
Using	Hardware	Features	for	
Increased	Debugging	Transparency	
	Fengwei	Zhang,	Kevin	Leach,	Angelos	Stavrou,	

Haining	Wang,	and	Kun	Sun.	In	S&P'15.		
	

Fengwei	Zhang	

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 1	



Overview	

•  MoOvaOon	
•  Background:	System	Management	Mode	
(SMM)	

•  System	Architecture	
•  EvaluaOon:	Transparency	and	Performance	
•  Conclusions	and	Future	DirecOons	

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 2	



Overview	

•  MoOvaOon	
•  Background:	System	Management	Mode	
(SMM)	

•  System	Architecture	
•  EvaluaOon:	Transparency	and	Performance	
•  Conclusions	and	Future	DirecOons	

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 3	



MoOvaOon	

•  Malware	aXacks	staOsOcs	
–  Symantec	blocked	an	average	of	247,000	aXacks	per	
day	[1]	

– McAfee	(Intel	Security)	reported	8,000,000	new	
malware	samples	in	the	first	quarter	in	2014	[2]	

–  Kaspersky	reported	malware	threats	have	grown	34%	
with	over	200,000	new	threats	per	day	last	year	[3]		

•  Computer	systems	have	vulnerable	applicaOons	
that	could	be	exploited	by	aXackers.		

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 4	



TradiOonal	Malware	Analysis	

•  Using	virtualizaOon	technology	to	create	an	isolated	
execuOon	environment	for	malware	debugging		

•  Running	malware	inside	a	VM	
•  Running	analysis	tools	outside	a	VM	
	

Hardware

Hypervisor (VMM)

Virtual Machine

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 5	



TradiOonal	Malware	Analysis	

•  Using	virtualizaOon	technology	to	create	an	isolated	
execuOon	environment	for	malware	debugging		

•  Running	malware	inside	a	VM	
•  Running	analysis	tools	outside	a	VM	
	

Hardware

Hypervisor (VMM)

Virtual Machine

Malware

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 6	



TradiOonal	Malware	Analysis	

•  Using	virtualizaOon	technology	to	create	an	isolated	
execuOon	environment	for	malware	debugging		

•  Running	malware	inside	a	VM	
•  Running	analysis	tools	outside	a	VM	
	

Hardware

Hypervisor (VMM)

Virtual Machine

Analysis

Tool

Malware

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 7	



TradiOonal	Malware	Analysis	

	
LimitaOons:	
•  Depending	on	hypervisors	that	have	a	large	TCB	(e.g.,	

Xen	has	500K	SLOC	and	245	vulnerabiliOes	in	NVD)	 ︎		
•  Incapable	of	analyzing	rootkits	with	the	same	or	higher	

privilege	level	(e.g.,	hypervisor	and	firmware	rootkits)	︎		
•  Unable	to	analyze	armored	malware	with	anO-

virtualizaOon	or	anO-emulaOon	techniques	

Hardware

Hypervisor (VMM)

Virtual Machine

Analysis

Tool

Malware

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 8	



Our	Approach	

	
We	present	a	bare-metal	debugging	system	called	MalT	that	
leverages	System	Management	Mode	for	malware	analysis	︎		
•  Uses	System	Management	Mode	as	a	hardware	isolated	

execuOon	environment	to	run	analysis	tools	and	can	debug	
hypervisors	 ︎		

•  Moves	analysis	tools	from	hypervisor-layer	to	hardware-layer	
that	achieves	a	high	level	of	transparency	

Hardware

Hypervisor (VMM)

Virtual Machine

Analysis

Tool

Malware

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 9	



Overview	

•  MoOvaOon	
•  Background:	System	Management	Mode	
(SMM)	

•  System	Architecture	
•  EvaluaOon:	Transparency	and	Performance	
•  Conclusions	and	Future	DirecOons	

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 10	



Background:	System	Management	
Mode	

System	Management	Mode	(SMM)	is	special	CPU	mode	
exisOng	in	x86	architecture,	and	it	can	be	used	as	a	
hardware	isolated	execuOon	environment.	
•  Originally	designed	for	implemenOng	system	funcOons	
(e.g.,	power	management)		

•  Isolated	System	Management	RAM	(SMRAM)	that	is	
inaccessible	from	OS		

•  Only	way	to	enter	SMM	is	to	trigger	a	System	
Management	Interrupt	(SMI)	

•  ExecuOng	RSM	instrucOon	to	resume	OS	(Protected	
Mode)		

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 11	



Background:	System	Management	
Mode	

Approaches	for	Triggering	a	System	Management	Interrupt	(SMI)	
•  Soiware-based:	Write	to	an	I/O	port	specified	by	Southbridge	

datasheet	(e.g.,	0x2B	for	Intel)	
•  Hardware-based:	Network	card,	keyboard,	hardware	Omers		

	 Protected Mode

Normal OS

System Management Mode

Isolated Execution Environment

SMI
Handler

Isolated SMRAM

Highest privilege

Interrupts disabled

SMM entry

SMM exit

Software
or

Hardware

Trigger SMI

RSM

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 12	



Background:	Soiware	Layers	

Application

Operating System

Hypervisor (VMM)

Firmware (BIOS) SMM

Hardware

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 13	



Background:	Hardware	Layout	

CPU
Northbridge

(memory controller hub)
MMU and IOMMU

Graphic card slot

Memory bus

Memory slots

Southbridge
(I/O controller hub)

PCI bus

PCI slots

BIOS Super I/O

LPC bus

Keyboard

Mouse

Serial port

IDE

SATA

Audio

USB

CMOS

Front-side bus

PCIe bus

Internal bus

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 14	



Overview	

•  MoOvaOon	
•  Background:	System	Management	Mode	
(SMM)	

•  System	Architecture	
•  EvaluaOon:	Transparency	and	Performance	
•  Conclusions	and	Future	DirecOons	

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 15	



System	Architecture	

•  TradiOonally	malware	debugging	uses	virtualizaOon	
or	emulaOon	 ︎		

•  MalT	debugs	malware	on	a	bare-metal	machine,	and	
remains	transparent	in	the	presence	of	exisOng	anO-
debugging,	anO-VM,	and	anO-emulaOon	techniques.	

Debugging Client

GDB-like

Debugger

Debugging Server

SMI

handler

Debugged

application

1) Trigger SMI

2) Debug command

3) Response message

Inspect

application

Breakpoint

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 16	



Step-by-step	Debugging	in	MalT	

•  Debugging	program	instrucOon-by-instrucOon	 ︎		
•  Using	performance	counters	to	trigger	an	SMI	for	
each	instrucOon	

Protected Mode System Management Mode

SMI Handler

SMI Handler

SMM entry

SMM entry

SMM exit

SMM exit

inst1
inst2
inst3

...

instn

CPU control flow

EIP

Trigger SMI

RSM

Trigger SMI

RSM

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 17	



Overview	

•  MoOvaOon	
•  Background:	System	Management	Mode	
(SMM)	

•  System	Architecture	
•  EvaluaOon:	Transparency	and	Performance	
•  Conclusions	and	Future	DirecOons	

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 18	



EvaluaOon:	Transparency	Analysis	
•  Two	subjects:	1)	running	environment	and	2)	
debugger	itself	︎		
–  Running	environments	of	a	debugger	︎		

•  SMM	v.s.	virtualizaOon/emulaOon	 ︎		
–  Side	effects	introduced	by	a	debugger	itself	︎		

•  CPU,	cache,	memory,	I/O,	BIOS,	and	Oming		
•  Towards	true	transparency	 ︎		
– MalT	is	not	fully	transparent	(e.g.,	external	Oming	
aXack)	but	increased	︎		

– Draw	aXenOon	to	hardware-based	approach	for	
addressing	debugging	transparency	

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 19	



EvaluaOon:	Performance	Analysis	
•  Testbed	SpecificaOon	︎		
– Motherboard:	ASUS	M2V-MX	SE	︎		
–  CPU:	2.2	GHz	AMD	LE-1250	 ︎		
–  Chipsets:	AMD	K8	Northbridge	+	VIA	VT8237r	Southbridge	︎		
–  BIOS:	Coreboot	+	SeaBIOS	

Evaluation: Performance Analysis

I Testbed Specification
I Motherboard: ASUS M2V-MX SE
I CPU: 2.2 GHz AMD LE-1250
I Chipsets: AMD K8 Northbridge + VIA VT8237r Southbridge
I BIOS: Coreboot + SeaBIOS

Table: SMM Switching and Resume (Time: µs)

Operations Mean STD 95% CI
SMM switching 3.29 0.08 [3.27,3.32]
SMM resume 4.58 0.10 [4.55,4.61]
Total 7.87

19

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 20	



EvaluaOon:	Performance	Analysis	
Evaluation: Performance Analysis

Table: Stepping Overhead on Windows and Linux (Unit: Times of
Slowdown)

Stepping Methods Windows Linux
⇡ ⇡

Far control transfer 2 2
Near return 30 26
Taken branch 565 192
Instruction 973 349

20

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 21	



Overview	

•  MoOvaOon	
•  Background:	System	Management	Mode	
(SMM)	

•  System	Architecture	
•  EvaluaOon:	Transparency	and	Performance	
•  Conclusions	and	Future	DirecOons	

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 22	



Conclusions	and	Future	Work	
•  We	developed	MalT,	a	bare-matal	debugging	system	that	

employs	SMM	to	analyze	malware		
–  Hardware-assisted	system;	does	not	use	virtualizaOon	or	emulaOon	

technology	 ︎		
–  Providing	a	more	transparent	execuOon	environment	︎		
–  Though	tesOng	exisOng	anO-debugging,	anO-VM,	and	anO-emulaOon	

techniques,	MalT	remains	transparent	

•  Future	work	 Remote Debugger (“client”)

GDB
Server

IDAPro
Tool

GDB
Client

Debugging Target (“server”)

SMI
Handler

Debugged
application

Debug command

Response message

SMM PM
Generic Interaface

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 23	



References	
References I

[1] Symantec, “Internet Security Threat Report, Vol. 19 Main Report,” http:

//www.symantec.com/content/en/us/enterprise/other resources/b-istr main report v19 21291018.en-us.pdf,

2014.

[2] McAfee, “Threats Report: First Quarter 2014,”

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2014-summary.pdf.

[3] Kaspersky Lab, “Kaspersky Security Bulletin 2013,” http://media.kaspersky.com/pdf/KSB 2013 EN.pdf.

22

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 24	



Paper	Discussion	
•  Nicholas	Burton	
	
•  MALT	is	a	System	Management	Mode	based	debugging	framework	used	to	

analyze	malware.	It	is	a	bare	metal	debugging	system	that	allows	high	
transparency.	Bare	metal	debugging	is	used	because	malware	oien	has	anO-
virtualizaOon	measures	that	change	its	behavior	when	it	discovers	it	is	in	a	virtual	
machine	or	emulaOon	environment.	Using	SMM	MALT	has	ring	-2	privilege	and	has	
a	smaller	Trusted	Code	Base	than	any	debugger	that	depends	on	virtualizaOon.	
MALT	is	an	effecOve	debugger	that	is	generally	unhindered	by	armored	malware	
that	has	anO-VM	and	anO-debugging	soiware,	however	it	is	incapable	of	
debugging	rootkits	at	the	ring	-2	privilege	level.	MALT	is	iniOally	triggered	by	a	
serial	message	arriving	at	the	COM1	port,	which	has	been	reconfigured	to	send	an	
SMI.	During	debugging	the	current	EIP	value	is	checked	against	the	breakpoint,	
when	they	are	equal	an	event	in	LAPIC	is	set	to	overflow	to	trigger	the	SMI.	
VulnerabiliOes	that	SMM	has	can	be	used	to	stop	MALT	being	that	it	is	SMM-
based.	AXacks	such	as	cache	poisoning	and	memory	reclamaOon,	however	these	
issues	have	been	fixed	by	implementaOon	of	SMRR	and	locking	the	SMRAM	
respecOvely.	

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 25	



Paper	Discussion	
•  Jacob	Bednard	
	
•  This	paper	proposes	and	implements	a	new	technique	for	transparent	debugging	

based	in	System	Management	Mode	called	MaLT.	The	moOvaOon	for	this	
technique	is	that	malware	can	detect	the	presence	of	virtual	machines	and	
emulaOon	and	choose	to	remain	stealthy	by	not	unpacking	it’s	contents.	MaLT	
shows	that	a	debugger	placed	into	SMM	by	Coreboot	on	boot	can	remain	
transparent	to	malware.	In	short,	the	core	process	of	MaLT	allows	the	placement	
of	breakpoints	into	code	that	modify	the	O/S	instrucOon	set	to	call	an	SMI	and	
open	the	MaLT	environment	for	introspecOon.	When	the	current	cycle	is	complete	
for	MaLT,	it	the	next	instrucOon	in	the	registers	to	resume	the	previous	operaOon.	
The	benefit	that	MaLT	has	is	that	it	operates	in	Ring	-1/-2	space.	That	is,	MaLT	
operates	close	to	bare	metal.	The	MaLT	program	can	be	accessed	and	used	
through	a	serial	terminal	which	allows	a	user	to	read	memory	and	launch	break	
points.	The	only	signature	that	MaLT	may	leave	behind	is	a	side-channel	based	
Oming	detecOon	method	in	which	malware	monitors	3rd	party	Ome	stamps	to	see	
if	there	have	been	any	breaks	in	processor	execuOon.	

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 26	



Paper	Discussion	
•  Surya	Mani		
	
•  This	paper	talks	about	the	deficiency	of	advanced	malware	analysis	techniques	

using	virtualizaOon	and	emulaOon	techniques	to	prevent	malware	aXack.	The	
malware	has	the	ability	to	detect	the	presence	of	above	techniques	and	hides	
itself,	making	the	system	more	vulnerable.	The	paper	discusses	in	detail	about	
MALT	a	debugging	framework	using	System	Management	Mode(SMM).	The	
following	are	the	advantages	of	using	MALT	techniques.	It	is	hardware	assisted	
malware	analysis	which	can	do	rootkit	analysis	and	kernel	debugging	without	using	
OS.	In	MALT,	either	serial	port	or	performance	counter	is	used	to	trigger	SMI	
(System	Management	Interrupt)	and	also	uses	hardware	breakpoint	techniques	
thereby	increasing	transparency	and	reducing	vulnerability.	MALT	executes	in	SSM	
Ring	-2	level	hence	it	is	capable	of	debugging	user	mode,	kernel	mode	and	
hypervisor	level	rootkits.	Since	MALT	code	does	run	in	bare	metal	machine,	it	does	
not	change	any	code	in	operaOng	system.	MALT	uses	reboot	approach	to	restore	a	
system	to	clean	state	hence	by	leaving	it	vulnerable	to	malware	aXack	during	
reboot.	

Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 27	



Reminders	

•  Paper	reviews	

•  Research	Topics	

•  Next	Class:	TransportaOon	Security	

•  Next	Week	
	
Wayne	State	University	 CSC	6991	Topics	in	Computer	Security	 28	


