
Industry Practice of JavaScript Dynamic Analysis on WeChat
Mini-Programs

Yi Liu†, Jinhui Xie‡, Jianbo Yang‡, Shiyu Guo‡, Yuetang Deng‡, Shuqing Li†, Yechang Wu†, Yepang Liu†∗
†Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China

{11610522,lisq2017,11711918}@mail.sustech.edu.cn,liuyp1@sustech.edu.cn
‡Tencent, Inc., China

{hugoxie,xiaotuoyang,whiteguo,yuetangdeng}@tencent.com

ABSTRACT
JavaScript is one of the most popular programming languages.
WeChat Mini-Program is a large ecosystem of JavaScript applica-
tions that runs on the WeChat platform. Millions of Mini-Programs
are accessed byWeChat users every week. Consequently, the perfor-
mance and robustness of Mini-Programs are particularly important.
Unfortunately, many Mini-Programs suffer from various defects
and performance problems. Dynamic analysis is a useful technique
to pinpoint application defects. However, due to the dynamic fea-
tures of the JavaScript language and the complexity of the runtime
environment, dynamic analysis techniques were rarely used to im-
prove the quality of JavaScript applications running on industrial
platforms such as WeChat Mini-Program previously. In this work,
we report our experience of extending Jalangi, a dynamic analy-
sis framework for JavaScript applications developed by academia,
and applying the extended version, named WeJalangi, to diagnose
defects in WeChat Mini-Programs.WeJalangi is compatible with ex-
isting dynamic analysis tools such as DLint, Smemory, and JITProf.
We implemented a null pointer checker on WeJalangi and tested
the tool’s usability on 152 open-source Mini-Programs. We also
conducted a case study in Tencent by applying WeJalangi on six
popular commercial Mini-Programs. In the case study,WeJalangi
accurately located six null pointer issues and three of them haven’t
been discovered previously. All of the reported defects have been
confirmed by developers and testers.

KEYWORDS
JavaScript, Program Analysis

1 INTRODUCTION
JavaScript is becoming more and more popular among develop-
ers [10]. The ecosystem of JavaScript is surprisingly active and mil-
lions of JavaScript dependencies are downloaded from npm.js [9]
every week. However, there is another side regarding the rapid

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3421842

evolution of JavaScript. For example, there emerge lots of new fea-
tures and revisions of JavaScript (e.g. definitions of modules and
classes, promise embedded library, generators, and proxies) [11, 12]
in recent years. As a consequence, the testing tools are required
to update promptly to be compatible with such changes. WeChat,
a popular messenger application with over one billion monthly
active users [2], also uses JavaScript for its Mini-Programs [18] and
Mini-Games [17], which are essential components of the WeChat
ecosystem to bridge users and services [19].1 Nowadays, there are
millions of active Mini-Programs [15] on the WeChat platform, pro-
viding various services to users. For example, during the outbreak
of COVID-19, many organizations rely on WeChat Mini-Programs
to collect their members’ health information and notify the users
to take precautions once a potential danger is discovered. Thus, the
robustness and performance of WeChat Mini-Programs become
vital for both users and program publishers.

Unfortunately, we noticed through WeChat Mini-Program mon-
itoring system that millions of crashes occurred in these programs
every day, which seriously affects users’ experience. Such a huge
number of crashes motivated us to apply JavaScript program anal-
ysis tools to help with crash diagnosis and we attempted to utilize
a popular dynamic analysis tool developed by academia, Jalangi,
to analyze Mini-Programs [13]. However, we found that Jalangi
cannot be directly applied to WeChat Mini-Programs due to several
limitations. Firstly, many mini-programs leverage new language
features introduced in ES6 while Jalangi only supports up to ES5.
Secondly, Jalangi’s instrumentation significantly increases the size
of the Mini-Programs, which could cause serious performance prob-
lems in dynamic analysis. Thirdly, WeChat Mini-Program platform
is a customized JavaScript runtime while Jalangi is implemented
for the standard one. Therefore, Jalangi fails to analyze many Mini-
Programs.

In this work, we built a dynamic program analysis tool, named
WeJalangi, by modifying Jalangi to pinpoint defects in WeChat
Mini-Programs. We make the following contributions:
• Webuilt a scalable JavaScript dynamic analysis framework, named
WeJalangi, by extending Jalangi and applied it in industrial con-
texts.WeJalangi is fully compatible with existing JavaScript anal-
ysis tools (e.g. taint anaylsis [14], JIT profiler [4], code smell
detector [5], and memory checker [6]) based on Jalangi [13]. To
our best knowledge, there is no existing work reporting experi-
ences of applying dynamic analysis techniques to improve the

1The only difference between Mini-Programs and Mini-Games is that they utilize
different JavaScript SDKs. For ease of presentation, in this paper, we refer to both of
them as WeChat Mini-Programs.

1189

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 05:50:10 UTC from IEEE Xplore. Restrictions apply.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yi Liu, et al.

Figure 1: The workflow of WeJalangi

quality of JavaScript applications running on industrial platforms.
Our work is the first to do so.

• We evaluated the usefulness and effectiveness ofWeJalangi on
152 real-world WeChat Mini-Programs and manually analyzed
the results of six popular Mini-Programs. The manual evalua-
tion shows that WeJalangi can pinpoint null pointer exceptions
in all of the six evaluated subjects and help developers to find
out the root cause of the defects. Besides, we also found three
previously-unnoticed bugs, which have already been confirmed
by developers and testers.

2 OVERVIEW OF WEJALANGI
2.0.1 The Size of Instrumented SUT. In a nutshell, we aimed at
building an extensible and robust dynamic analysis framework for
WeChat Mini-Programs. We implemented the framework on top of
Jalangi [13], a JavaScript-based dynamic analysis framework, with
more than five thousand lines of extra code. Figure 1 demonstrates
the main steps of WeJalangi’s workflow as follows. First, the client
(e.g. Mini-Programs’ testing platform) sends requests to the proxy
server to retrieve the System Under Test (SUT). As a consequence,
WeJalangi instruments the source code of the SUT in the fly and
forwards the instrumented SUT. Finally, when executing the SUT in
the client, the callback functions (also known as hooks) inWeJalangi
are executed to detect the defects, which developers are interested
in. Once such defects are found, the context information including
call stack and arguments are reported to the log server byWeJalangi
for further analysis. Note that WeJalangi only instruments the
SUT, and it utilizes several techniques such as scope binding and
constructor prototype holding to guarantee the functionalities of
the SUT.

We briefly summarize the characteristics of WeJalangi as follow-
ing:
• Compatible with ES6 features: JavaScript standards change
rapidly. But the state-of-the-art framework Jalangi [13] only sup-
ports ES5.WeJalangi has a full support for ES6, which means it
can be directly applied to those modern JavaScript applications
with the latest JavaScript language features.

• Efficient analysis: WeJalangi utilizes several accelerating tech-
niques including code minimization and short-circuit evaluation.
It maintains the minimal runtime for analysis. According to our
evaluation, WeJalangi significantly outperforms Jalangi.

• A robust dynamic runtime:WeJalangi works for most of the
runtimes such asWeChat Mini-Program, Node.js [8], Chrome, etc.
For example, we made many modifications to ensure WeJalangi
could work normally in the runtime of WeChat Mini-Programs.

Nevertheless, we still strengthened multiple hooks to make it
adaptive to different JavaScript runtimes.

3 IMPLEMENTATION
We built WeJalangi on top of Jalangi [13] for industrial use. To our
best knowledge, it is the first time that JavaScript dynamic analysis
technology has been introduced to industry practice. In this sec-
tion, we address the challenges and deliver technical solutions for
utilizingWeJalangi to analyze modern and large JavaScript appli-
cations. Note that WeJalangi could successfully analyze WeChat
Mini-Program SDK, which contains more than 100,000 lines of code.

3.1 Instrumentation
Instrumentation is a core step for dynamic analysis. The main idea
of instrumentation is to inject various callback functions from the
library of WeJalangi into specific nodes on the abstract syntax
tree (AST) of the SUT by traversing the AST. As a result, those
callback functions will be executed during SUT execution and the
runtime information could be tracked and modified in a middle
layer (proxy server) between the SUT and the client. In the original
implementation of Jalangi, functions will be explicitly hoisted to
remain the same scope. We observed some cases, in which the
functionality of the SUT was broken due to the mis-hoisting of
Jalangi. In our implementation, we remained the context and kept
the scope unchanged. Therefore, no specific hoisting is required
anymore.

1 function Rt(iid, val, fIid) {
2 var aret;
3 if (sandbox.analysis && sandbox.analysis._return) {
4 aret = sandbox.analysis._return(iid, val, fIid);
5 if (aret) {
6 val = aret.result;
7 }
8 }
9 returnStack.pop();
10 returnStack.push(val);
11 return (lastComputedValue = val);
12 }

Listing 1: Return statement hook of WeJalangi
After instrumentation, original semantic information is reserved,
and more information is passed to callback functions as arguments.
For instance,WXJ$.Rt(iid, return_value, function id) indicates that it
is a return hook. As for each argument, iid records the location id of
the instruction; return_value shows the original return value of the
instrumented FUT(function under test); function id indicates the
identifier of the instrumented FUT. Details ofWXJ$.Rt are shown
in Listing 1.

3.2 Supporting Latest Language Features
1 class Foo {
2 property = 1;
3 }
4 \\ Thrown by Jalangi
5 \\ Unexpected token (2:6)

Listing 2: Class property in ES6 language features

JavaScript changed a lot since ES6 language features were pub-
lished [11, 12]. Unfortunately, many research tools couldn’t analyze
modern JavaScript directly since they are implemented based on

1190

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 05:50:10 UTC from IEEE Xplore. Restrictions apply.

Industry Practice of JavaScript Dynamic Analysis on WeChat Mini-Programs ASE ’20, September 21–25, 2020, Virtual Event, Australia

The Size of Instrumented SUT (LoC)

Jalangi WeJalangi

1K

10K

100K

1M

10M

Figure 2: The Size of Instrumented SUT (LoC)

Number of Loops WeJalangi (ms) Jalangi (ms)
1,000 79 269
10,000 469 2,452
100,000 4,553 25,082

Table 1: The performance ofWeJalangi and Jalangi on a sim-
ple test case

Jalangi [7, 13], which is designed for ES5. When encountering a
program with ES6 features, Jalangi fails to parse class property
tokens with ES6 standard and throws an exception as shown in
Listing 2. The subsequent execution will be terminated immediately
and no output could be generated.

To makeWeJalangi compatible with the latest language features
of JavaScript, we transfer the original JavaScript parser into the
Babel.js [1] parser, which is well maintained and scalable. Once a
new feature has been proposed, a plugin can be easily implemented
and integrated with the current parser. In the usability validation
conducted in Section 4, we analyzed 152 Mini-Programs andWe-
Jalangi can perform well in these programs while Jalangi can only
analyze 56 of them. It demonstrates thatWeJalangi performs better
in supporting modern JavaScript language features.

3.3 Performance Optimization
Performance is another critical issue when adaptingWeJalangi into
industrial practice. We focus on two different aspects of perfor-
mance as follows:
3.3.1 The Size of Instrumented SUT. Keeping a small size of an
instrumented SUT is essential due to the high cost of network
bandwidth and the limitations of computational resources on vari-
ous devices. A smaller-sized SUT costs lower network traffic and
requires less time for JavaScript compilers to parse the source code.

To optimize the size of the instrumented SUT, we utilized the
JavaScript code module bundler, Webpack [16]. Webpack is a well-
maintained module bundler that many plugins have been made to
extend its functionalities. Besides, optimization for specific AST
patterns such as the domain-specific language defined in WeChat’s
scripts of WeChat Mini-Program could be quickly done by im-
plementing a webpack plugin. On the other hand, we also make
WeJalangi not instrument on all AST nodes like Jalangi to further
reduce the size of instrumented SUT. For AST nodes like empty
statements, field read/write and so on, WeJalangi does not perform
instrumentation.

3.3.2 Execution Performance. Execution performance is critical
when applying WeJalangi to WeChat Mini-Program. We optimized
WeJalangi to only instrument the selected AST nodes as introduced
in Section 3.3.1, which also reduces execution time. Moreover, We-
Jalangi will not insert try-catch blocks for functions as Jalangi
does in the instrumentation process, saving efforts made to reserve
contexts. As Table 1 shows,WeJalangi with default settings outper-
forms Jalangi by at least 50%.

3.4 Robust Analysis Runtime

1 function HasOwnProperty(obj, prop) {
2 /**
3 * Fix that symbol can not be converted into string
4 */
5 + if (typeof prop === "symbol") {
6 + return CALL.call(HAS_OWN_PROPERTY, obj, prop);
7 + }
8
9 // Throws "Uncaught TypeError: Cannot convert a Symbol value to a

string"
10
11 return (prop + "" === '__proto__') || CALL.call(HAS_OWN_PROPERTY,

obj, prop);
12 };

Listing 3: Concat symbol primitive with empty string

Multiple unknown bugs existed in the original Jalangi imple-
mentation. While applying Jalangi to WeChat Mini-Program, we
made lots of efforts to fix unknown bugs. For example, symbol is
a new primitive type introduced in ES6 language standard. But
the implementation of original Jalangi combines symbol variable
with an empty string (that is, "") as shown in Listing 3, which is
forbidden in ES6 syntax. Thus, a runtime exception is thrown, and
the analyzers of runtime crash. To fix this issue, we implemented
WeJalangi to check the type of property at first and invoke directly
if it is a symbol variable.

1 function callAsNativeConstructorWithEval(Constructor, args) {
2 var a = [];
3 for (var i = 0; i < args.length; i++)
4 a[i] = 'args[' + i + ']';
5 var eval = EVAL_ORG;
6 return eval('new Constructor(' + a.join() + ')');
7 }

Listing 4: Original implementation of calling native
constructor in Jalangi

WeChat Mini-Program is a vast JavaScript application ecosystem
with millions of users online every day. The runtime of WeChat
Mini-Program has been modified to improve user experience, secu-
rity, and performance. To analyze Mini-Program, we made many
modifications to WeJalangi. A typical example is that: eval is a
native function used to execute JavaScript code snippets dynami-
cally supported by most of the JavaScript runtimes including V8
and Node.js. For security reasons, it has been removed by WeChat
Mini-Program’s runtime. But the invocation process of new opera-
tions (creating different instances of functions) in original Jalangi
requires the support of eval, as shown in Listing 4. When construc-
tors are called, Jalangi throws an exception with the error message
"Uncaught ReferenceError: eval is not defined" and the SUT behaves
unexpectedly. To make up for the lack of built-in eval function,

1191

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 05:50:10 UTC from IEEE Xplore. Restrictions apply.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yi Liu, et al.

Name of Mini-Program Error Message Steps
ELSB Cannot set property active of null at setTimeout callback function Enter start menu

Table 2: Bug report for a WeChat Mini-Program

WeJalangi flattens the arguments and calls the constructor directly,
which will fix the issue neatly. By doing so, we can finally utilize
WeJalangi to analyze WeChat Mini-Programs.

4 USABILITY VALIDATION
Null pointer is a common kind of defects in JavaScript applications.
We evaluated the crash records of WeChat Mini-Programs from 1st
May 2020 to 30th May 2020 and found that null pointer problems
took more than 10% of these records every day. On top ofWeJalangi,
we implemented a null pointer checker for JavaScript applications
and used it to test the tool’s usability on 152 randomly sampled
open-source Mini-Programs.

After that, we collected six popular and commercial WeChat
Mini-Programs (HLDDZ, TYZGXQ, ELSB,MHTCS, TTDDZ, FKDC),
which have more than 100,000 lines of code and more than 100,000
active users to perform a deeper evaluation manually. All of the
null pointer defects found by our checker for these programs (each
program has been found one defect) have been pinpointed and
confirmed by developers and testers. Half of these defects were not
recognized by original testing tools previously since these excep-
tions were caught by the framework and errors were thrown in
other places, which makes it confusing and hard to find the real
fault locations. In summary,WeJalangi could be applied to industry
practice and help developers to pinpoint null pointer defects.

4.1 Case Study
1
2 // gameThirdScriptError
3 Cannot set property 'active' of null at setTimeout callback
4 // trace ommitted
5 at r.initOfficialState

Listing 5: The stacktrace of manually replaying
1
2 SDK Version: 2.9.4
3 appId: wxxxx4xxxebf
4 brand: devtool
5
6 errorMsg: Undefined Object by calling constructor at

cocos2d-js-min:362983
7 contexts: [{ args:[...], iid:361405} ...]
8 iid: 362983
9
10 //start line, start column, end line, end column
11 iid-location: [6931, 17, 6931, 24]

Listing 6: The context information collected in log server
1
2 function _updateGraphics() {
3 // fix here
4 + if (!this._graphics)
5 + this._createGraphics();
6 var t= this.node, e = this._graphics;
7 e.clear(!1);
8 }

Listing 7: Fixing for the defect with the help of context
information

We conducted a case study on ELSB, one of the six selected Mini-
Programs introduced above. To boost the analysis process, we gath-
ered the bug report, which developers sent to testers for help when
they encountered bugs, as shown in Table 2. It contains WeChat
Mini-Program SDK Version, application ID, error message, and
replay procedure.2

Following the procedure shown in Figure 2, we manually repro-
duced the null pointer issue (shown in Listing 5). Once the defect
has been reached, the callback functions would provide synthesized
context information and send it to the log server. Then, with the
pieces of information in the context log, we could easily find the
fault location via an instruction ID map generated by WeJalangi
(shown in Listing 6). Finally, with the help of context information,
we fixed the defect and found the root cause: The game engine does
not initialize the graph instance.

5 RELATEDWORK
As JavaScript applications become increasingly popular and so-
phisticated, JavaScript application analysis is becoming more and
more challenging. In the last few years, several techniques have
been proposed in the literature to achieve automated analysis of
JavaScript applications. In this section, we briefly discuss the most
notable existing solutions and their limitations, which motivate the
need for a practical JavaScript dynamic analysis frameworks.

Dynamic Analysis is a notable paradigm for analyzing JavaScript
applications [3]. Existing approaches like Dlint [5], JITProf [4],
and Smemory [6] have been widely used to analyze the defects
of JavaScript applications. Unfortunately, they are all based on
Jalangi [13], which cannot be directly applied to industry practice.
To our best knowledge,WeJalangi is the first framework applied
to industry practice, and all of the tools mentioned above can be
compatible with WeJalangi.

6 CONCLUSION AND FUTUREWORK
In this work, we builtWeJalangi, an extensible dynamic analysis
framework for JavaScript applications based on Jalangi. We have
successfully applied WeJalangi on WeChat Mini-Programs and
demonstrated its effectiveness and efficiency. In the future, we
plan to further evaluateWeJalangi in industrial settings and build
domain-specific automated testing tools based on it.

ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (Grants #61932021 and #61802164). The authors would like
to thank developers from Tencent, Inc. and Chao Li for providing
valuable suggestions and comments for evaluating WeJalangi.

2Some confidential information is not shown in the table.

1192

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 05:50:10 UTC from IEEE Xplore. Restrictions apply.

Industry Practice of JavaScript Dynamic Analysis on WeChat Mini-Programs ASE ’20, September 21–25, 2020, Virtual Event, Australia

REFERENCES
[1] Babel.js. 2020. Babel. https://babeljs.io/
[2] businessofapps. 2020. WeChat Revenue and Usage Statistics (2020) - Business of

Apps. https://www.businessofapps.com/data/wechat-statistics/
[3] Liang Gong. 2018. Dynamic Analysis for JavaScript Code. Ph.D. Dissertation.

University of California, Berkeley, USA. http://www.escholarship.org/uc/item/
7n30n4kd

[4] Liang Gong, Michael Pradel, and Koushik Sen. 2015. JITProf: Pinpointing JIT-
unfriendly JavaScript Code. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York, NY, USA,
357–368. https://doi.org/10.1145/2786805.2786831

[5] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015. DLint:
dynamically checking bad coding practices in JavaScript. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore,
MD, USA, July 12-17, 2015, Michal Young and Tao Xie (Eds.). ACM, 94–105.
https://doi.org/10.1145/2771783.2771809

[6] Simon Holm Jensen, Manu Sridharan, Koushik Sen, and Satish Chandra. 2015.
MemInsight: Platform-Independent Memory Debugging for JavaScript. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE 2015). Association for Computing Machinery, New York, NY, USA,
345–356. https://doi.org/10.1145/2786805.2786860

[7] Blake Loring, Duncan Mitchell, and Johannes Kinder. 2017. ExpoSE: practical
symbolic execution of standalone JavaScript. In Proceedings of the 24th ACM
SIGSOFT International SPIN Symposium on Model Checking of Software, Santa
Barbara, CA, USA, July 10-14, 2017, Hakan Erdogmus and Klaus Havelund (Eds.).
ACM, 196–199. https://doi.org/10.1145/3092282.3092295

[8] Node.js. 2020. NodeJs Foundation. https://nodejs.org/
[9] NPM.js. 2020. NPM. https://www.npmjs.com/

[10] Stack Overflow. 2020. Stack Overflow Developer Survey 2019. https://insights.
stackoverflow.com/survey/2019

[11] Aikaterini Paltoglou, Vassilis E. Zafeiris, Emmanouel A. Giakoumakis, and N. A.
Diamantidis. 2018. Automated refactoring of client-side JavaScript code to ES6
modules. In 25th International Conference on Software Analysis, Evolution and
Reengineering, SANER 2018, Campobasso, Italy, March 20-23, 2018, Rocco Oliveto,
Massimiliano Di Penta, and David C. Shepherd (Eds.). IEEE Computer Society,
402–412. https://doi.org/10.1109/SANER.2018.8330227

[12] Axel Rauschmayer. 2015. Exploring ES6.
[13] Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. 2013.

Jalangi: a selective record-replay and dynamic analysis framework for JavaScript.
In Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE’13,
Saint Petersburg, Russian Federation, August 18-26, 2013, Bertrand Meyer, Luciano
Baresi, and Mira Mezini (Eds.). ACM, 488–498. https://doi.org/10.1145/2491411.
2491447

[14] Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders Møller, and
Michael Pradel. 2020. Extracting Taint Specifications for JavaScript Libraries. In
Proc. 42nd International Conference on Software Engineering (ICSE).

[15] TechCrunch. 2020. WeChat reaches 1M mini programs, half the size of
Apple’s App Store | TechCrunch. https://techcrunch.com/2018/11/07/
wechat-mini-apps-200-million-users/

[16] Webpack. 2020. Webpack. https://webpack.js.org/
[17] WeChat. 2020. WeChat Mini-Games. https://developers.weixin.qq.com/

miniprogram/en/introduction/
[18] WeChat. 2020. WeChat Mini-Programs. https://developers.weixin.qq.com/

minigame/en/introduction/
[19] WeChat. 2020. WeChat Mini-Programs. https://mp.weixin.qq.com/cgi-bin/wx

1193

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on July 16,2021 at 05:50:10 UTC from IEEE Xplore. Restrictions apply.

