
Cyber Moving Targets

Yashar Dehkan Asl

Introduction
An overview of different cyber moving target techniques, their threat models,
and their technical details.

Cyber moving target technique:
•  Defend a system

•  Increase the complexity of cyber attacks

 * Less homogeneous

 * Less static

 * Less deterministic

Moving Target Techniques
1.  Dynamic Runtime Environment
 Address Space Randomization
 Instruction Set Randomization

1.  Dynamic Software

2.  Dynamic Data

3.  Dynamic Platforms

4.  Dynamic Networks

Address Space Randomization

Address Space Layout Permutation

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Defends against buffer overflow attacks

Description:
Performs stack randomization at both the user and kernel levels
Machine running programs are protected from code or control injection

Cont.

DieHard

Threat Model:

Attack Techniques Mitigated: Code and Control Injection

protects the heap from indirect buffer overflow attacks

Description:
DieHard attempts to defend against four classes of vulnerabilities that could lead
to program crash or code/control injection: invalid frees, buffer overflows,
dangling pointers, and uninitialized reads.

Cont.

Instruction Level Memory Randomization

Threat Model:

Attack Techniques Mitigated: Code and Control Injection

Defends against buffer overflow attacks on the stack and heap from an
adversary that can provide arbitrary input to a vulnerable program.

Description:
Randomizes both the stack and heap. The randomization takes the form of a
program that transforms an executable into a randomized version that has the
same behavior.

Cont.

Operating System Randomization

Threat Model:

Attack Techniques Mitigated: Code and Control Injection

Attempts to defend against buffer overflow attacks through stack randomization
as well as decrease the likelihood of injected code successfully running through
library and system call randomization.

Description:
The authors use three different techniques to add randomness to the program
environment: stack randomization, system call randomization, and movement of
libc

Cont.

Function Pointer Encryption

Threat Model:

Attack Techniques Mitigated: Code and Control Injection

Defends against control injection through indirect buffer overflow attacks on the
heap

Description:
Prevent indirect buffer overflow attacks by making it difficult for the attacker to
overwrite a function pointer with a chosen value.

Instruction Set Randomization

G-Free

Threat Model:

Attack Techniques Mitigated: Control Injection

Mitigate ROP attacks against executables compiled with the modified compiler.

The first step to stopping ROP is eliminating all misaligned free branch
instructions.

The second protection mechanism used is a careful encryption of the return
pointer on the stack.

Cont.

Practical Software Dynamic Translation

Threat Model:

Attack Techniques Mitigated: Code Injection

Protects against code injection into running binaries from all vectors

Description:
This scheme “slow execution” problem by using a very lightweight virtual
machine, and the weak encryption function problem by switching to AES for
encryption.

Cont.

RandSys

Threat Model:

Attack Techniques Mitigated: Code and Control Injection

Defends against code injection and control injection from buffer overflow attacks
on the stack and heap.

Description:
For ISR, it implements system call randomization between user space and
kernel space.

For ASLR, it implements library re-mapping and function randomization.

Cont.

Randomized Instruction Set Emulation

Threat Model:

Attack Techniques Mitigated: Code Injection

This method is targeted at stopping external binary code injection into an
executing program.

Description:
It scrambles the instruction set at load-time and descrambles them at runtime.

Cont.

SQLRand

Threat Model:

Attack Techniques Mitigated: Code Injection

Aims to protect against SQL injection attacks in situations where the query
depends partially on untrusted input.

Description:
The SQL language is randomized so that any code that was injected will not run.

Cont.

Against Code Injection with System Call
Randomization
Threat Model:

Attack Techniques Mitigated: Code Injection

Protects against injection of code into an application with a buffer overflow
vulnerability.

Description:
Every system call number is replaced by a randomly chosen pseudonym.

Dynamic Software

Software Diversity Using Distributed Coloring
Algorithms

Threat Model:

Attack Techniques Mitigated: Code Injection

Reduces the number of machines an attacker can successfully compromise in a
network using code injection attacks.

Description:
This meta-technique involves taking existing code diversity techniques and
applying them across an entire network.

Cont.

Security Agility for Dynamic Execution
Environments

Threat Model:

Attack Techniques Mitigated: Exploitation of Trust

Aims to mitigate system and network intrusions at a high level by dynamically
modifying security policies.

Description:
The authors describe and implement a software toolkit that allows applications
to be developed around the idea of dynamically changing security policies.

Cont.

Proactive Obfuscation

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Aims to mitigate buffer overflows and other injection attacks on network visible
services.

Description:
Creates multiple copies of each service executable, randomized differently. The
randomization used can be any of the other executable randomization
techniques we have described such as ISR, ALSR, or system call randomization

Cont.

Program Differentiation

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

This technique mitigates buffer overflow attacks on remote services.

Description:
The authors aim to design a secure mobile phone platform that is not vulnerable
to remote attack through buffer overflow exploits.

Cont.

Reverse Stack Execution in a Multi-Variant
Execution Environment

Threat Model:

Attack Techniques Mitigated: Code Injection
Detects buffer overflows on the stack and prevents exploitation of them through
stack smashing.
Description:
The authors propose a very simple form of multi-variant execution with two
replicas where one replica runs with the stack growing upwards and the other
runs with the stack growing down.

Dynamic Data

Data Diversity Through Fault Tolerance
Techniques

Threat Model:

Attack Techniques Mitigated: Resource

This technique was not designed to fight malicious input directly but it is more
focused on unintentional faults.

Description:
Aims to increase the fault tolerance of an application by reevaluating the input to
a program using a different algorithm.

Cont.

Redundant Data Diversity

Threat Model:

Attack Techniques Mitigated: Resource and Code Injection

Aims to help mitigate attacks that target specific data inside of an application by
way of malicious input.

Description:
This technique is a variation of the N-variant programming technique. In
involves running multiple copies of a program that each run transformations of
the original data being protected without having to rely on secrets.

Cont.

Data Randomization

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Helps protect against code injection attacks by randomizing any code injected
into the program.

Description:
This is a compiler-based technique that provides probabilistic protection by
randomizing all the data that it stores in memory.

Cont.

End-to-End Software Diversification

Threat Model:

Attack Techniques Mitigated: Code Injection and Exploitation of
Authentication

This technique has the potential to defend against different levels of code
injection as well as some authentication attacks.

Description:
The idea of this technique is to compose many different randomization methods
and apply them to aspects of a service that does not affect the functionality of
the program.

Dynamic Platforms

Security Agility Toolkit

Threat Model:

Attack Techniques Mitigated: Exploitation of Trust

Helps mitigate the damage that can be done on a system by restricting the
access an application or process currently holds in the event of attack detection.

Description:
Provides a toolkit to wrap around executables. It allows the injection of greater
access control mechanisms with the ability to change them during program
runtime.

Cont.

Genesis

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Defends against different threats depending on how it is implemented. If it is
implemented with ISR, it can defend against code injection attacks.

Description:
This technique involves applying runtime software transformations to a program.
The program is run in an application-level VM called Strata.

Cont.

Multi-Variation Execution

Threat Model:

Attack Techniques Mitigated: Code Injection

Combats code injection attacks by having each running variant use a different
system call mapping and unpredictable stack direction.
Description:
Involves running multiple variations of the same program. A separate monitoring
program monitors all variations. The level of monitoring can vary from each
program having the same result down to checking each instruction executed.

Cont.

Diversity Through Machine Descriptions

Threat Model:

Attack Techniques Mitigated: Code Injection

This technique is meant to mitigate mass code injection attacks. Each system
would potentially need their own custom exploit to work because of all the
varying system modifications and configurations.

Description:
Involves using a VM and compiler machine descriptions to create a diverse set
of architectures.

Cont.

N-Variant Systems

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

The instruction set tagging variant gives each running variant their own
instruction set. Since each variant is passed the same input, this will help
mitigate code injection attacks because the attack might succeed on one variant
but would presumably fail on another.

Description:
The idea behind this technique is to run multiple variants of the same application
simultaneously without relying on anything to be secret.

Cont.
Trusted Dynamic Logical Heterogeneity System

Threat Model:

Attack Techniques Mitigated: Code Injection, Control Injection, Scanning,
and Supply Chain

This technique can help mitigate a OS and architecture dependent attacks. Since
the application is migrating between systems with different libraries, architectures,
and layouts, it is more difficult to construct exploits that will work under every
platform.

Description:
The Trusted dynAmic Logical hEterogeNeity sysTem (TALENT) is a technique that
involves making a running application migrate between different platforms while
preserving the state of that application.

Cont.

Intrusion Tolerance for Mission-Critical
Services

Threat Model:

Attack Techniques Mitigated: Resource

This technique combats resource attacks such as DoS and data integrity
attacks. It mitigates the impact of DoS attacks by trying to ensure there are
enough resources on a platform to run the service.

Description:
Aims to make critical web services more survivable in the face of attack.

Cont.

Generic Intrusion-Tolerant Architecture for
Web Servers

Threat Model:

Attack Techniques Mitigated: Code Injection, Control Injection, and
Scanning

Helps reduce the attack surface of the services by not making them directly
accessible from the outside, limiting the types of traffic that can reach it, and
running on multiple diverse systems.

Description:
Aims to be a system capable of diagnosing issues, repairing itself, and
reconfiguring itself in order to continue to provide a service in the event of
attack.

Cont.

Self-Cleansing Intrusion Tolerance

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

This technique does not detect any attacks but assumes the system is
continually under attack.

Description:
The self-cleansing intrusion tolerance (SCIT) technique aims to decrease the
exposure time of a system by rotating it with copies.

Cont.

Genetic Algorithm for Computer
Configurations

Threat Model:

Attack Techniques Mitigated: Scanning

The evolution of configurations over time effect the lifetime of exploits and the
varying configurations amongst systems helps prevent exploits from working
against multiple machines.

Description:
Aims to find more secure configurations of systems over time using ideas from
genetics.

Cont.

Moving Attack Surface for Web Services

Threat Model:

Attack Techniques Mitigated: Code Injection, Control Injection, and
Scanning

Can help mitigate a variety of attacks. Since the service is being served
randomly between systems with different frameworks, libraries, architectures,
virtualization technologies, and layouts, it is more difficult to construct exploits
that will work under every platform.

Description:
This technique employed diversification at different levels of a system and
across many systems to create a varying attack surface across all the systems.

Cont.

Lightweight Portable Security

Threat Model:

Attack Techniques Mitigated: Code Injection and Control Injection

Helps mitigate persistent threats on a system by ensuring the OS boots into a
clean and known-good state

Description:
This technique protects a user session by booting into a known good and clean
state. There are two primary use cases for this technique.

Dynamic Networks

Dynamic Network Address Translation

Threat Model:

Attack Techniques Mitigated: Scanning, Resource, Spoofing, and Data
Leakage

This technique assumes the hosts and entities employing this technique are
safe. It can help mitigate scanning attacks by obfuscating various parts of
network packet headers but not the payload of the packets.

Description:
Dynamic Network Address Translation (DYNAT) is a protocol obfuscation
technique. The idea is to randomize parts of a network packet header.

Cont.

Revere

Threat Model:

Attack Techniques Mitigated: Resource, Spoofing, and Data Leakage

This technique can help protect against a couple of classes of attacks to some
degree. It helps protect against resource attacks like denial of service or
manipulating content on the network.

Description:
Revere is a technique that involves creating an open overlay. An overlay
network is an example of a dynamic network in that it can change paths,
reconfigure, and respond to links or nodes going down dynamically.

Cont.

Randomized Intrusion-Tolerant Asynchronous
Services

Threat Model:

Attack Techniques Mitigated: Resource, Exploitation of Privilege/Trust,
Scanning

This technique is meant to impede an attacker from manipulating messages on
the network or taking a service offline.

Description:
Randomized Intrusion-Tolerant Asynchronous Services (RITAS) is a technique
that builds a set of fault-tolerant consensus-based protocols on top of TCP and
the IPSec protocol.

Cont.

Network Address Space Randomization

Threat Model:

Attack Techniques Mitigated: Resource and Scanning

This technique was designed to mitigate and slow the effects of an IP address
hitlist-based worm.

Description:
Network Address Space Randomization (NASR) is a technique that involves
changing the IP address of systems more frequently.

Cont.

Mutable Networks

Threat Model:

Attack Techniques Mitigated: Resource and Scanning

The shifting IP addresses would make it more difficult for an attacker launching
denial of service type attacks against individual systems in the network.

Description:
A Mutable Network (MUTE) is a technique that involves changing IP addresses,
port numbers, and routes to destinations inside of a network.

