Intel® Software Guard Extensions (Intel® SGX) Support
for,Dynamic Memory Management Inside an Enclave

Frank McKeen, llya Alexandrovich, Ittai Anati, Dror Caspi, Simon
Johnson, Rebekah Leslie-Hurd, Carlos Rozas Intel Corporation

Saeid Mofrad



1-INTRODUCTION:

SGX:

Software Guard Extensions provides the capability to protect specified areas of an
application from outside access. The area is called an enclave and hardware provides
confidentiality and integrity for the specified area. SGX allows software developers to
build trusted modules inside an application to protect secrets. A software developer
specifies the contents of an enclave and a relying party can confirm that the area is
instantiated correctly on a remote machine.



PROCESS VIEW

Protected execution environment embedded in a process

oS a8 .
=\With its own code and data

Enclave =Providing Confidentiality &
Data 4 Integrity

Enclave _ _
Blob (dll) —< Enclave Controlled entry points

P> Code = Multi-thread support

App Data TCS (*n) =Full access to app memory
b and processor performance
J

App Code
T

User Process

Enclave




EXECUTION FLOW

(1) Application

ﬂ\trusted Part
of App

?

2 )Create Enclave

C3>CallTrusted() -

Cont.) (&)

\

)

N\

Trusted Paﬁ
Call Gate Of App e

Process
Secrets

Return(5)

[

Privileged System Code
OS, VMM, BIOS, SMM, ...

. App built with trusted and untrusted

parts

. App runs & creates the enclave

which is placed in trusted memory

. Trusted function is called, execution

transitioned to the enclave

. Enclave sees all process data in

clear; external access to enclave data
is denied

. Trusted function returns; enclave

data remains in trusted memory

. Application continues normal

execution




SECURITY PERIMETER

Cache

SSh:
111-00-1010

CPU Package

=Security perimeter is the
CPU package boundary

=Data and code
unencrypted inside CPU
package

=Data and code outside
CPU package is
encrypted and integrity
checked

= External memory reads
and bus snoops see only
encrypted data




Application development consideration:

PARTITIONING

Identify sensitive application data (secrets) and
the operations that work on/with that data

=Ex. Key material, proprietary algorithms, biometric
data, CSR generation, etc.

Partition this functionality to an enclave
= Do not hard code secrets into the enclave

Untrusted
Component
(Application)

(== ==

Trusted Component

SGX Application




Application development consideration|[3]:

ENCLAVE INTERFAGE DEFINITION

Careful definition of the enclave interface is critical

*The enclave’s interface is it's attack surface; it should

be minimal and avoid data leakage
Enclave Definition Language (EDL) is used to define
an enclave's Trusted and Untrusted interface
functions

*Tools process the EDL to create proxy / bridge code to
call into (ECALL) and return from (OCALL) an enclave

Untrusted Caller Enclave Function
Untrusted Proxy N Trusted Bridge
marshaols parometers unmarshaols parameters

Application




Application development consideration[3]:
ATTESTATION & SEALING

Support for enclave attestation to a 3rd party

*Can attest; Enclave SW, CPU Security level, Sealing
Identity, and more.

Data can be sealed against an enclave using a
hardware derived Seal Key

*The Seal Key is unique to the CPU and the specific

enclave environment

Application Service Provider




Application development consideration|[3]:

PROVISIONING ENCLAVE SECRETS

Well designed enclaves never contain hard
coded secrets, instead, they are provisioned or
created after the enclave is loaded

*Enclave binaries are un-encrypted and inspectable
*Should verify that the ‘right app/enclave is executing

on the right platform’ using attestation

Persist provisioned Secrets across execution
runs using HW provided Seal Key

*Avoids having to re-attest and re-establish trust each
time the application runs




MOTIVATION OF SGX-2:
THREE SHORTCOMINGS WITH THE SGX1

* First all enclave memory must be committed at enclave build time. This increases the build
time. Committing memory places pressure on the enclave page cache (EPC), the enclave
developer must allocate memory for worst-case memory consumption of any workload.
Otherwise, the enclave developer will need to releases enclaves designed for different size
workloads.

 The second shortcoming is related to the management of access permissions associated
with an enclave page. SGX extends the access permission model by associating an additional
set of access permissions with enclave page that are stored in a SGX structure called the
Enclave Page Cache Map (EPCM)

* The last shortcoming is related to library OS support where secure exceptional handling and
lazy loading code inside an enclave are important features. SGX-1 didn’t have information
recorded when a general protection fault or page fault occurs inside an enclave

* To address these problems six new instructions and new exception behavior were added to
the SGX architecture known as SGX2



2 SGX2 CONSIDERATIONS & REQUIREMENTS:

* Manipulating memory and permissions of an enclave must be done with
the knowledge and consent of the enclave.

* |f enclave code is changed incorrectly or without knowledge of the
enclave, execution should be suspended until the condition is resolved. It
enables the enclave to manage its own security

* The system resource manager (OS or VMM) must be able to manage and
allocate the resources as requested using standard techniques and
priorities.

 Manipulation of memory permissions involves both the system
permissions and the EPCM permissions. EPCM permissions allow the

enclave developer to specify the restrictions and access control for the
enclave



SGX 2 memory management -> (system manager) which manages the system resources

internal enclave resource manager (internal manager) which manages the enclave memory from inside

the enclave.

A protocol which consists of communication between the system manager and an internal manager is

this:

Internal Memory
Manager

External Memory
Manager

‘—Figure 2-1 System and Internal Memory Manag;rs

v B

The system memory manager

allocating memory -> paging memory -> changing
permissions, -> changing page types.- >managing
the page table entry permissions -> initiating
EPCM permissions of the enclaves (by calling
instruction.)

The internal manager

starting memory change requests -> verifying
that the system manager has processed the
requests correctly.

The internal manager does not have direct access
to the page tables and must request the system
manager to make changes in page table entry
(PTE) permissions.



2.1 SECURITY CONSIDERATIONS

* Must ensure that changes in permission do not affect the security of the
enclave.

* When restrict page permissions -> check permission restrictions are
complete and the previous cached address translations or cached
permissions are removed. SGX2 checks old permissions are removed from
the TLBs

e SGX1 allows the system memory manager to remove pages from an enclave
using the EREMOVE leaf function. However, since the enclave doesn’t
participate in this process it doesn’t know if the page removed.



2.2 SOFTWARE CONSIDERATIONS

* Internal memory manager wants to reallocate the memory resources: add a
thread; must allocated as Thread Control Structure (TCS), State Save Area

(SSA) pages. Add more memory to enclave.

* Exception Reporting Inside an Enclave: for Library OS usage. In this case the
exception condition should be reported inside the enclave. SGX2 adds several
exception conditions to the SSA frame when exiting an enclave. They include
page faults (#PF) and general protection violations (#GP).

 Demand Loading of Library Pages: The internal manager must have a
mechanism to load the page without allowing access until the copy is
complete. SGX2 adds a leaf function to perform the copy securely.



3.1 ENCLAVE MALLOC

The following is protocol:

1. Internal manager requests memory -> enclave runtime system from its internal pool of memory.
memory pool low the internal manager -> requests the system manager to allocate more memory.

2. The system manager allocates virtual address space but does not commit memory and -> returns a
reference to the virtual address space to the internal manager

3. The enclave internal manager -> returns a reference to the enclave. When the enclave accesses the
newly allocated memory, -> a page fault is generated as memory has not been committed.

4. The OS page fault handler detects that the virtual address has been allocated but memory has not
been committed. -> The OS commits memory by using EAUG and maps the committed but pending
page into the enclave address space-> The OS then sends a signal to the enclave internal manager.

5. The internal manager receives the -> The internal manager checks that the virtual address has been
committed -> the internal manager executes EACCEPT which allows the enclave to access the pending
page. -> The signal handler returns back to the application which eventually results in the enclave
execution resuming.



3.2 ENCLAVE FREE

* The following is an example protocol:
1. The enclave releases memory -> internal manager release address space back to the OS.

e 2. The system manager executes EMODT on all pages -> change the page type to PT_TRIM and -> clear
the EPCM access permission bits. This begins the process of decommitting memory. The system
manager then executes ETRACK on the SECS of the calling enclave and then sends IPIs to logical
processors which may contain TLB mappings to the pages that had been trimmed.

* 3. 0nce all logical processors responded to the IPI, control is returned to the internal manager.

* 4. The internal manager verifies that committed memory has been decommitted by executing EACCEPT
to verify that the pages trimmed and all stale TLB mappings have been flushed. The internal manager
needs to update its tracking information that the virtual address has no committed memory.

e 5. The system manager can later reclaim the committed memory by executing EREMOVE on the
trimmed pages.



3.3 CHANGING PAGE PERMISSIONS

* Change is permissive then the following protocol:

* 1. internal manager runs EMODPE to extend the page permissions in the EPCM.

e 2.Theinternal manager requests the system manager to extend page permissions in the page tables.
* |f the change in permission is restrictive then the following protocol:

* 1. Theinternal manager requests that the system manager to restrict permissions on a page.

2. The system manager executes EMODPR and updates page table permissions. After permissions have
been updated, the system manager executes ETRACK on the SECS of the calling enclave and sends IPIs

to all processors that may be executing inside the enclave to flush TLB mappings.

e 3. After all IPIs have been acknowledged, control is returned to the internal manager. The internal
manager verifies that page permissions restricted and TLB mappings flushed by executing EACCEPT



3.4 THREAD CONTROL STRUCTURE ALLOCATION

1. Internal manager initializes from a regular EPC page with appropriate TCS values. If the enclave
memory has not been committed then internal manager will need to perform a request to allocate
memory as described in section 3.1., then internal manager requests that the system manager convert
the page to a TCS.

2. The system manager executes EMODT to set the page type to PT_TCS and to clear the EPCM access
permission bits. The page is also marked modified which prevents the page from being used as a TCS.

3. The system manager then executes ETRACK. The system manager sends IPIs to flush all old mappings
to the page and returns control to the internal manager.

4. The internal manager executes EACCEPT on the modified TCS page. EACCEPT will verify that TLB
mappings flushed and perform consistency checks on the TCS page then clearing the modified bit and
making the page available to EENTER.



DYNAMIC LOADING OF MODULES

e SGX2 provides EACCEPTCOPY which allows the internal manager to atomically initialize the contents
and permission of a page.

e 1. the internal manager indicates to the system manager that a virtual address space allocated but not
committed (same as in 3.1).

* 2. When an enclave attempts to access a page in this virtual address, a page fault is generated and the
system manager commits memory by executing EAUG and signals the internal manager.

3. Theinternal manager identifies the virtual address as belonging to a module page to be loaded. The
system manager may load the contents of the page into regular memory or the enclave runtime system
may need to request the content be loaded into regular memory.

* 4. The internal manager then copies the contents of the module into private enclave memory. The
internal manager should verify the integrity of the contents and apply any required relocations. Finally,
the internal manager copies the contents and initializes permissions using EACCEPTCOPY.



3.6 LIBRARY OS SUPPORT

EENTER

©

0S Exception
Sgnal " Handler

Figure 3-2 SGX enabled LibOS exception handling

The process begins with an exception generated inside
an enclave. The processor records exception
information in the SSA and delivers the exception to
the OS exception handler.

If the OS cannot handle the exception, the OS signals
the LibOS PAL (Platform Adaptation Layer) exception
handler.

3. The LibOS PAL executes EENTER to invoke the LibOS
exception handler inside the enclave.

4. The LibOS exception handler reads the exception
information then generates an OS specific exception
context, and invokes the application exception handler
inside the SGX enabled LibOS.



Application

Enclave o
Internal Memory Manager

EACCEPT
Return from Systemcall / EACCEPTCOPY

Signal e/' EMODPE

oExternal Memory Manager o
EAUG / Systemcall / Fault
EMODT

EMODPR
ETRACK

Figure 3-1 SGX2 Software Flow



4.1 5GX2 ISA, ENCLS LEAF FUNCTIONS , EAUG

* EAUG augments the enclave with a page of EPC memory ->
associates that page with an SECS page, and updating the linear

address and security attributes in the page’s EPCM-> puts the page
in “Pending” state.

* two input parameters, a pointer to the destination page in EPC,
and a pointer to the enclave’s SECS page.

 While in “Pending” state, the page cannot be accessed by anyone,
including the enclave. Only after the enclave approves the page by
using the ENCLU[EACCEPT] the page be accessible to the enclave.



ENCLS LEAF FUNCTIONS , EMODT

« EMODT modifies the type of an EPC page and puts the page in
“Modified” state. Allowed page types are PT_TCS and PT_TRIM.
The operation receives two input parameters, a pointer to the
target page in EPC, and a pointer to the page’s new security
attributes. While in “Modified” state, the page cannot be accessed
by anyone, including the enclave. Only after the enclave approves
the page by using the ENCLU[EACCEPT] leaf function, will the page
be accessible to the enclave.



ENCLS LEAF FUNCTIONS , EMODPR

e EMODPR This leaf function restricts the access rights associated
with an EPC page of an initialized enclave and puts the page in
“Permission Restriction” state. The operation receives two input
parameters, a pointer to the target page in EPC, and a pointer to
the page’s new security attributes. The operation will fail if it
attempts to extend the permissions of the page. While in
“Permission Restriction” state, the page cannot be accessed by
anyone, including the enclave. Only after the enclave approves the
page by using the ENCLU[EACCEPT] leaf function, will the page be
accessible to the enclave.



ENCLU LEAF FUNCTIONS, EACCEPT

* This leaf function must be executed from within an enclave. It accepts
changes to a page in the running enclave by verifying that the security
attributes specified in SECINFO match the page’s security attributes in EPCM.
The operation receives two input parameters, a pointer to the target page in
EPC, and a pointer to the page’s approved new security attributes. After a
successful execution of EACCEPT the page’s “Pending”, “Modified”, or
“Permission Restriction” state is cleared and the page becomes accessible to
the enclave.



ENCLU LEAF FUNCTIONS ,EACCEPTCOPY

* This leaf function must be executed from within an enclave. It copies the
contents of an existing EPC page into an uninitialized EPC page that was
created by EAUG. The operation receives three input parameters, a pointer to
the target page in EPC, a pointer to the page’s new security attributes, and a
pointer to the page’s new content. After a successful execution of
EACCEPTCOPY the page’s “Pending” state is cleared and the page becomes
accessible for the enclave



ENCLU LEAF FUNCTIONS, EMODPE

* This leaf function must be executed from within an enclave. It
extends the access rights associated with an existing EPC page in
the running enclave. The operation receives two input parameters,
a pointer to the target page in EPC, and a pointer to the page’s
new security attributes. The operation will fail if it attempts to
restrict permissions of the page. Since the execution happens from
within the enclave, it’s trusted and takes effect immediately.



MANAGING PAGE TABLE TRANSLATIONS

Table 4-1 Page Table Tracking

TLB synchronization
EAUG




ENCLAVE EXCEPTION HANDLING ENHANCEMENTS

Table 4-2 EXINFO Field

bytes

* the cause of the AEX is stored in the

MADDR [f#PF: contains the page e If SECS.MISCSELECT.EXINFO bit is set
fault l(ninear addfresﬁ that by enclave writer, the processor saves

caused a page fault. : b

I£4GP- the field is cleared HPF and #GP information into the

B

ERRCD Exception error code for EXINFO structure
either #GP or #PF




4.5 EPCM-INDUCED MEMORY FAULT REPORTING

* A H#PF exception is generated

* A bitin the Page Fault Error Code (PFEC) indicates that the page
fault was due to EPCM access checks. This bit is located at bit
position 15 and called “SGX”



SUMMARY AND RELATED WORK

* New instructions to the SGX1 provide better software
development environment while maintaining the security of the
enclave. The SGX2 instructions enable better protection of
proprietary code which can be loaded and then protected using
the EPCM.

* Allow for dynamic memory and threading support

e Support dynamic allocation of library pages in the library OS
environment.



N
77,

0 ///.
oo
b 2

.
.

{7 -
,//’”'f-ulm\\\\\
0ot “QB 08

.
.
.

REEYY

-
.

.
.



