
Intel®	So*ware	Guard	Extensions	(Intel®	SGX)	Support	
for	Dynamic	Memory	Management	Inside	an	Enclave		

Frank	McKeen,	Ilya	Alexandrovich,	IGai	AnaH,	Dror	Caspi,	Simon	
Johnson,	Rebekah	Leslie-Hurd,	Carlos	Rozas	Intel	CorporaHon	
	

Saeid	Mofrad	



1-INTRODUCTION:	
	

SGX:	
So*ware	Guard	Extensions	provides	the	capability	to	protect	specified	areas	of	an	
applicaHon	from	outside	access.	The	area	is	called	an	enclave	and	hardware	provides	
confidenHality	and	integrity	for	the	specified	area.	SGX	allows	so*ware	developers	to	
build	trusted	modules	inside	an	applicaHon	to	protect	secrets.	A	so*ware	developer	
specifies	the	contents	of	an	enclave	and	a	relying	party	can	confirm	that	the	area	is	
instanHated	correctly	on	a	remote	machine.		
	









ApplicaHon	development	consideraHon:	



ApplicaHon	development	consideraHon[3]:	



ApplicaHon	development	consideraHon[3]:	



ApplicaHon	development	consideraHon[3]:	



MOTIVATION OF SGX-2: 
THREE SHORTCOMINGS WITH THE SGX1


•  First	all	enclave	memory	must	be	commi2ed	at	enclave	build	4me.	This	increases	the	build	
4me.	Commi\ng	memory	places	pressure	on	the	enclave	page	cache	(EPC),	the	enclave	
developer	must	allocate	memory	for	worst-case	memory	consumpHon	of	any	workload.	
Otherwise,	the	enclave	developer	will	need	to	releases	enclaves	designed	for	different	size	
workloads.	

•  The	second	shortcoming	is	related	to	the	management	of	access	permissions	associated	
with	an	enclave	page.	SGX	extends	the	access	permission	model	by	associaHng	an	addiHonal	
set	of	access	permissions	with	enclave	page	that	are	stored	in	a	SGX	structure	called	the	
Enclave	Page	Cache	Map	(EPCM)	

•  The	last	shortcoming	is	related	to	library	OS	support	where	secure	excepHonal	handling	and	
lazy	loading	code	inside	an	enclave	are	important	features.	SGX-1	didn’t	have	informaHon	
recorded	when	a	general	protecHon	fault	or	page	fault	occurs	inside	an	enclave	

•  To	address	these	problems	six	new	instruc4ons	and	new	excep4on	behavior	were	added	to	
the	SGX	architecture	known	as	SGX2	



2 SGX2 CONSIDERATIONS & REQUIREMENTS:

•  ManipulaHng	memory	and	permissions	of	an	enclave	must	be	done	with	
the	knowledge	and	consent	of	the	enclave.		

•  If	enclave	code	is	changed	incorrectly	or	without	knowledge	of	the	
enclave,	execuHon	should	be	suspended	unHl	the	condiHon	is	resolved.	It	
enables	the	enclave	to	manage	its	own	security	

•  The	system	resource	manager	(OS	or	VMM)	must	be	able	to	manage	and	
allocate	the	resources	as	requested	using	standard	techniques	and	
prioriHes.	

•  ManipulaHon	of	memory	permissions	involves	both	the	system	
permissions	and	the	EPCM	permissions.	EPCM	permissions	allow	the	
enclave	developer	to	specify	the	restricHons	and	access	control	for	the	
enclave	



•  SGX	2	memory	management	->	(system	manager)	which	manages	the	system	resources	

•  internal	enclave	resource	manager	(internal	manager)	which	manages	the	enclave	memory	from	inside	
the	enclave.		

•  A	protocol	which	consists	of	communicaHon	between	the	system	manager	and	an	internal	manager	is	
this:	

•  The	system	memory	manager		
•  allocaHng	memory	->	paging	memory	->	changing	

permissions,	->	changing	page	types.-	>managing	
the	page	table	entry	permissions	->	iniHaHng	
EPCM	permissions	of	the	enclaves	(by	calling	
instrucHon.)	

•  The	internal	manager		
•  star4ng	memory	change	requests	->		verifying	

that	the	system	manager	has	processed	the	
requests	correctly.		

•  The	internal	manager	does	not	have	direct	access	
to	the	page	tables	and	must	request	the	system	
manager	to	make	changes	in	page	table	entry	
(PTE)	permissions.	



2.1 SECURITY CONSIDERATIONS


•  Must	ensure	that	changes	in	permission	do	not	affect	the	security	of	the	
enclave.		

•  When	restrict	page	permissions	->	check	permission	restric4ons	are	
complete	and	the	previous	cached	address	translaHons	or	cached	
permissions	are	removed.	SGX2	checks	old	permissions	are	removed	from	
the	TLBs	

•  SGX1	allows	the	system	memory	manager	to	remove	pages	from	an	enclave	
using	the	EREMOVE	leaf	funcHon.	However,	since	the	enclave	doesn’t	
parHcipate	in	this	process	it	doesn’t	know	if	the	page	removed.	



2.2 SOFTWARE CONSIDERATIONS


•  Internal	memory	manager	wants	to	reallocate	the	memory	resources:	add	a	
thread;	must	allocated	as	Thread	Control	Structure	(TCS),	State	Save	Area	
(SSA)	pages.	Add	more	memory	to	enclave.	

•  Excep4on	Repor4ng	Inside	an	Enclave:	for	Library	OS	usage.	In	this	case	the	
excepHon	condiHon	should	be	reported	inside	the	enclave.	SGX2	adds	several	
excepHon	condiHons	to	the	SSA	frame	when	exiHng	an	enclave.	They	include	
page	faults	(#PF)	and	general	protecHon	violaHons	(#GP).		

•  Demand	Loading	of	Library	Pages:	The	internal	manager	must	have	a	
mechanism	to	load	the	page	without	allowing	access	unHl	the	copy	is	
complete.	SGX2	adds	a	leaf	funcHon	to	perform	the	copy	securely.	



3.1 ENCLAVE MALLOC


•  The	following	is	protocol:	

•  	1.	Internal	manager	requests	memory	->		enclave	runHme	system	from	its	internal	pool	of	memory.	
memory	pool	low	the	internal	manager		->		requests	the	system	manager	to	allocate	more	memory.	

•  	2.	The	system	manager	allocates	virtual	address	space	but	does	not	commit	memory	and	->	returns	a	
reference	to	the	virtual	address	space	to	the	internal	manager		

•  3.	The	enclave	internal	manager	->	returns	a	reference	to	the	enclave.	When	the	enclave	accesses	the	
newly	allocated	memory,	->	a	page	fault	is	generated	as	memory	has	not	been	commiGed.		

•  4.	The	OS	page	fault	handler	detects	that	the	virtual	address	has	been	allocated	but	memory	has	not	
been	commiGed.	->	The	OS	commits	memory	by	using	EAUG	and	maps	the	commiGed	but	pending	
page	into	the	enclave	address	space->	The	OS	then	sends	a	signal	to	the	enclave	internal	manager.		

•  5.	The	internal	manager	receives	the	->	The	internal	manager	checks	that	the	virtual	address	has	been	
commiGed	->		the	internal	manager	executes	EACCEPT	which	allows	the	enclave	to	access	the	pending	
page.	->	The	signal	handler	returns	back	to	the	applicaHon	which	eventually	results	in	the	enclave	
execuHon	resuming.	



3.2 ENCLAVE FREE


•  The	following	is	an	example	protocol:	

•  	1.	The	enclave	releases	memory		->	internal	manager	release	address	space	back	to	the	OS.		

•  2.	The	system	manager	executes	EMODT	on	all	pages	->		change	the	page	type	to	PT_TRIM	and		->	clear	
the	EPCM	access	permission	bits.	This	begins	the	process	of	decommi\ng	memory.	The	system	
manager	then	executes	ETRACK	on	the	SECS	of	the	calling	enclave	and	then	sends	IPIs	to	logical	
processors	which	may	contain	TLB	mappings	to	the	pages	that	had	been	trimmed.	

•  	3.	Once	all	logical	processors	responded	to	the	IPI,	control	is	returned	to	the	internal	manager.		

•  4.	The	internal	manager	verifies	that	commiGed	memory	has	been	decommiGed	by	execuHng	EACCEPT	
to	verify	that	the	pages	trimmed	and	all	stale	TLB	mappings	have	been	flushed.	The	internal	manager	
needs	to	update	its	tracking	informaHon	that	the	virtual	address	has	no	commiGed	memory.		

•  5.	The	system	manager	can	later	reclaim	the	commiGed	memory	by	execuHng	EREMOVE	on	the	
trimmed	pages.		



3.3 CHANGING PAGE PERMISSIONS


•  Change	is	permissive	then	the	following	protocol:	

•  1.	internal	manager	runs	EMODPE	to	extend	the	page	permissions	in	the	EPCM.		

•  2.	The	internal	manager	requests	the	system	manager	to	extend	page	permissions	in	the	page	tables.		

•  If	the	change	in	permission	is	restricHve	then	the	following	protocol:		

•  1.	The	internal	manager	requests	that	the	system	manager	to	restrict	permissions	on	a	page.	

•  	2.	The	system	manager	executes	EMODPR	and	updates	page	table	permissions.	A*er	permissions	have	
been	updated,	the	system	manager	executes	ETRACK	on	the	SECS	of	the	calling	enclave	and	sends	IPIs	
to	all	processors	that	may	be	execuHng	inside	the	enclave	to	flush	TLB	mappings.	

•  	3.	A*er	all	IPIs	have	been	acknowledged,	control	is	returned	to	the	internal	manager.	The	internal	
manager	verifies	that	page	permissions	restricted	and	TLB	mappings	flushed	by	execuHng	EACCEPT	



3.4 THREAD CONTROL STRUCTURE ALLOCATION


•  1.	Internal	manager	iniHalizes	from	a	regular	EPC	page	with	appropriate	TCS	values.	If	the	enclave	
memory	has	not	been	commiGed	then	internal	manager	will	need	to	perform	a	request	to	allocate	
memory	as	described	in	secHon	3.1.,	then		internal	manager	requests	that	the	system	manager	convert	
the	page	to	a	TCS.		

•  2.	The	system	manager	executes	EMODT	to	set	the	page	type	to	PT_TCS	and	to	clear	the	EPCM	access	
permission	bits.	The	page	is	also	marked	modified	which	prevents	the	page	from	being	used	as	a	TCS.	

•  	3.	The	system	manager	then	executes	ETRACK.	The	system	manager	sends	IPIs	to	flush	all	old	mappings	
to	the	page	and	returns	control	to	the	internal	manager.		

•  4.	The	internal	manager	executes	EACCEPT	on	the	modified	TCS	page.	EACCEPT	will	verify	that	TLB	
mappings	flushed	and	perform	consistency	checks	on	the	TCS	page	then	clearing	the	modified	bit	and	
making	the	page	available	to	EENTER.	



DYNAMIC LOADING OF MODULES


•  SGX2	provides	EACCEPTCOPY	which	allows	the	internal	manager	to	atomically	iniHalize	the	contents	
and	permission	of	a	page.	

•  1.	the	internal	manager	indicates	to	the	system	manager	that	a	virtual	address	space	allocated	but	not	
commiGed	(same	as	in	3.1).		

•  2.	When	an	enclave	aGempts	to	access	a	page	in	this	virtual	address,	a	page	fault	is	generated	and	the	
system	manager	commits	memory	by	execuHng	EAUG	and	signals	the	internal	manager.	

•  	3.	The	internal	manager	idenHfies	the	virtual	address	as	belonging	to	a	module	page	to	be	loaded.	The	
system	manager	may	load	the	contents	of	the	page	into	regular	memory	or	the	enclave	runHme	system	
may	need	to	request	the	content	be	loaded	into	regular	memory.		

•  4.	The	internal	manager	then	copies	the	contents	of	the	module	into	private	enclave	memory.	The	
internal	manager	should	verify	the	integrity	of	the	contents	and	apply	any	required	relocaHons.	Finally,	
the	internal	manager	copies	the	contents	and	iniHalizes	permissions	using	EACCEPTCOPY.	



3.6 LIBRARY OS SUPPORT


1.  The	process	begins	with	an	excepHon	generated	inside	
an	enclave.	The	processor	records	excepHon	
informaHon	in	the	SSA	and	delivers	the	excepHon	to	
the	OS	excepHon	handler.	

2.  If	the	OS	cannot	handle	the	excepHon,	the	OS	signals	
the	LibOS	PAL	(Plamorm	AdaptaHon	Layer)	excepHon	
handler.		

3.  3.	The	LibOS	PAL	executes	EENTER	to	invoke	the	LibOS	
excepHon	handler	inside	the	enclave.		

4.  4.	The	LibOS	excepHon	handler	reads	the	excepHon	
informaHon	then	generates	an	OS	specific	excepHon	
context,	and	invokes	the	applicaHon	excepHon	handler	
inside	the	SGX	enabled	LibOS.	





4.1 SGX2 ISA, ENCLS LEAF FUNCTIONS , EAUG

•  EAUG	augments	the	enclave	with	a	page	of	EPC	memory	->		
associates	that	page	with	an	SECS	page,	and	updaHng	the	linear	
address	and	security	aGributes	in	the	page’s	EPCM->	puts	the	page	
in	“Pending”	state.		

•  two	input	parameters,	a	pointer	to	the	desHnaHon	page	in	EPC,	
and	a	pointer	to	the	enclave’s	SECS	page.		

•  While	in	“Pending”	state,	the	page	cannot	be	accessed	by	anyone,	
including	the	enclave.	Only	a*er	the	enclave	approves	the	page	by	
using	the	ENCLU[EACCEPT]	the	page	be	accessible	to	the	enclave.	



ENCLS LEAF FUNCTIONS , EMODT


•  EMODT	modifies	the	type	of	an	EPC	page	and	puts	the	page	in	
“Modified”	state.	Allowed	page	types	are	PT_TCS	and	PT_TRIM.	
The	operaHon	receives	two	input	parameters,	a	pointer	to	the	
target	page	in	EPC,	and	a	pointer	to	the	page’s	new	security	
aGributes.	While	in	“Modified”	state,	the	page	cannot	be	accessed	
by	anyone,	including	the	enclave.	Only	a*er	the	enclave	approves	
the	page	by	using	the	ENCLU[EACCEPT]	leaf	funcHon,	will	the	page	
be	accessible	to	the	enclave.	



ENCLS LEAF FUNCTIONS , EMODPR


•  EMODPR	This	leaf	funcHon	restricts	the	access	rights	associated	
with	an	EPC	page	of	an	iniHalized	enclave	and	puts	the	page	in	
“Permission	RestricHon”	state.	The	operaHon	receives	two	input	
parameters,	a	pointer	to	the	target	page	in	EPC,	and	a	pointer	to	
the	page’s	new	security	aGributes.	The	operaHon	will	fail	if	it	
aGempts	to	extend	the	permissions	of	the	page.	While	in	
“Permission	RestricHon”	state,	the	page	cannot	be	accessed	by	
anyone,	including	the	enclave.	Only	a*er	the	enclave	approves	the	
page	by	using	the	ENCLU[EACCEPT]	leaf	funcHon,	will	the	page	be	
accessible	to	the	enclave.	



ENCLU LEAF FUNCTIONS, EACCEPT


•  This	leaf	funcHon	must	be	executed	from	within	an	enclave.	It	accepts	
changes	to	a	page	in	the	running	enclave	by	verifying	that	the	security	
aGributes	specified	in	SECINFO	match	the	page’s	security	aGributes	in	EPCM.	
The	operaHon	receives	two	input	parameters,	a	pointer	to	the	target	page	in	
EPC,	and	a	pointer	to	the	page’s	approved	new	security	aGributes.	A*er	a	
successful	execuHon	of	EACCEPT	the	page’s	“Pending”,	“Modified”,	or	
“Permission	RestricHon”	state	is	cleared	and	the	page	becomes	accessible	to	
the	enclave.	



ENCLU LEAF FUNCTIONS ,EACCEPTCOPY


•  This	leaf	funcHon	must	be	executed	from	within	an	enclave.	It	copies	the	
contents	of	an	exisHng	EPC	page	into	an	uniniHalized	EPC	page	that	was	
created	by	EAUG.	The	operaHon	receives	three	input	parameters,	a	pointer	to	
the	target	page	in	EPC,	a	pointer	to	the	page’s	new	security	aGributes,	and	a	
pointer	to	the	page’s	new	content.	A*er	a	successful	execuHon	of	
EACCEPTCOPY	the	page’s	“Pending”	state	is	cleared	and	the	page	becomes	
accessible	for	the	enclave	



ENCLU LEAF FUNCTIONS, EMODPE 


•  	This	leaf	funcHon	must	be	executed	from	within	an	enclave.	It	
extends	the	access	rights	associated	with	an	exisHng	EPC	page	in	
the	running	enclave.	The	operaHon	receives	two	input	parameters,	
a	pointer	to	the	target	page	in	EPC,	and	a	pointer	to	the	page’s	
new	security	aGributes.	The	operaHon	will	fail	if	it	aGempts	to	
restrict	permissions	of	the	page.	Since	the	execuHon	happens	from	
within	the	enclave,	it’s	trusted	and	takes	effect	immediately.	



MANAGING PAGE TABLE TRANSLATIONS




ENCLAVE EXCEPTION HANDLING ENHANCEMENTS


•  the	cause	of	the	AEX	is	stored	in	the	
EXITINFO	field	in	the	SSA.	

•  If	SECS.MISCSELECT.EXINFO	bit	is	set	
by	enclave	writer,	the	processor	saves	
#PF	and	#GP	informaHon	into	the	
EXINFO	structure	



4.5 EPCM-INDUCED MEMORY FAULT REPORTING


•  A	#PF	excepHon	is	generated	
•  A	bit	in	the	Page	Fault	Error	Code	(PFEC)	indicates	that	the	page	
fault	was	due	to	EPCM	access	checks.	This	bit	is	located	at	bit	
posiHon	15	and	called	“SGX”	



SUMMARY AND RELATED WORK


•  New	instrucHons	to	the	SGX1	provide	beGer	so*ware	
development	environment	while	maintaining	the	security	of	the	
enclave.	The	SGX2	instrucHons	enable	beGer	protecHon	of	
proprietary	code	which	can	be	loaded	and	then	protected	using	
the	EPCM.	

•  Allow	for	dynamic	memory	and	threading	support		
•  Support	dynamic	allocaHon	of	library	pages	in	the	library	OS	
environment.	



End	of	Presenta4on	


