
1

Speeding up Data Manipulation Tasks with Alternative
Implementations: An Exploratory Study

YIDA TAO, Shenzhen University, China
SHAN TANG, Shenzhen University, China
YEPANG LIU, Southern University of Science and Technology, China
ZHIWU XU, Shenzhen University, China
SHENGCHAO QIN, Teesside University, UK and Shenzhen University, China

As data volume and complexity grow at an unprecedented rate, the performance of data manipulation
programs is becoming a major concern for developers. In this paper, we study how alternative API choices
could improve data manipulation performance while preserving task-specific input/output equivalence. We
propose a lightweight approach that leverages the comparative structures in Q&A sites to extracting alternative
implementations. On a large dataset of Stack Overflow posts, our approach extracts 5,080 pairs of alternative
implementations that invoke different data manipulation APIs to solve the same tasks, with an accuracy
of 86%. Experiments show that for 15% of the extracted pairs, the faster implementation achieved >10x
speedup over its slower alternative. We also characterize 68 recurring alternative API pairs from the extraction
results to understand the type of APIs that can be used alternatively. To put these findings into practice,
we implement a tool, AlterApi, to automatically optimize real-world data manipulation programs. In the
1,267 optimization attempts on the Kaggle dataset, 76% achieved desirable performance improvements with up
to orders-of-magnitude speedup. Finally, we discuss notable challenges of using alternative APIs for optimizing
data manipulation programs. We hope that our study offers a new perspective on API recommendation and
automatic performance optimization.
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1 In [1]: import numpy as np

2

3 # Input data

4 In [2]: a = np.arange(1200.0).reshape((-1,3))

5

6 # Solution 1

7 In [3]: %timeit [np.linalg.norm(x) for x in a]

8 100 loops, best of 3: 4.23 ms per loop

9 Execution time 1

10 # Solution 2

11 In [4]: %timeit np.sqrt((a*a).sum(axis=1))

12 100000 loops, best of 3: 18.9 μs per loop

13 Execution time 2

14

15 # Verify that the two solutions have the same output

16 In [5]: np.allclose([np.linalg.norm(x) for x in a],np.sqrt((a*a).sum(axis=1)))

17 Out[5]: True

Fig. 1. Computing the magnitude of vectors using different NumPy APIs (excerpt from Stack Overflow post
9184560). One implementation is significantly faster than the other.

1 INTRODUCTION
Data manipulation is the process of extracting, filtering, and transforming unorganized raw data
for better readability and usablity. As data manipulation is becoming increasingly important in
this fast-developing era of AI and Big Data [42, 54], various tools and libraries have emerged to
support this type of task. Yet, the volume and complexity of data also grow at an unprecedented
rate [42]. As a result, developers are often challenged by performance problems in the development
of data manipulation programs, especially when the data is dynamic, subject to concept drift, and
expected to be processed within specified time constraints [42, 54]. Although upgrading hardware
or using more computing power could directly speed up data manipulations, such solutions are
often expensive or impractical.
We observed that a more feasible and economic approach to optimizing data manipulation

programs is to exploit software redundancy: for reliability and usability concerns, modern software
often offers multiple ways to complete the same tasks [23]. For this reason, developers have
the opportunity to boost program performance by replacing the usage of a library API (or API
sequence) with a faster alternative. Fig. 1 shows a real example. The code fragments at line 7
and line 11 both compute the magnitude of a given list of vectors, which is a common data
manipulation task. Yet, different APIs of NumPy, which is a popular Python library for array
manipulations [39], were used in these two solutions and the runtime difference is tremendous: the
one that uses numpy.ndarray.sum and numpy.sqrt is nearly 224x faster than the one that uses
numpy.linalg.norm.
We refer to code fragment pairs like line 7 and line 11 in Fig. 1 as alternative implementations,

which invoke alternative APIs to solve the same task by producing the same output (line 16) for
the same input (line 4). Developers could leverage alternative APIs as a cost-effective way to
speed up their data manipulation programs. Previous studies have also suggested that different
API usages could affect the performance in Java [31, 41], Androids [33–35], JavaScript [47], and
Rails applications [51]. However, few studied this problem in the domain of data manipulation.
Furthermore, the aforementioned studies mostly relied on predefined templates or manual efforts to
identify inefficient API usages and potential alternatives, which is hardly scalable or extensible. To
bridge this gap, we propose an approach to automatically identifying alternative implementations
and we focus on data manipulation implementations in this work.

Identifying alternative implementations for practical data manipulation tasks presents a unique
challenge, as developers typically do not keep alternative implementations in their code if one
implementation is already sufficient for the task. Even if alternative solutions are implemented
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by different developers or in different contexts, it is hard to determine whether they can indeed
be used to solve the same tasks. In fact, identifying alternative implementations in terms of
input/output equivalence is a special case of determining program equivalence, which is undecidable
in general [30]. Prior research has leveraged techniques such as data flow analysis [48] and random
testing [30] to detect functionally similar or equivalent programs.
In this paper, we tackle this challenge from a novel perspective. We observed that alternative

implementations are often discussed on Q&A sites such as Stack Overflow (SO for short), and such
discussions usually involve some sort of comparison between the alternatives (e.g., Fig. 1 compares
the execution time of two implementations). According to SO guidelines, users should post answers
that directly address the question. Nonconstructive or irrelevant answers might be downvoted or
even removed. For this reason, if two implementations are being compared in the same SO answer
post, they are likely to be alternatives solutions for the same task proposed in the corresponding
SO question post.
Based on the above observation, we propose an automatic approach to extracting alternative

implementations from the comparative structures in SO answer posts. Specifically, we consider
consecutive profiling statements and comparative natural-language sentences to be interesting com-
parative structures that are worth exploring. We aim to answer the following research questions:
• RQ1 (Effectiveness): How effective are comparative structures from SO posts at revealing
alternative data manipulation implementations?

• RQ2 (Performance): What is the runtime performance difference of alternative implemen-
tations?

• RQ3 (Characteristics): What are the characteristics of alternative data manipulation APIs?

• RQ4 (Usefulness): How can we leverage the knowledge of alternative APIs to optimize
real-world data manipulation programs?

We applied our approach on a dataset of 181,500 SO threads tagged with NumPy, Pandas and
SciPy, which are popular data manipulation libraries in the Python data science ecosystem [16].
Our approach extracted 5,933 candidate implementation pairs from the dataset. We validated the
input/output equivalence of these candidates via random testing and manual inspection, and found
that 5,080 (86%) are true alternative implementations. By executing these pairs experimentally,
we found that in 15% of the alternative implementations, the faster alternatives achieve a >10x
speedup over the slower implementations, which illustrates the potential benefits of leveraging
alternative implementations for performance optimization.

We abstracted API call sequences from the validated alternative implementations and identified
68 alternative API pairs that are mentioned in at least three SO posts. We manually characterized
these recurring alternative API pairs and made the following observations. First, 60% pairs (41/68)
involve APIs that are designed for similar types of tasks, whereas 40% pairs (27/68) involve concep-
tually different APIs that can only be used alternatively for certain tasks. Second, 18% (12/68) pairs
use a specific API as an alternative to a generic API, while 13% pairs (9/68) use a concrete API as
an alternative to a higher order API that takes a task-related function as an argument. Third, we
found that for 46% (31/68) pairs, the documentation of one API contains explicit reference (e.g.,
hyperlinks) to its alternative API. These findings shed light on the type of alternative APIs and the
reasons they can be used alternatively, which may help developers make better-informed decisions
on selecting data manipulation APIs.

To put our findings into practice, we implemented a tool, named AlterApi, which leverages the
knowledge of recurring alternative APIs to automatically optimize real-world data manipulation
programs written in Python. In our experiments, AlterApi generated 1,267 valid alternative
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Extracting from comparative 

structures (Section 2.2)

Validating input/output 

equivalence (Section 2.3)
API usage abstraction 

(Section 2.4)

Data collection 

(Section 2.1)

Candidate alternative 

implementation pairs
Validated alternative 

implementation pairs
Alternative API usage pairs

Fig. 2. Overview of the methodology.

implementations for 398 data manipulation programs collected from the Kaggle platform [6]. Our
profiling shows that 76% of the generated alternatives speed up the original implementations, with
a median speedup of 1.7x and a max speedup over 2000x. Finally, we discuss the generality of our
approach as well as the challenges of optimizing data manipulation programs with alternative APIs.
This work extends our previously published new idea paper [49]. We have made significant

improvements in this extension, including: (1) refining the approach and updating the dataset; (2)
conducting a more robust validation of alternative implementations; (3) experimentally reproducing
the profiling results reported on SO; (4) qualitatively characterizing alternative API pairs; (5)
applying the mined knowledge to optimize real-world programs; and (6) discussing the challenges
and generality of our approach with additional experiments. To summarize, this paper makes the
following contributions:

• To the best of our knowledge, this is the first work to extract, characterize, and profile
alternative data manipulation implementations. We provide empirical evidence that using
alternative APIs to speed up data manipulation tasks is a common practice, and that the
performance improvements can be substantial.

• We propose and implement a lightweight approach to automatically and effectively extracting
alternative implementations by leveraging the comparative structures in SO posts.

• Wequalitatively analyze the characteristics of alternative datamanipulation APIs and leverage
this knowledge to build a tool for automatic performance optimization, which achieves
promising results on realistic data manipulation programs.

• We released a replication package for this project to facilitate future research.1

2 METHODOLOGY
In this section, we introduce our research methodology of identifying alternative implementations
and APIs. As illustrated by Fig. 2, from the collected SO posts (Section 2.1), we first extract candidate
alternative implementations from the comparative structures (Section 2.2).We then leverage random
testing to validate whether the extracted candidates are true alternatives (Section 2.3). Finally, we
abstract API usages from the validated alternative implementations to identify alternative APIs
(Section 2.4).

1Replication package: https://sites.google.com/view/alterapi-artifacts/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://sites.google.com/view/alterapi-artifacts/


Speeding up Data Manipulation Tasks with Alternative Implementations: An Exploratory Study 1:5

Table 1. The SO dataset used in our experiments. The last two columns show the number of extracted
alternative implementation pairs and the number of validated pairs for each library.

Library # SO # SO # extracted # validated
threads answers pairs pairs

NumPy 64,468 72,517 2968 2,413
Pandas 118,356 122,355 3426 3,134
SciPy 14,581 13,854 59 31

2.1 Dataset
In this study, we focus on three data manipulation libraries: NumPy, Pandas, and SciPy. We select
these libraries mainly for three reasons. First, they are all core packages of the Python ecosystem
for scientific computing [39]. Second, they aim at solving different classes of problems and together
support various important tasks in data manipulations: Pandas provides high-level functions to
work with tabular or structured data [9]; SciPy provides common numerical routines in science and
engineering [15]; both libraries are built on top of NumPy, which is the fundamental package for
efficient array computations [8]. In addition, these libraries are extremely popular and widely used.
Stack Overflow recently reported that while Python is becoming the fastest-growing programming
language, much of its popularity can be ascribed to libraries like Pandas and NumPy, which are
among the top tags that are most often visited by Python users [45].

We used the official Stack Overflow data dump released on August 2019 as our data source and
collected 181,500 threads that have numpy, pandas, or scipy tags [18]. Table 1 shows the number
of SO threads and answer posts for each library.2 Note that to ensure the extracted information
is trustworthy, we consider only answer posts that are accepted or have positive scores (i.e., they
received more upvotes than downvotes).

2.2 Extracting Candidate Alternative Implementations
As mentioned in Section 1, we consider consecutive profiling statements and comparative natural-
language sentences as interesting structures that likely entail alternatives. We now describe how we
extract such information from each structure.

2.2.1 Extracting from Consecutive Profiling Statements. If a data manipulation task has multiple
solutions with different runtime performance, developers may profile these solutions in the same
context in order to select the most efficient one (e.g., Fig. 1). Based on this observation, we propose
to extract alternative implementations from consecutive profiling statements, which can be found
in code blocks that are encompassed by the <pre><code> html tags in SO answer posts.

The profiling statements we search for are those that execute timeit [12], which is the standard
Python profiling command that measures the execution time of small code snippets.3 Specifically,
the timeit command executes a given code snippet N times in a loop, repeats the loop R times,
and reports the best average of the R repetitions. The number of loops and repetitions can be
specified by developers or automatically determined by the timeit module during runtime [12].
We match patterns where timeit is used from the command line (python -m timeit "code
fragment"), from the Python interface (timeit.timeit("code fragment")), or from IPython

2The sum of SO threads for all libraries is larger than 181,500 since a thread might have multiple tags.
3We do not consider consecutive commands that profile memory usage (e.g., memit [5]), since we found very few SO answer
posts (0.0001%) containing consecutive memory profiling commands in our dataset, and most of them did not intend to
compare alternative implementations.
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1 a = np.arange(1000, dtype=np.double)

2 %timeit np.einsum('i->', a)

3 100000 loops, best of 3: 3.32 μs per loop

4 %timeit np.sum(a)

5 100000 loops, best of 3: 6.84 μs per loop

6

7 a = np.arange(10000, dtype=np.double)

8 %timeit np.einsum('i->', a)

9 100000 loops, best of 3: 12.6 μs per loop

10 %timeit np.sum(a)

11 100000 loops, best of 3: 16.5 μs per loop

Fig. 3. Code block from SO post 18365665. Line
4 and line 8 are not considered as consecutive
since line 7 alters the input data.

1 >>> %timeit df.values.sum()

2 100000 loops, best of 3: 6.27 μs per loop

3 >>> %timeit df.sum().sum()

4 10000 loops, best of 3: 109 μs per loop

5 >>> %timeit df.unstack().sum()

6 1000 loops, best of 3: 233 μs per loop

7 >>> %timeit df.stack().sum()

8 1000 loops, best of 3: 190 μs per loop

Fig. 4. Code block from SO post 32340834. The 4
consecutive implementations can all be used to sum
values in a dataframe. We extract 6 pairs of alterna-
tive implementations from this code block.

(%timeit code_fragment). According to their respective usage syntax [5, 19], we extract the code
fragment that is being profiled and the corresponding execution time, which is typically reported
right after the timeit statement in SO code blocks. For example, from the code block shown in
Fig. 1, we extract code fragments at line 7 and line 11 since they are being profiled by timeit
consecutively. We also extract 4.23 ms and 18.9 µs as the respective execution time. This runtime
information is used to analyze the performance differences between alternative implementations
(RQ2).

We consider two profiling statements to be consecutive if there is no non-timeit code statement
between them. Fig. 3 provides an example. In this code block, lines (2, 4) and lines (8, 10) are
consecutive profiling statements. However, between line 4 and line 8, a non-timeit code at line 7
alters the input data, which violates the principle of input equivalence in our definition of alternative
implementations. Therefore, we do not consider line 4 and line 8 to be consecutive. Although this
method might lead to false negatives in finding alternative implementations, our approach in
general is cost-effective and collected thousands of alternative implementations (Section 3.1), which
are already sufficient for carrying out our empirical study.

Finally, if there are n consecutive profiling statements in an SO post, we extract all 2-combinations
of them. Fig. 4 shows a code block containing 4 consecutive profiling statements, from which our
approach will extract C(4, 2) = 6 pairs of alternative implementations.
Since we focus on Python-based data manipulation programs, this part of our approach lever-

ages several language-specific features of Python. However, the idea of extracting programming
alternatives from consecutive profiling statements is language-agnostic, and it should be easily
adaptable to other programming languages once their profiling syntax is known. We further discuss
this issue in Section 4.4.

2.2.2 Extracting from Comparative Sentences. In addition to consecutive profiling statements, we
also leverage the comparative structures in natural language to detect alternative implementations.
Note that natural language text in an SO answer post denotes all of its content except the code
blocks, and natural language sentences that compare multiple code implementations would be the
structure of interest.

We first use the Stanford CoreNLP toolkit [37] to split the text into sentences. We then identify
sentences that contain efficiency-related comparative keywords (Table 2), which were derived
based on common knowledge and the literature [35, 47]. Next, we identify code fragments in
these sentences following the common practice on detecting code-like terms from informal natural
language discussions [44, 50]. Basically, we develop a set of regular expressions based on the
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Table 2. The list of efficiency-related comparative keywords used in our study.

Type Keywords
comparative adjectives faster, slower, quicker, cheaper
comparative adverbs more/less efficient/expensive/scalable
equative as as fast/slow/quick/cheap/efficient/expensive/scalable as

nsubj

aux

nmod:through

xcomp

det:predet
case nmod:of

case

det det dobj

acl:relcl

nsubj

ref cop

nmod:than

casePRP    VBP              VBG                  IN           PDT       DT          NNS      IN      DT               NN         VBG              NN               WDT    VBT             RBR        IN                 NN

I    am      iterating  through  all     the    rows  of   the  dataframe using codefrag1 which   is      faster than  codefrag2

Matched Semgrex pattern: {word:faster}=anchor >/nsubj/ {word:/codefrag.*/}=entity1 & >/nmod:than/ {word:/codefrag.*/}=entity2

anchorentity1

match

entity2

I    am      iterating  through  all     the    rows  of   the  dataframe using codefrag1 which   is      faster than  codefrag2

Fig. 5. An example of extracting alternative implementations using POS tagging, dependency parsing, and
Semgrex matching at the sentence level.

I’m still not entirely sure if concat runs in linear time but       it      is definitely faster than chaining merge

Mention Mention
coref

Fig. 6. Coreference resolution is also used if a pronoun is identified as the compared entity.

target libraries’ usage syntax; contents matching these regular expressions or embedded in the
<code> tag are then considered as code fragments. We filtered out sentences that contain less
than two code fragments (e.g., “X is the fastest”), since we cannot easily infer a pair of alternative
implementations from such implicit comparisons. Finally, since the presence of code fragments
might negatively affect subsequent NLP tasks [52, 53], we replace each detected code fragment
with a unique identifier (e.g., codefrag1), which will be recovered once all NLP tasks are finished.

For candidate sentences that contain efficiency-related comparative keywords and multiple
code fragments, we need to further determine which implementation is more efficient than the
other(s). To this end, we leveraged dependency patterns, which describe specific natural language
structures based on Part-of-Speech (POS) tags (e.g., noun, adjective, adverb) and dependency labels
between words (e.g., nominal subject, object, conjunct). Fig. 5 shows an example of a dependency
pattern, which has an nsubj edge from “faster” to codefrag1 and an nmod:than edge from the same
comparative adverb to codefrag2. To derive such eligible dependency patterns, we first reused
seven general dependency patterns for comparative sentences, which were proposed in [27], to
match candidate sentences. For candidates that were not matched in this first step, we randomly
inspected 100 more sentences and further identified 42 new dependency patterns that were not
covered in [27]. In total, 49 dependency patterns were derived. In the implementation, we represent
these patterns using the Semgrex Stanford CoreNLP package [17], which allows users to specify
dependency patterns in a regular-expression-like style.

Take the sentence “I am iterating through all the rows of the dataframe using<code>.itertuples()</code>
which is faster than <code>.iterrows()</code>” from SO post 35108263 as an example. This sentence
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is first identified as comparative for containing the keyword “faster”. Contents inside the <code>
tag are replaced with codefrag1 and codefrag2, respectively. We then annotate the sentence
using POS tagging and dependency parsing and match it against our predefined Semgrex patterns.
As shown in Fig. 5, this sentence matches a Semgrex pattern that has outgoing edges nsubj and
nmod:than from “faster” to codefrag∗ words, which are extracted as the compared entities. Finally,
we recover the original code fragments and determine their performance ordering based on the
meaning of the anchor word. As a result, .itertuples() is identified as a faster alternative to
.iterrows().
Note that the presence of negation in a sentence could alter the performance ordering of the

extracted code fragments. For example, for sentences like “A is not faster than B” or “I don’t think A
is faster than B”, it is more appropriate to consider A as a slower alternative to B. Hence, five of our
predefined Semgrex patterns are used to identify negations in a sentence by explicitly matching
the neg edge in its dependency tree. The performance ordering of code fragments extracted from
the detected negative sentences are swapped accordingly.
We also observed cases where the word being compared is a pronoun that refers to a code

fragment. Since direct Semgrex matching cannot detect such cases, we further perform coreference
resolution [43] on the comparative sentences. Fig. 6 shows a sentence from SO post 40568957, where
it is first identified as one of the compared entities by Semgrex matching. Since it is a pronoun, we
use CorefAnnotator [43] in Stanford CoreNLP to check if there is any code fragment that is referred
to by this pronoun. In this case, it refers to concat, which is detected as a faster alternative to
merge.

2.3 Validating Task-Specific Input/Output Equivalence
After extracting candidate implementation pairs from comparative structures in SO posts, we
need to validate whether the implementations in each pair are truly alternative. As introduced in
Section 1, we define two implementations to be alternative in terms of task-specific input/output
equivalence. We leverage the random testing approach proposed in the work of Jiang and Su [30]
for such validations. Specifically, if two implementations always produce the same outputs on a
selected number of random task inputs, then we are confident that they are truely alternative for this
particular task [30]. As explained in [30], this assumption leveraged the Schwartz-Zippel lemma [46],
which states that a few random tests are sufficient to determine whether two polynomials are
equivalent with high probability.

We developed an algorithm to automatically generate executable random-testing code for each
candidate implementation pair. The random-testing workflow is defined in the code template shown
in Fig. 7, which instantiates input variables with random values, executes the given implementation
pair, compares the equivalence of the two outputs, and runs the entire process for K times.
One major challenge here is that the automatically generated code should instantiate random

task inputs with proper data, otherwise the generated code will not execute properly. For example,
to validate whether np.concatenate([va,vb],0) and np.vstack([va,vb]) are true alternatives
for the data merging task (SO post 27138503), we need to initialize the input variables va and vb
to be of numpy.ndarray type with matching dimensions. To tackle this problem, we design our
testing template to have five parts as shown in Fig. 7 — each part is automatically constructed
with different strategies. Below we elucidate the code generation strategy for each part of the
random-testing code.

1○ Randomizing the dimensions: First, we randomize dimensionality, which is often required
to create typical data manipulation inputs including arrays, matrices and tables. In particular,
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# tested on K random inputs
for _ in range(K):

row = np.random.randint(1,100)
col = np.random.randint(1,100)

df = pd.DataFrame(np.random.randint
(0,100,size=(row, col)))

o1 = df.sum().sum()
o2 = df.stack().sum()

if (isinstance(o1, pd.DataFrame) and 
isinstance(o2, pd.DataFrame)):
assert o1.equals(o2)    

…… # omitted for space concerns

Randomize the dimensions

Randomize the variable values

Verify that the two outputs 

are equivalent

Get the variable names

Populate the output using the 

extracted implementations

1

2

3

4

5

Fig. 7. The code template for random testing. 1○ and 2○ are for randomizing different types and values of the
input; 3○ is the name of the input variable extracted from the candidate implementation pair, which is used
to instantiate output variables in 4○. 5○ verifies the output equivalence.

we create three random integers, which can be used to generate 1D, 2D and 3D data that are
commonly used in SO tasks.

2○ Randomizing the variable values: Next, we generate the input instantiation code us-
ing common container types and element types used in data manipulation tasks. Specifi-
cally, we consider three container types including pandas.DataFrame, pandas.Series, and
numpy.ndarray, and four element types including int, float, bool, and string. Accordingly,
we create input instantiation code for the 20 combinations4 of the container and element types,
such as 2D numpy.ndarray of floats, pandas.Series of integers, and pandas.DataFrame
of strings. Dimensions are randomized as in 1○ and values are randomized using the corre-
sponding random-generator APIs such as numpy.random.rand.

3○ Extracting the variable names: To execute the generated code properly, the names of
the input variables should be consistent with those used in the given implementation pair.
We determine the input variable names by extracting all the Name nodes from the abstract
syntax tree of the given implementation. Note that there could be multiple input variables
that need to be instantiated. For efficiency, our algorithm only considers cases where the
number of input variables is 1 or 2. The values generated in 2○ are assigned to these variables,
respectively. As one variable has 20 possible types and two variables have 20 × 20 = 400
possible type combinations, our algorithmwill automatically generate 20+400 = 420 different
pieces of input instantiation code for each candidate implementation pair.

4○ Output instantiation: We assign the two implementations in the given candidate pair to
o1 and o2, which are used as the output variables.

5○ Verifying output equivalence: The last part of the template involves code that asserts
the equivalence of o1 and o2 based on their types. This part of the template code is predefined
and it checks the equivalence of all the container and element types described in 2○.

4The number of combinations is computed as 4 + 4 + 4 × 3 = 20, since we consider 1D, 2D and 3D dimensions for
numpy.ndarray.
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Task: Computing the magnitude of a list of vectors (SO post 9184560)

Input: a 2D numpy.ndarray of integers

1
2
3
4
5
6
7
8
9
10
11
12
13
14

# tested on 10 random inputs
for k in range(10):

# randomizing the dimension
row = np.random.randint(1,100)
col = np.random.randint(1,100)
# randomizing the input variable
a = np.random.randint(0,100, size=(row,col))
# output
o1 = np.sqrt((a*a).sum(axis=1))
o2 = [np.linalg.norm(x) for x in a]
# verify that the two outputs are equivalent
if (isinstance(o1, np.ndarray)

and isinstance(o2, np.ndarray)): 
np.testing.assert_equal(o1,o2)

Fig. 8. The random testing code generated for validating the implementation pair from Fig. 1.

Fig. 8 shows the random-testing code generated for the task described in Fig. 1, for which the
input variable is a 2D array of integers. The code randomizes the integer values as well as the array
dimensions when instantiating the input (line 4, 5, and 7), whose variable name a is extracted from
the given implementation pair (line 9 and 10).
Given a candidate implementation pair, our algorithm automatically generates and executes

the random testing code. Once there exists a test code that runs successfully without Assertion
Error for all K executions, the process stops and we consider the given implementation pair to
be valid alternatives. We followed [30] to set K to be 10, which effectively limits the execution
time while preserving sufficient confidence. For implementation pairs that fail on all 420 random
testing attempts, however, we could not directly consider them as invalid for two reasons. First,
random testing may fail due to inappropriate input instantiations rather than Assertion Error.
Specifically, inputs that are not taken into account in our initial algorithm include arrays with higher
dimensions, sparse matrices, and variables that are particularly task-specific. For example, SO post
57299067 requires the second dimension of the input array to be 2; SO post 18876279 requires one
of the two input arrays to be monotonically increasing or decreasing; SO post 39132838 requires
the input DataFrame to have one categorical data column and two integer columns indicating the
groups. In such cases, the random testing code failed since our algorithm did not generate the
proper task inputs in the first place. Second, implementations extracted from comparative sentences
could be incomplete (e.g., .itertuples in the example of Fig. 5). As a result, the generated random
testing code would fail with SyntaxError or AttributeError rather than Assertion Error.
To handle the abovementioned issues, we manually inspected corresponding SO threads to

determine proper input instantiations and recover incomplete implementations. Note that such
information is in general easily accessible from SO threads, especially from those with accepted or
upvoted answers, since SO explicitly enforces users to provide minimal and reproduciable examples
when asking and answering questions [4].

In our experiment, 774 SO threads were manually inspected by the first author, who had three
years of industrial experience in data science. The workload of this task is ∼65 man-hours, ap-
proximately five minutes for each SO thread. It is worth mentioning that task inputs from SO
threads were often presented in a highly flexible and unstructured manner. For instance, task inputs
could be described as code, table, image, and natural-language text, and the descriptions could
be located in question posts, answer posts where candidate implementation pairs are extracted
from, or other answer posts of the same thread. This observation further illustrated the necessity
of manual inspection for faithfully recovering proper task inputs.
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(a > 0.5).sum()

np.count_nonzero(a > 0.5)

arr.sum()

np.count_nonzero(arr)

<sum, count_nonzero>

<sum, count_nonzero>

<np.ndarray.sum, 
np.count_nonzero>

SO 26306163

SO 38687292

Extracted alternative 

implementation pairs
Call (sequence) node 

name pairs

Alternative API (call 

sequence) pairs

Extraction AST parsing Type resolution

SO posts

Fig. 9. An example of API usage abstraction, which identifies a same alternative API usage pattern from two
different implementation pairs.

Whenever a new type of input was discovered, we added its instantiation method to our algorithm
and reran the algorithm on the remaining implementation pairs. In other words, the algorithm was
incrementally improved and executed until all candidate pairs are considered as either valid (i.e.,
there exists a test that runs successfully without Assertion Error for all K inputs) or invalid (i.e.,
there exists a test that fails with Assertion Error on one or more inputs).

2.4 Characterizing Alternative API Pairs
Given the validated alternative implementations, we now identify emerging patterns from these
implementation pairs in order to study the characteristics of alternative APIs (RQ3). Fig. 9 shows an
illustrative example of this process, in which two alternative implementation pairs were extracted
from two different SO posts. Although these two pairs use different variable names and syntax
in argument passing, they essentially represent the same alternative usage pattern, in which
numpy.ndarray.sum and numpy.count_nonzero can both be used to count the occurrence of
certain elements in an array.
To better capture such patterns, we developed an algorithm to model each concrete implemen-

tation in the extracted pairs as an API call sequence, which abstracts away syntactic details but
preserves the essence of API usage [55]. Our algorithm first uses the Python ast module [10] to parse
a code fragment into an abstract syntax tree, on which it performs a post-order traversal on the
ast.Call and ast.Subscript nodes to get the API sequence [56]. Note that we can only acquire
the simple names of APIs in this step, whereas their specific types (or fully qualified names [11])
are still ambiguous. For example, the name sum in the previous example (Fig. 9) may refer to either
numpy.ndarray.sum, pandas.DataFrame.sum, or scipy.ndimage.sum.
For this reason, we further resolve the type of each simple name in the extracted sequence.

Our algorithm first uses SO tags to determine which library a simple name may refer to. The
algorithm then matches the simple name against all APIs of that library to ensure that APIs
with the same simple name do exist. To further reduce ambiguity, our algorithm applies regular
expressions on the name of the receiver object to determine its type information based on naming
conventions. For example, df and its variations (e.g., df1 and df_raw) are conventional names for
the pandas.DataFrame type, while arr and its variations are typically used for the numpy.ndarray
type. With these heuristics, concrete implementations can be uniquely resolved (e.g., arr.sum() in
Fig. 9 is resolved to the numpy.ndarray.sum type).
We applied this algorithm to all the validated alternative implementations and aggregated the

resulting alternative API (call sequence) pairs in descending order of occurrence. We then selected
pairs that recurred at least three times to study their characteristics, as these pairs appeared in
at least three different SO posts and are therefore more likely to represent common usages of
alternative APIs. Since there is no existing characterization on this type of data, we applied the
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Table 3. The number of extracted/validated alternative implementation pairs with respect to different com-
parative structures.

Structure # extracted # validated
Consecutive profilings 5,757 4,935 (85.7%)
Comparative sentences 176 145 (82.4%)

Total 5,933 5,080 (85.6%)

inductive coding method [24] during this process. Basically, two of the authors browsed through
the recurring API pairs and proposed an initial list of categories to characterize the data. Next, they
independently labeled each of the recurring pairs using the established categories. Finally, these
labels were compared, discussed and adjusted in an iterative fashion until an agreement has been
reached. We present the characterization results in Section 3.3.

3 RESULTS
In this section, we present the experiment results with respect to each research question.

3.1 RQ1: Effectiveness
We applied the approach described in Section 2 on the SO dataset and extracted 5,933 candidate
implementation pairs, among which 5,080 pairs (85.6%) from 1,867 answer posts were validated
as true alternative implementations. This indicates that comparative structures in SO posts can
indeed be exploited to effectively reveal programming alternatives.
Table 3 presents the number of alternative implementation pairs extracted from different com-

parative structures. From consecutive profiling statements, 5,757 candidate pairs were extracted
and 4,935 (85.7%) of them were validated as true alternatives. The primary reason for false pos-
itives is that consecutive profiling statements are sometimes used to break down the execution
cost of an implementation by profiling every single step of it, rather than to compare alternative
implementations like we assumed.

From comparative sentences, 176 candidate pairs were extracted and 145 (82.4%) were validated
as true alternatives. Part of the inaccuracy was due to the parsing error of complicated and
ungrammatical/colloquial sentences, which is a well-known issue in the NLP domain [28]. In
addition, natural language sentences sometimes elide important context information, which also
leads to incorrect extractions. For example, the sentence “flatnonzero is faster than where” in SO post
47068979 intends to propose that using numpy.flatnonzero together with numpy.unravel_index
is faster than numpy.where. However, since numpy.unravel_index is omitted from the sentence,
the implementation pair extracted from it (i.e., flatnonzero and where) is therefore incomplete and
should not be considered as valid alternatives. Overall, the top three types of comparative sentences
are in the forms of “X is faster than Y”(58.6%), “X . . . , and is faster than Y”(9.0%), and “X is . . . times
faster than Y”(6.2%). In particular, the first pattern already accounts for over half of the instances,
while the top three patterns together account for nearly 74% instances. The remaining patterns in
the long tail of the distribution are mostly resulted from the flexibility of natural language sentences.
For example, two Semgrex patterns are needed to match “X is faster than Y ” and “X runs faster than
Y”, which have practically the same meaning but different dependency relations. A complete list of
Semgrex patterns for extracting comparative sentences is available on our project website.

The alternative implementations extracted from comparative sentences are far fewer than those
extracted from consecutive profiling statements. A primary reason is that the requirement of
explicitly comparing multiple code-like terms limits the number of eligible sentences. The sentence
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Fig. 11. Runtime speedups of alternative implemen-
tations.

“. . . it returns exactly the same thing as @Justin Peel’s code above and runs ∼100x faster” from SO post
3443640 is such an example. The pronoun it refers to an implementation mentioned in the prior
paragraph of the sentence, and this implementation is being compared with a solution proposed
by another user. Our approach currently works at the sentence level and hence could not handle
such cases. Nonetheless, comparative sentences do appear to have rich information on alternative
implementations, and extending our approach to SO thread level might help extract more of such
pairs.

Table 1 shows the number of validated alternative implementations for each target library. The
majority of these alternative implementations use APIs of Pandas and NumPy, whereas only a
few use SciPy. Apart from the fact that Pandas and NumPy have a larger amount of SO posts,
another reason for this phenomenon is probably that these two libraries are designed to work with
low-level data structures. Specifically, NumPy is used to work with arrays and Pandas is used to
work with tabular and time series data. Developers might have more flexibility when using these
two libraries since they would be able to directly manipulate the data. SciPy, on the other hand,
provides high-level algorithmic APIs for common tasks in scientific computing. Therefore, it may
not offer as much flexibility of using different APIs for the same tasks as Pandas and NumPy do.
Finally, among the 5,080 alternative implementations, 1,306 use APIs from different libraries to solve
the same tasks. For example, numpy.cumprod and pandas.DataFrame.cumprod is an alternative
pair as both can be used to compute the cumulative product of data. For this reason, the numbers
of extracted and validated alternative implementation pairs (i.e., 5,933 and 5,080, respectively) are
less than the sums of respective numbers for each library (Table 1), since multiple libraries could
be counted for one single implementation pair.

Consecutive profiling statements and comparative sentences can both be leveraged to effectively
reveal alternative implementations. Nearly 86% implementation pairs extracted from these structures
are validated as true alternatives.

3.2 RQ2: Performance
To address RQ2, we experimentally collected the runtime performance of the validated alternative
implementations. Specifically, for each alternative implementation pair, we automatically generated
a profiling program by modifying its generated random-testing code (see Section 2.3) as follows.
First, a code snippet that records the execution time of each implementation is added to the end of
the random-testing code. Second, instead of randomly generating the size of input (e.g., line 4 in
Fig. 8), we now set the number of rows to be 1,000, 10,000 and 100,000, which replaces the original
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Table 4. Occurrence of alternative API pairs. Pairs with ≥ 3 occurrences are used to study the characteristics.

Occurrence # of alternative API pairs.
[1, 2] 2901
[3, 5] 56
[6, 10] 10
[11, 15] 2

loop of K random inputs (e.g., line 2 in Fig. 8). By executing the profiling programs, we were able to
collect the execution time of alternative implementation pairs under a controlled workload.
We conducted the experiment on an Intel Core i9-8950 CPU (2.9GHz) machine with 32GB of

memory running 64-bit Windows 10 and Python 3.6.8. Fig. 10 shows the average execution time of
validated alternative implementations under varied workload. Fig. 11 further shows the runtime
speedups. We observed that in 52.8% pairs, the faster implementations improve the task runtime
performance by less than 2x. The faster implementations in 10.8% and 2.8% pairs achieve 10–100x
and 100–1000x speedup, respectively. The faster implementations in 1.1% pairs even achieve more
than 1000x speedup over their slower alternatives.

As described in Section 2.2.1, SO users tend to report an implementation’s execution time right
after its profiling statement in SO code blocks. We also extracted this information and computed
the corresponding speedups for comparison. As shown in Fig. 11, the performance improvements
reported from SO are relatively consistent with the profiling results collected in our experiments.

Alternative implementations using different data manipulation APIs do improve task runtime
performance, and in many cases the improvement is quite significant.

3.3 RQ3: Characteristics
To characterize alternative API pairs, we abstracted each implementation to its API call sequence as
described in Section 2.4. There are 5,123 unique implementations in the 5,080 validated alternative
implementation pairs. By manual evaluation, we found that 4,661 (90.1%) implementations were
resolved correctly. The primary reason for inaccurate resolutions is that our approach could
incorrectly resolve a call to an API with the same simple name but belonging to another module or
library (i.e., with different fully qualified names) due to the lack of context.

In total, we identified 2,969 distinct alternative API (call sequence) pairs from the 5,080 validated
alternative implementations. Table 4 aggregates these alternative API pairs by their occurrences
in the extracted data. As described in Section 2.4, two of the authors manually characterized
the 68 recurring pairs with ≥3 occurrences. The Cohen’s kappa coefficient [38] for this task is
0.79, which means that the two annotators had substantial agreement (kappa ∈ [0.61–0.8]) for
characterizing alternative API pairs. Below we present our observations.

3.3.1 APIs with Similar Purposes. First, APIs that are designed to solve similar types of tasks can
often be used alternatively. Table 5 presents two examples. The first example shows an alternative
implementation pair using pandas.DataFrame.iterrows and pandas.DataFrame.itertuples to
iterate over rows of tabular data (#1). The main difference between these two APIs is that iterrows
returns each row as a Pandas Series while itertuples returns each row as a namedtuple. In the
second example, pandas.DataFrame.pivot_table and pandas.crosstab can both be used to
count the frequency of groups (#2). In fact, the terms pivot table and cross tabulation are often used
interchangeably as both denote themethod that analyzes summary statistics on groups of categorical
data. The main difference between these two APIs is that pandas.DataFrame.pivot_table takes
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Table 5. Examples of alternative implementations, task descriptions, and the corresponding alternative APIs.

Task Alternative Implementations Alternative APIs
#1 SO post 32680162: > [row.a * 2 for idx, row in df.iterrows()] pd.DataFrame.iterrows
iterate rows of a DataFrame > [row.a * 2 for row in df.itertuples()] pd.DataFrame.itertuples

#2 SO post 39132838: > df.pivot_table(index=[’id’,’group’], pd.DataFrame.pivot_table
count the frequency of columns=’term’,aggfunc=’size’,fill_value=0) pd.crosstab
groups > pd.crosstab([df.id, df.group], df.term)

#3 SO post 34032455: > np.array([0,1,2,3,4,5,6]) numpy.array
create an array from a list > np.fromiter([0,1,2,3,4,5,6.],dtype=int) numpy.fromiter

#4 SO post 52145257: > np.sum(rr == ’A’) numpy.sum
count the occurrence of > np.count_nonzero(rr == ’A’) numpy.count_nonzero
an element in an array

#5 SO post 45648761: > np.where(A > 0.5, 1, 0) numpy.where
convert an array to 0 or 1 > (A > 0.5).astype(int) numpy.ndarray.astype
based on a given threshold

#6 SO post 47418496: > df[’time’].apply(lambda x:parser.parse(x)) pandas.Series.apply
transform time-like > pd.to_datetime(df.time) pandas.to_datetime
strings to the datetime type

a DataFrame as input with mean being the default aggregation function, while pandas.crosstab
takes array-like objects as input with frequency being the default aggregation function.
A special type of such similar APIs uses a specific API as an alternative to a generic API. Ta-

ble 5 shows an example of using numpy.array or numpy.fromiter to create an array (#3). While
numpy.array is a generic API for array creation, numpy.fromiter specializes in creating a one-
dimensional array from an iterable object. As another example, Fig. 3 shows that numpy.einsum
and numpy.sum are both used to sum the array elements. While numpy.sum is designed specifically
for this purpose, numpy.einsum is a generic API for common linear algebraic array operations.
We identified 41 recurring pairs that use similar-purpose APIs, 12 of which use generic vs.

specific APIs. We also observed that for 31 of these 41 pairs, the relations between alternative
APIs can be established directly from the API documentation. In other words, the documen-
tation of one of the APIs in these 31 pairs explicitly refers to the alternative APIs. For exam-
ple, pandas.DataFrame.itertuples is listed in the “See also” section of the documentation for
pandas.DataFrame.iterrows. This finding suggests that when developers are seeking for alter-
native APIs to use, the API documentation can be a good place to start. We further discuss this
possibility in Section 4.3.

3.3.2 APIs with Different Purposes. The remaining 27 pairs use APIs that are designed essentially for
different purposes and can be used alternatively only under certain circumstances. Table 5 shows two
examples. First, numpy.sum is used to sum array elements whereas numpy.count_nonzero is used to
count the number of non-zero values in an array. Although these two APIs are designed for different
purposes, they yield the same result when the input is a boolean array (#4). As another example,
numpy.where returns values depending on a given condition while numpy.ndarray.astype casts
an array to a specified type. Although these two APIs provide different functionalities, both can be
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Table 6. Top 10 input types used in validated alternative implementations.

Type of input %
pandas.DataFrame of strings 27.9
pandas.DataFrame of integers 15.2
pandas.Series of integers 6.2
pandas.Series of strings 4.3
2D numpy.ndarray of integers 3.8
1D numpy.ndarray of integers 3.0
pandas.DataFrame of datetimes 2.1
pandas.Series of booleans 1.8
3D numpy.ndarray of integers 1.3
monotonic numpy.ndarray of integers 1.1

used to create a boolean array indicating whether each element of the input array satisfies a given
condition (#5).
We consider pairs with API sequences of length greater than one as APIs with different pur-

poses. The API pair shown in Fig. 1 is such an example: numpy.ndarray.sum and numpy.sqrt are
alternative to numpy.linalg.norm only when they are invoked sequentially. However, when used
individually, these two APIs solve tasks different from that of numpy.linalg.norm.
A special type of APIs with different purposes uses a concrete API as an alternative to a higher

order API that takes a function as an argument. For example, Table 5 shows two implementations that
convert time-like strings to the datetime type (#6). One implementation calls pandas.Series.apply
to apply a parser function on the input data, whereas its alternative implementation directly calls
the pandas.to_datetime API that is designed specifically for such a task. We identified 9 pairs
that use concrete and higher order APIs as alternatives.

This observation also indicates that if alternative implementations invoked APIs with different
purposes, then they can only be used alternatively on specific task inputs. To put this into per-
spective, we further analyzed the types of inputs used in the random-testing code of validated
alternative implementations. Table 6 presents the top ten dominating input types, which are all
basic data structures in data manipulation tasks.
For developers of data manipulation programs, identifying APIs that are designed for different

purposes but alternative for certain tasks can be challenging. Unlike APIs with similar purposes,
alternative APIs with different purposes are typically not linked in the documentation and their
usages are also rarely documented. Therefore, developers sometimes need to be flexible or even
creative at coming up with alternative solutions for certain tasks, which also requires extensive
familiarity with the libraries.

We identified two distinctive characteristics of alternative APIs: generic vs. specific APIs and concrete
vs. higher order APIs. We also observed that API documentation could be an informative data source
for identifying alternative APIs with similar purposes.

3.4 RQ4: Usefulness
The profiling results reported in Section 3.2 reveal that the performance improvements of alternative
implementations could be quite substantial. This motivates us to further explore the possibility of
applying our mined knowledge to optimize real-world data manipulation programs. To this end,
we conducted an experiment on optimizing Kaggle programs using the knowledge of 68 recurring
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Algorithm 1: AlterApi workflow.
Input :src ← a Python source file.
Output :alternatives ← ∅

1 template ← code template for instrumentation ;
2 for stmt in get_candidates(src) do
3 if match_syntax(stmt) then
4 new_src ← generation(stmt, template)

5 result ← run(new_src)
6 alternatives ← alternatives ∩ result

7 end
8 end

alternative API pairs. Kaggle is an online community for data science practitioners [6]. It is most
famous for the Kaggle competitions [7], which are hosted by companies or organizations looking
for the best solutions to their real-life problems. Therefore, the datasets used in the competitions
are in general close to real data. For our experiment, we collected the top 5,000 Python programs
published by competition participants on the Kaggle platform,5 which tackle a broad range of
practical data science problems in realistic settings.

By inspecting the 68 recurring alternative API pairs, we derived the syntactic patterns for detect-
ing API usages that could be replaced by faster alternatives and rules for the corresponding code
transformations. This knowledge is encoded in our tool, AlterApi, which automatically identifies
potentially inefficient API usages in an input program, generates alternative implementations,
verifies the output equivalence, and reports the runtime speedups after optimization. The workflow
of this tool is shown in Algorithm 1 and detailed as below.
• Candidate Identification: Given an input Python program, we traverse its abstract syntax
tree to get all the Call and Subscript nodes that represent API usages. The names of these
nodes are matched against the target APIs in our recurring patterns to identify candidate
statements (get_candidates at line 2). We then check the number of parameters and the AST
node types of these parameters to further narrow down eligible statements that might match
the target API usages (match_syntax at line 3). For example, if AlterApi identified a Call
node from the AST of a Kaggle program that has the name where and three parameters, with
the first parameter of the Compare type (e.g., A > 0.5) and the second and third parameters
being booleans (e.g., 0 and 1), it selects the corresponding code as a candidate for optimization
since it matches the recurring pattern like np.where(A > 0.5,1,0) shown in Table 5 (#5).
• Code Generation: We define a code template similar to Fig. 7 (but without the randomiza-
tion parts), which will be used to instrument the input program. Specifically, we populate
the template with two types of information. First, certain dynamic information is required
to construct the alternative implementations. For example, to generate the np.einsum alter-
native for the np.sum(a) type of usage, the dimension of the input variable a is required
to determine the correct format of the first parameter of np.einsum (Fig. 3). To access such
type information, we populate the template with an auxiliary code that checks the type of
the receiver object, the parameters and certain properties of the parameters (e.g., dimension)
based on the specific recurring patterns being targeted. In this manner, we are able to dy-
namically acquire such information when executing the program. Second, we construct the

5https://www.kaggle.com/kernels?sortBy=hotness&group=everyone&pageSize=20&language=Python&kernelType=
Script.
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Table 7. Top 10 recurring alternative API pairs that contribute the most in the Kaggle experiment.

API Alternative API
pandas.DataFrame.ix pandas.DataFrame.loc
numpy.hstack numpy.concatenate
numpy.hstack numpy.append
pandas.DataFrame.ix pandas.DataFrame.iloc
numpy.where numpy.nonzero
numpy.ones numpy.empty
pandas.DataFrame.replace pandas.Series.map
numpy.ndarray.dot numpy.tensordot
numpy.sum numpy.ndarray.sum
pandas.DataFrame.apply numpy.where

alternative implementation based on the transformation rules derived from the recurring
API pairs and populate the template accordingly. The populated template is then inserted
back to the AST of the input program to form the instrumented code (generation at line 4).
• Profiling: Finally, AlterApi runs the instrumented code, which executes the original imple-
mentation and its generated alternative in the same context, verifies the output equivalence,
and reports the runtime difference (run at line 5).

The experimental environment is the same as the one reported in Section 3.2. As Kaggle programs
typically involve the training of machine learning/deep learning models, which often requires a
huge amount of time, we skipped a candidate program if its execution exceeds 20 minutes for the
sake of efficiency.
Our tool generated 1,267 valid alternative implementations for code in 398 programs, which

use datasets from 49 Kaggle competitions with sizes ranging from 6.7MB to 14.3GB. The average
alternative implementations generated for each program is 3.2 (±6.6). These alternative implemen-
tations are generated using the patterns of 42 recurring alternative API pairs, and Fig. 12 shows this
distribution. Table 7 further lists the top 10 recurring alternative API pairs that contribute the most
in this experiment. For the remaining API pairs, we were unable to identify corresponding usages
in the Kaggle dataset. For example, to find the first index of elements that meet certain conditions in
an array, np.argmax is a faster alternative to np.where as suggested in several SO posts. However,
the usage pattern of np.where to solve such a task requires one condition parameter followed by
two indexing operations (e.g., np.where(arr>5)[0][0]). We did not identify any instance that
matches such specific usage pattern in the dataset.
Fig. 13 shows the execution time of the original implementations, while the performance im-

pact of the generated alternative implementations is shown in Table 8. For the 1,267 generated
alternative implementations, 957 (76%) do achieve performance improvements over the original
implementations. Among these successful optimizations, approximately 60% (570) offer slight
performance improvements (≤2x), while 3% (28) achieve significant speedup (>10x). As an exam-
ple of an effective optimization, we generated np.where(df[’time’]<3,1,0) as an alternative
to df.apply(lambda row: 1 if row[’time’]<3 else 0,axis=1), which achieves a ∼1300x
speedup. On the other hand, 310 (24%) generated alternative implementations turned out to be
counterproductive — they slowed down the target task rather than saving execution time. Although
62% (191) of such slowdown is relatively trivial (≤2x), there are a few cases where the performance
degradation is significant (>10x). As an example, while several SO posts suggest that np.fromiter
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Table 8. Performance impact of the generated
alternative implementations.

Speedup Slowdown
≤2x 570 191
2–5x 332 92
5–10x 27 22
10–100x 13 2
>100x 15 3
Total 957 310
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Fig. 14. Avg. speedup/slowdown of alternative impl.
generated from recurring alternative API pairs.

could be a faster alternative to np.array for initializing one-dimensional arrays, alternative imple-
mentations generated using this pattern instead incurred dramatic slowdown on certain Kaggle
programs.
The experiment results indicate that the alternative API pairs mined from SO can indeed be

leveraged to optimize practical data manipulation tasks. However, the optimization outcomes
may not always be consistent. Fig. 14 illustrates that implementations generated from most of
the recurring alternative API pairs exhibit both performance speedup and slowdown in different
optimatization instances. We further discuss this consistency issue in Section 4.1.

Alternative API pairs are useful for identifying optimization opportunities in realistic data manipula-
tion programs and improving runtime performance. However, the outcomes of optimization attempts
are not always consistent with those reported from SO.

4 DISCUSSIONS
In this section, we discuss the challenges of optimizing data manipulation programs with alternative
APIs (Section 4.1 and 4.2). We also explore the applicability of our approach in other context
(Section 4.3 and 4.4).

4.1 Consistency of Optimization Across Data Sizes
Various factors can affect the execution time of a program (e.g., the input data, the library version, the
OS and hardware, etc.). In particular, we observed that 7.8% of the SO posts containing consecutive
profiling statements have compared the same alternative implementation pairs over different sizes
of input data. For example, in Fig. 3, the same alternative implementations np.einsum(’i->’,a)
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Fig. 15. Examples of alternative implementations whose performance differences are sensitive to the input
data size.

and np.sum(a) are profiled for input data of size 1,000 (line 1) and 10,000 (line 7). Given that such
comparisons are not mandatory, this practice indicates that developers consider input data size to be
an important factor for evaluating the performance difference between alternative implementations.
To further understand this issue, we executed 68 pairs of alternative implementations, which

use the 68 recurring alternative API pairs described in Section 3.3, under different input sizes.
Specifically, for each pair, we synthesized five input data with sizes (i.e., # of rows) ranging from
100 to 1,000,000. We quantified the performance difference of alternative implementations under
each input condition by calculating the speedup (x) of their execution time. In total, we collected
340 speedup values, five for each of the 68 tasks.

For 45 (66%) tasks, the ordering of the alternative implementations in terms of execution time is
consistent over different data sizes. This means that an implementation always remains faster (or
slower) compared to its alternative regardless of the input data size. Yet, the extent of performance
difference varies dramatically in some cases. Fig. 15a shows two such examples. In the first exam-
ple, np.where and pd.Series.map are both used to alter data given a threshold, and np.where
has a trivial speedup (∼1.5x) over pd.Series.map when the input data is small. However, the
speedup becomes significant (>100x) for input sizes larger than 100,000. In the second example,
np.ndarray.dot and np.tensordot are both used to compute the dot product of matrices. When
the input size is small, np.ndarray.dot exhibits a non-trivial speedup (∼12x) over np.tensordot.
However, their performance gap narrows as the input size grows. When the input size reaches one
million, the two implementations have nearly comparable performance.

To quantify the consistency of speedups across different input sizes, we compute the Coefficient
of Quartile Variation (cqv), which is a measure of relative dispersion [13], of the five speedup values
for each pair of alternative implementations. We found that only 28 pairs exhibited a relatively
consistent speedup (i.e., cqv<0.3) that is not affected much by the input data size. On the other hand,
12 pairs showed moderate variation (0.3≤cqv<0.7) and 5 pairs showed severe variation (cqv≥0.7)
across different input sizes.

For 23 (34%) tasks, the same alternative implementations exhibited contradictory runtime behav-
iors on different input sizes (i.e., both performance improvement and degradation are observed). For
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example, as shown in Fig. 15b, pandas.read_csv is faster than pandas.read_hdf for input sizes less
than 1,000, whereas pandas.read_hdf takes the lead for larger input data; numpy.column_stack
is slightly slower than numpy.transpose for input sizes less than 1,000, but becomes faster than
the latter as the input size grows.
These results indicate that input data size can be a critical factor that affects the outcome of a

performance optimization attempt. In particular, an alternative solution that is allegedly much faster
than the original implementation may turn out to be alike or even slower when the input data size
varies. Yet, for this observation to be transformed to actionable rules and reliably guide practical
optimizations, an in-depth code analysis of the target APIs and a more controlled experiment
considering confounding environment variables would be required. In the future, we plan to apply
these techniques to reduce the risk of unintended optimization consequences.

4.2 Side Effects of Optimizing With Alternative APIs
In addition to performance degradation, we also observed non-performance related concerns when
developers evaluate alternative implementations. The first emerging concern is code readability. We
found in several SO posts where developers consider an alternative implementation to be faster but
harder to understand. For example, numpy.einsum leverages the Einstein summation convention
and is often faster and more flexible for linear algebraic array operations [3]. However, compared to
specific APIs with expressive names such as numpy.sum, numpy.einsum is generally less straight-
forward, especially for novice developers (Fig. 3). As another example, in SO thread 38550190, a user
proposed to use df.apply(" ".join, axis=1) for merging dataframe columns with string values.
Another user proposed a faster alternative df[0].str.cat(df.ix[:, 1:].T.values, sep=" "),
but described it as “uglier” compared to the previous solution.

Apart from readability, developers also care about the deprecation and availability of alternative
APIs. In SO post 13842286, pandas.DataFrame.set_value was proposed as a faster alternative
to pandas.DataFrame.at for setting cell values. However, the user also explicitly emphasized
that set_value has already been deprecated. In SO post 30141358, pandas.rolling_mean was
proposed as a faster alternative to numpy.convolve for computing the running mean. However,
the user later updated the post to mention that rolling_mean was already removed from the
recent version of Pandas. For cases like these, simply choosing the faster alternatives might instead
introduce maintainability risks or even cause program crashes.

4.3 Mining Alternatives from API Documentation
In addition to SO, we also explored how API documentation can be leveraged for mining alternative
implementations. We considered both the API docstrings and the official user guide when collecting
API documentation data. In particular, a Python docstring is a string literal, surrounded by triple
double quotes, that appears as the first statement of an API definition. We traversed the abstract
syntax tree of our target libraries to find all API nodes and used Python’s introspection capability
to obtain the docstring content of each API. A user guide provides high-level descriptions on the
design, purposes, and usages of library APIs. We collected the user guide data of the target libraries
by recursively searching their doc/source folders for files of the reStructuredText format (i.e., files
with the .rst extension), which is a markup language widely used for technical documentation.

The collected API documentation data has over 208K sentences. Yet, applying our proposed
approach on this data revealed only 13 pairs of alternative implementations, five of which were
already detected from the SO data. This result indicates that API documentation has a limited
occurrence of comparative structures to be exploited. Stack Overflow, on the other hand, encourages
exchange of ideas among users, who are therefore more likely to discuss alternative answers and
solutions. Hence, compared to API documentation that is inherently descriptive and authored
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Table 9. Extracted alternative implementations from other domains.

Library From consecutive From comparative # SO
profiling statements sentences threads

R 33 43 5,806
BeautifulSoup 11 7 10,560
Django 1 10 12,921

mainly by a few library developers, our approach that exploits comparative structures is more
cost-effective when applied to data like SO that is discussion-based and contributed by the crowd.
Section 3.3 reports that some of the extracted recurring patterns can be found in the “see also”

section of API documentation. Inspired by this finding, we further explored whether the “see
also” information from API documentation can be leveraged to detect alternative implementations.
To this end, we developed a pattern-based algorithm to automatically extract API pairs that are
mentioned in the “see also” section of one another’s API docstring. This algorithm extracted 3570
API pairs for the three subject libraries, 62 of which were also observed from the SO data.

Despite the large volume of new pairs being discovered, we identified several issues of the
extracted data that limit the usability of this approach. First, APIs appeared in “see also” are not
necessarily alternatives. For example, pandas.DataFrame.select_dtypes is in the “see also” of
the pandas.DataFrame.describe API’s docstring. However, select_dtypes is used to select
a DataFrame’s columns based on their data types, while describe simply provides descriptive
statistics without offering any selection functionality. Second, API pairs identified from “see also”
may not be practical alternatives even though they could produce equivalent outputs in specific
cases. For example, pandas.DataFrame.tail is in the “see also” of pandas.DataFrame.head, with
the former returns the last n rows of the input DataFrame and the latter returns the first n rows.
Although the two APIs will produce the same output by both setting n to be the size of the input
DataFrame, such a usage could be too unorthodox to be observed in practice. Third, the data
extracted from “see also” are all one-to-one API pairs, with no pairs involving API call sequences
that are instead commonly observed from the SO data. Furthermore, the “see also” documentation
contains no direct description on the specific tasks, concrete implementations, and profiling details
of the API pairs. The lack of such information makes it difficult to judge the validity, the usefulness,
and most important of all, the performance implications of the extracted API pairs.

Taken together, we believe that the SO data, which provides information on the tasks, concrete
code, and profiling results of alternative implementations, is more preferable to be exploited for the
purpose of performance optimization. API documentation, with its relatively scarce information on
API performance comparisons, might not be as straightforward as SO for extracting alternative
implementations and quantifying their performance impact.

4.4 Generality of Our Approach
While our approach was evaluated on Python-based data manipulation libraries in this study, we
believe that the idea of exploiting comparative structures to reveal programming alternatives is also
applicable to other programming languages and applications in other domains. To demonstrate this,
we first applied our approach to SO threads tagged with R, which is another popular programming
language widely used for data manipulations [14]. We detected alternative implementations on R
from both comparative natural-language sentences and consecutive profiling statements (Table 9).
Fig. 16a shows a comparative sentence, from which our approach extracts bind_rows() as a faster
alternative to rbind(). Fig. 16b shows two code snippets (lines 1 and 4) that are being consecutively
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(a) A comparative sentence that discusses R solutions
(SO post 45638814).

1 > system.time({ df <- do.call(''rbind'', listOfDataFrames) })

2 user  system elapsed

3 0.25    0.00    0.25

4 > system.time({ df2 <- ldply(listOfDataFrames, data.frame) })

5 user  system elapsed

6 0.30    0.00    0.29

7 > identical(df, df2)

8 [1] TRUE

(b) Except from SO post 2851434. The two code snip-
pets that are being consecutively profiled by R’s
built-in function system.time() are alternative im-
plementations.

1 m = matrix(rnorm(1200000), ncol=600)

2 v = rep(c(1.5, 3.5, 4.5, 5.5, 6.5, 7.5), length = ncol(m))

3 library(microbenchmark)

4

5 microbenchmark(t(t(m)*v),

6 m %*% diag(v),

7 m * rep(v, rep.int(nrow(m),length(v))),

8 m * rep(v, rep(nrow(m),length(v))),

9 m * rep(v, each = nrow(m)))

(c) Except from SO post 32364355. The five code snip-
pets that are being profiled by R’s microbenchmark
package are alternative implementations.

Fig. 16. Comparative structures reveal alternative implementations in R.

profiled by system.time(), which is R’s built-in function for measuring execution time. Line 7
validates that these two implementations indeed produce identical results.

Next, we applied our approach to SO threads tagged with Django and BeautifulSoup, respectively.
Django is a Python framework for web development [2] while Beautiful Soup is a Python library for
processing HTML and XML files [1] — both of which focus on applications that are quite different
from data manipulation. Our approach also detects valid alternative implementations on these
datasets of other domains (Table 9). For example, we detected alternatives for counting the objects
in Django’s QuerySet from consecutive profiling statements in SO post 58661001. From SO post
58265903, we extracted a comparative sentence “Use Select() which is faster than findAll()” that
reveals a valid pair of alternatives in Beautiful Soup.

The above observations indicate that our approach of exploiting comparative structures to detect
alternative implementations is also applicable to other programming paradigms and applications
domains. In particular, due to the universality of natural language structures, the idea of extracting
alternatives from comparative sentences should be applicable to general textual contents regardless
of which programming language or application domain is being targeted. As for leveraging consec-
utive profiling statements, our approach can be easily adapted to other programming languages
by replacing timeit to the specific profiling syntax of the subject programming language. For
example, system.time() (Fig. 16b) and microbenchmark are both commonly used for profiling
code snippets in R. Fig. 16c shows a performance comparison between five code snippets using
microbenchmark (lines 5–9). We executed these five code snippets on 10 random inputs of proper
types and validated that they are indeed alternatives for producing equivalent outputs.

Nonetheless, our proposed approach is still the most effective when applied to data manipulation
tasks, possibly because of the inherent flexibility of such tasks. Even for simple data manipulation
tasks like summing all values in a table, there could be various alternative implementations such
as summing by columns first then by rows or the other way around (see Fig. 4 for four different
implementations of this task). In other words, a data manipulation task is more likely to be broken
down into different combinations of smaller and common computation operators. Other application
domains, however, may not have such degree of redundancy as their tasks (e.g., starting servers in
web development) are often atomic.
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5 THREATS TO VALIDITY
Our experiments were conducted on NumPy, Pandas, and SciPy. The results may not generalize to
other libraries or programming languages. However, as discussed in Section 4.4, our approach should
also be applicable to other subjects and programming paradigms with only minor implementation
adjustments. We plan to conduct experiments on a more varied set of data manipulation libraries
in the future.
Our approach can only detect alternative implementations from consecutive profiling state-

ments and comparative sentences with predefined keywords, explicit code mentions and specific
dependency patterns. Our approach is also limited to comparative structures, whereas other mani-
festations of alternative implementations, such as plain descriptions with no comparative semantics
(e.g., “A and B are both recommended for this task”), cannot be detected. In addition, as our experi-
ments were conducted exclusively on the SO data, we cannot detect alternative implementations
that are discussed on other websites or through other channels of communication. However, the
aim of this study is not uncovering all possible alternative implementations for data manipulation
libraries, but rather exploring the feasibility of using comparative structures to effectively reveal
programming alternatives. Nevertheless, one way to mitigate this threat is to extend our approach
from code-block level and sentence level to SO thread level, which remains as future work.

The random testing approach we adopted to validate input/output equivalence only explored lim-
ited number of combinations (i.e., 420) of common container types, element types, and dimensions.
Consequently, as described in Section 2.3, complex or task-specific inputs could not be automati-
cally generated and had to be manually constructed. We envision that automated test generation
techniques, such as genetic algorithms that evolve random inputs with mutation operators until
certain criteria are fulfilled [36], could also be adapted here to guide the automatic generation of
sophisticated and proper input data.
The characteristics of alternative API pairs are derived by manual inspection, which could

be subjective and error-prone. We mitigate this threat by having two authors inspect the data
independently and reconcile the differences between their labelings (Section 2.4). Nonetheless,
there could be other ways to characterize alternative API pairs.
In our experiments on optimizing Kaggle programs, we measured the performance impact of

alternative implementations at the statement level, whereas the program-level performance impact
may differ. Also, the profiling results reported in Sections 3.4 and 4.1 may not generalize to other
execution environments. In addition, AlterApi is built based on the 68 recurring API pairs, which
limits it generality. However, the primary focus of this paper is to automatically and effectively
discover alternative implementation pairs, and our proposed approach is to leverage comparative
structures from SO discussions for this purpose. AlterApi is easily extensible once alternative
implementation pairs are discovered.

6 RELATEDWORK
In this section, we discuss representative pieces of related work from recent years and compare our
work with them.

6.1 API Misuse
Prior research has studied API misuse issues, which refer to the usages that violate an API’s contract
or usage constraints, thus lead to bugs, program crashes, and vulnerabilities. Campos et al. proposed
a search-based approach to finding fixes for API-usage-related bugs of Java and JavaScript from
Stack Overflow [22]. Zhang et al. used Java API usage patterns mined from GitHub to detect
potential API misuse issues in code snippets on Stack Overflow [55]. Amann et al. created an API
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misuse dataset [20] and systematically evaluated static API-misuse detectors on this dataset [21].
The API misuse patterns studied in this line of work are typically combinations of different violation
types on various API usage elements, such as redundant iterations, missing preconditions, and
incorrect order of API calls [20, 55]. Another type of API misuse that has drawn much attention
is the violation of domain-specific constraints, such as cryptography protocols [32]. Our study,
however, does not aim to address the misuse of individual APIs. The alternative implementations
we extracted from Stack Overflow are all viable solutions to the target tasks, only that some of
them are more efficient than the others.

6.2 Performance Implications of API Usages
Studies have shown that different API usages could affect program performance. Kawrykow
and Robillard studied Java applications and observed several cases where a sequence of API
calls can be replaced by a more efficient one [31]. Oliveira et al. proposed an approach that uses
energy profiles and static analysis to recommend energy-efficient alternatives for Java collection
implementations [41]. Linares-Vásquez et al. found energy bugs caused by suboptimal API choices
in Android apps [33]. Liu et al. identified performance issues in Android apps due to the misuse of
the list scrolling API [34] and wakelock APIs [35]. Selakovic and Pradel studied JavaScript programs
and found inefficient API usage to be the most common root cause of performance issues [47]. Yang
et al. reported that half of the performance issues in Rails applications can be improved by changing
how the Rails APIs are used [51]. To the best of our knowledge, we are the first to systematically
study how API selections affect the runtime performance of data manipulation programs.

6.3 Software Similarity and Redundancy
Software can be similar in many ways. Huang et al. mined Stack Overflow to discover similar
technologies and the aspects that are being compared [29]. The scope of their target technologies
ranges from libraries and tools to concepts like algorithms and protocols. Chen et al. mined Stack
Overflow tags to identify analogical libraries for different programming languages (e.g., Java’s
OpenNLP vs. Python’s NLTK) [25] and different mobile platforms (e.g., iOS’s AFNetworking vs.
Android’s Volley) [26]. Nguyen et al. used API embeddings created by word2vec to identify APIs
with similar usage contexts and relations, which were used to migrate equivalent API usages from
Java to C# [40]. Even within the same software system, redundant code elements are prevalent [23].
Various techniques such as data flow analysis [48] and random testing [30] have been proposed
to detect functional clones. Different from these studies, our work exploits consecutive profiling
statements and comparative sentences from Stack Overflow posts to unveil the functional similarity
between different API usages.

7 CONCLUSIONS
We have presented the first empirical study of how alternative data manipulation APIs affect the
runtime performance of programs. A key appeal of our approach is that it exploits crowd knowledge
and the very nature of comparison to reveal programming alternatives, which is essentially different
from conventional approaches that harness program analysis and testing. The 5,080 alternative
implementations obtained in this manner appear to have substantial runtime difference according
to our profiling experiments. This further indicates that a technique for detecting faster API
alternatives is desirable.
We distilled 68 recurring alternative API pairs from the extraction results. By studying their

characteristics, we found that specific and concrete APIs are often used as alternatives to generic
and higher order APIs, respectively. We leveraged this knowledge of alternative API pairs to
automatically generate alternative implementations for realistic data manipulation programs, and
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observed nontrivial speedups in 76% of the optimization attempts. We hope that our study can help
developers to use data manipulation APIs more efficiently and researchers to develop techniques
that effectively optimize data manipulation programs. A replication package of this work is made
available at: https://sites.google.com/view/alterapi-artifacts/.
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