	the	real-time	status	
of	the	device?	

8	

TP-Link	Kasa	
Code	Snippet	

IoTFuzzer: Solutions

•  Diverse	data	formats	and	protocols	
•  Mutate	protocol	fields	before	they	are	constructed	as	message	

•  Proprietary	cryptographic	functions	
•  Reuse	cryptographic	functions	in	the	runtime	

•  Crash	monitoring	
•  Insert	heartbeat	messages	

9	

IoTFuzzer: Scope and Assumptions

•  Goal:	Automatically	generate	protocol-aware	messages	to	the	IoT	devices	to	
discover	memory	corruptions	

•  Assumptions	
•  IoT	device	under	testing	are	configurable	and	controllable	with	mobile	apps	
•  Wi-Fi	communication	protocol	
•  Android	apps	

10	

IoTFuzzer: Architecture

•  2-phase	architecture	

•  Phase	1:		
•  App	analysis	

11	

IoTFuzzer: Architecture

•  2-phase	architecture	

•  Phase	1:		
•  App	analysis	

•  Phase	2:		
•  Fuzzing	

12	

IoTFuzzer: Architecture – Phase 1

q UI	Analysis	
•  Call	Path	Construction	

•  Identify	networking	UI	elements	by	constructing	call	paths	from	networking	APIs	to	UI	event	
handlers	

•  Networking	APIs:	URL.openConnection(),	Socket.getOutputStream(),	etc	
•  Androguard	[1]	

•  Activity	Transition	Graph	Construction	
•  To	trigger	networking	API	events	
•  Monkeyrunner	[2]	

13	

1.  “Androguard:	Reverse	engineering,	Malware	and	goodware	analysis	of	Android	applications,”	https://github.com/androguard/androguard	
2.						“monkeyrunner,”	https://developer.android.com/studio/test/monkeyrunner/index.html	

IoTFuzzer: Architecture – Phase 1

•  Taint	Analysis	
•  Identify	protocol	fields	(variables)	and	functions	
•  TaintDroid	[W.	Enck	et	al.	TOCS’14]	

•  Taint	Sources:	strings,	system	APIs,	user	inputs	

•  Taint	Sinks:	data	used	at	networking	APIs	and	encryption	functions	

•  Cryptographic	Function	Identification	
•  Lots	of	related	work	
•  IoTFuzzer	employs	a	lightweight	technique	
•  Cryptographic	functions	contain	arithmetic	operations	and	called	during	the	message	
delivery	execution	

14	

IoTFuzzer: Architecture – Phase 1

15	

Code	example	

Taint	Tracking	Output	

IoTFuzzer: Architecture – Phase 2

q Runtime	Mutation	
•  Function	Hooking	

•  Dynamically	hooks	the	recorded	functions	and	mutate	the	protocol	fields	at	runtime	to	
generate	probe	messages	

•  	Xposed	[3]	

•  Fuzzing	Scheduling:	to	fuzz	only	a	subset	of	all	protocol	fields	

•  Fuzzing	Policy:	
•  Change	the	length	of	the	strings	to	check	overflow	and	out-of-bound	access	
•  Change	integer,	double,	or	float	(large	values)	to	check	overflow	and	out-of-bound	access	
•  Change	object	types	and	provide	empty	values	to	check	misinterpretation	and	null-pointer	
exepction	

16	
1.  Rovo89,	“Xposed	Module	Repository,”	http://repo.xposed.info/	

IoTFuzzer: Architecture – Phase 2

q Response	monitoring	
•  Response	Types	

•  Expected	response	
•  Unexpected	response	
•  No	response	
•  Disconnection	

•  Crash	Detection	
•  TCP-based	connection:	disconnection	
•  UDP-based	connection:	insert	a	heartbeat	message	after	every	10	probe	messages	

17	

Implementation

•  Implemented	on	17	off-the-shelf	IoT	devices	(apps	are	available	on	Google		Play)	

18	

Evaluation

•  Testing	Environment	
•  UI	Analysis:	Ubuntu	14-04	Intel	Core	i7	quad-core	2.81	GHz	CPU	8GB	RAM	
•  Taint	Tracking:	Google’s	Nexus	4	
•  Network:	Fully	controlled	local	Wi-Fi		

•  15	memory	corruptions	were	found	including	8	previously	unknown	

19	

Evaluation

•  Fuzzing	accuracy	

20	

Conclusion

•  IoTFuzzer:	Limitations	
•  Only	support	Wi-Fi	connections	
•  Can	only	fuzz	app-related	code	in	IoT	devices	
•  Only	detects	memory	related	corruptions	that	lead	to	crashes	

21	

Questions?

22	

