Viden: Attacker Identification on In-Vehicle Netvorks

Kyong-Tak Cho and Kang G. Shin

- ➤ Motivation
- ≻CAN
- ≻Viden
- ➤ Evaluation
- Drawback
- ➤Future Work

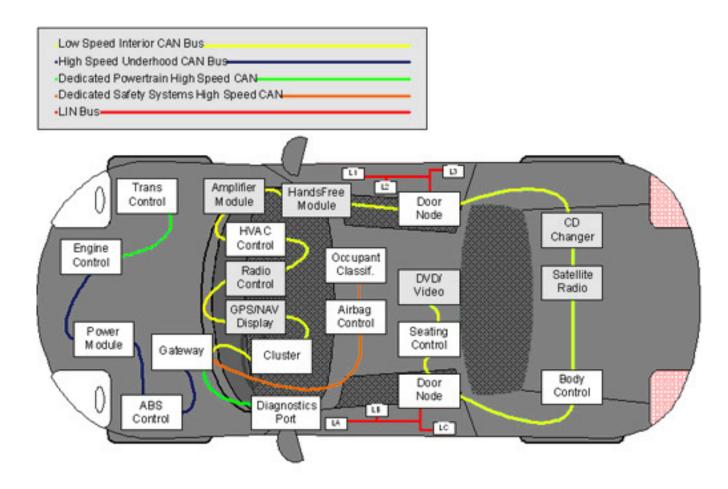
Motivation

- ≻CAN
- ≻Viden
- ➤ Evaluation
- Drawback
- ➢Future Work

Motivation

✓ Advancements in Automotive Technology

✓ Drawbacks in Present Defense Schemes


What is ECU?

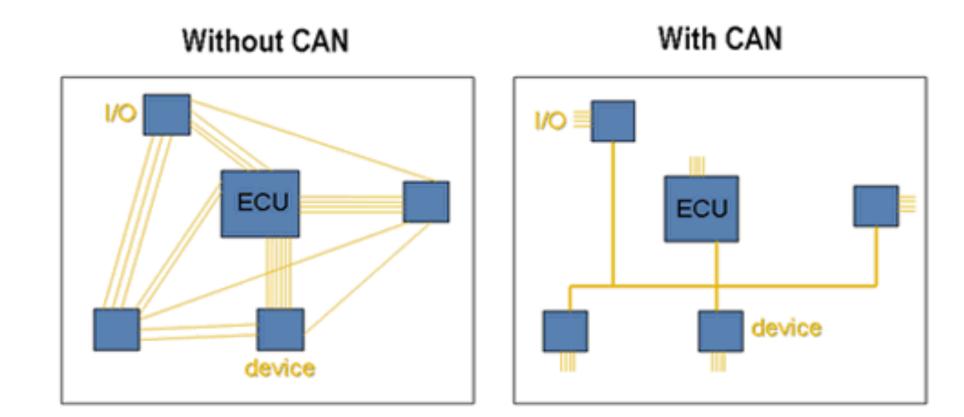
• Electronic Control Unit(ECU)

• Types of ECU's

• Threats

What is ECU?

Related Work


- Clock based Intrusion detection system
 - Clock Skews
 - Works only in Periodic message
 - Attacker information evaded –a periodic messages
- Mean square voltage measurements
 - Works only with slow speed (10kbps)
- Supervised Batch learning Algorithm
 - Not practical

VIDEN: Voltage based attacker IDENtification

- Voltage measurements output by transmitter ECU
- Creates Voltage profiles (Fingerprints) based on voltage instance
- Adaptive signal processing(Online learning)
- Defense mechanism against
 - Naïve adversary
 - Timing-aware adversary
 - Timing-voltage-aware adversary

- Motivation
- CAN
- Viden
- Evaluation
- Drawback
- Future Work

Controller Area Network Protocol

CAN typical application Schematic

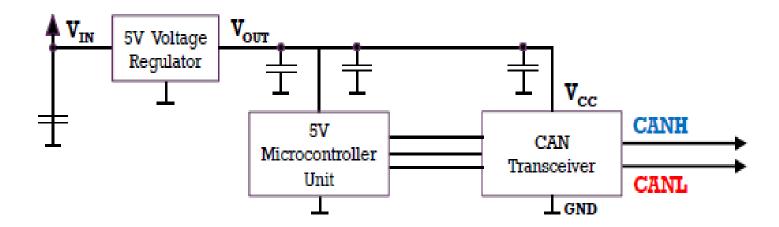


Figure 4: CAN typical application schematic.

CAN output Voltage

(b) CAN output voltages when sending a message.

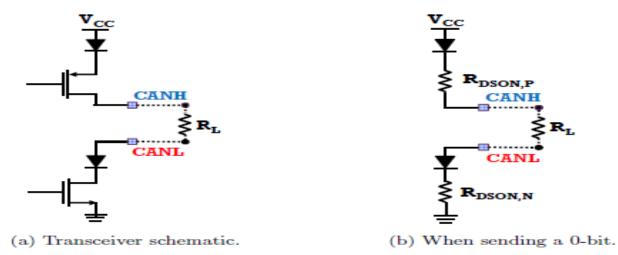
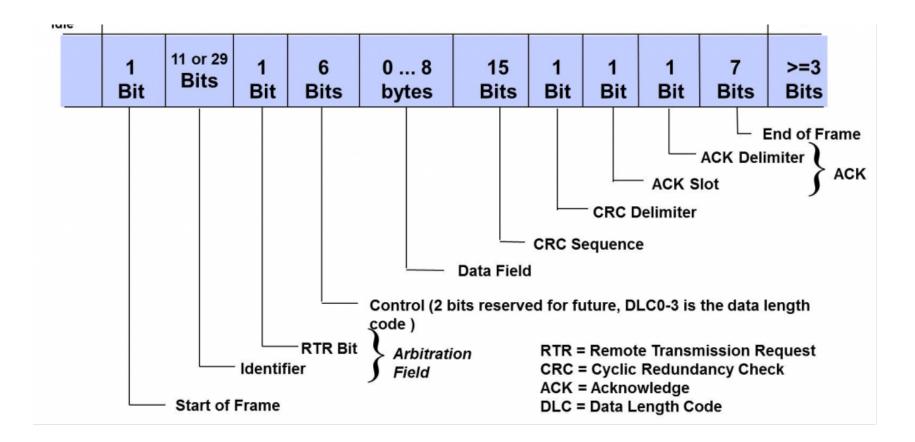



Figure 2: Output schematics of a CAN transceiver.

CAN Data Frame

- Motivation
- CAN
- Viden
- Evaluation
- Drawback
- Future Work

System and Threat model

CAN bus consideration for system model

- Fingerprinting device- IDS, timing and voltage based
- ECU attached only through CAN bus

Threats involved are naïve, timing-aware and timing-voltage-aware adversaries

High-Level Overview of Viden

Involves Four Phases

- Phase 1: Learning ACK Threshold
- Phase 2: Derives Voltage instances
- Phase 3: Creates Voltage Profiles
- Phase 4: Verification

Phase 1: Learning ACK Threshold

- Measuring dominant voltages
- Extracting Non-ACK voltages

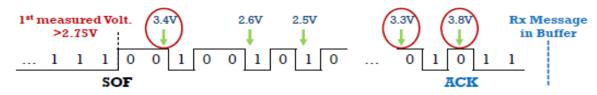


Figure 6: Viden measuring CANH voltages.

Phase 2: Deriving A Voltage Instance

Algorithm 1 Dispersion Update	
1: function UpdateDispersion(V, Λ, P^*)	
2: return $\Lambda \leftarrow \Lambda + \alpha (P^* - \frac{\#(V < \Lambda)}{\#V})^3$	▷ Adjust tracking position
3: end function	
4: if #measured CANH and CANL voltages both $\geq \kappa$ then	
5: $V_H, V_L \leftarrow \{ \text{past } \kappa R \text{ CANH, CANL measurements} \}$	}
6: $F_3 \leftarrow \text{UpdateDispersion}(V_H, F_3, 0.75)$	
7: $F_4 \leftarrow \text{UpdateDispersion}(V_L, F_4, 0.25)$	
8: $F_5 \leftarrow \text{UpdateDispersion}(V_H, F_5, 0.9)$	
9: $F_6 \leftarrow \text{UpdateDispersion}(V_L, F_6, 0.1)$	
10: end if	

Phase 3: Attacker Identification

 $CVD_x[n] = CVD_x[n-1] + \Delta[n] \left(1 - \nu_x[n]/\nu_x^*\right),$

 $\Psi[n] = \sum_{x=1}^{6} CVD_x[n].$

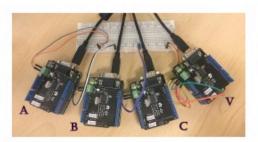
 $\Psi_{accum}[n] = \sum_{k=1}^{n} \Psi[k]$

Phase 4: Verification

• Birthday paradox

✓ Voltage profile collision

✓ Multiple ECUs can have same profile


✓ Narrower set up of ECU to look at

Target impersonation

✓ Further verification required to complement the Phase 1-3

- Motivation
- CAN
- Viden
- Evaluation
- Drawback
- Question

Evaluation

(a) CAN bus prototype.

(c) 2015 Chevrolet Trax.

(b) 2013 Honda Accord.

(d) Connection to the vehicle.

- Against Timing adversary
- Against Timing and Voltage adversary

- Motivation
- CAN
- Viden
- Evaluation
- Drawback
- Question

Drawbacks

- Attack from another network ECU
- Atleast One Voltage profile
- •No message send from the ECU Inaccurate identification
- Voltage profile adjustments

- Motivation
- CAN
- Viden
- Evaluation
- Drawback
- Question

Question

THANK YOU