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Abstract Smartphones are an indispensable part of people’s daily lives. Smartphone apps often use phone

sensors to probe their users’ physical environmental conditions to provide services. However, sensing operations

can be energy-consumptive, and thus the obtained sensory data should be effectively utilized by apps for their

users’ benefits. Existing studies disclosed that many real-world smartphone apps have poor utilization of sensory

data, and this causes serious energy waste. To diagnose such energy bugs, a recent technique GreenDroid

automatically generates sensory data, tracks their propagation and analyzes their utilization in an app. However,

we observe that GreenDroid’s sensory data generation is random and this can negatively affect its stability and

effectiveness. Our study reported that GreenDroid might miss energy bugs that require specific sensory data

to manifest. To address this problem, we in this article propose a novel approach to systematically generating

multi-dimensional sensory data. For effective diagnosis, we also propose to consider app state changes at a

finer granularity. We implemented our approach as a prototype tool CyanDroid, and evaluated it using four

real-world Android apps and hundreds of their mutants. Our results confirmed that CyanDroid is more stable

and effective in energy inefficiency diagnosis for sensory data underutilization issues.
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1 Introduction

With the rapid development of mobile technologies, the number of smartphone users grows exponentially

in recent years. By the end of year 2014, there had been more than 1.6 billion smartphones shipped around

the world [1]. These smartphones are equipped with various sensors, such as GPS and accelerometer,

so that developers can exploit them to build apps that are able to provide context-aware services based

on users’ physical and cyber environmental conditions. For example, the app Nike+ Running can record

its users’ running routes and speeds by location sensing for helping them do exercises in a scientific and

healthy way [2].
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It is well-known that sensing operations can be energy-consumptive [3], but smartphone battery power

is very limited, instead. This requires smartphone apps to have to use sensors in an energy-efficient way.

Otherwise, phone batteries can be quickly depleted, causing bad user experiences. Unfortunately, many

apps on market fail to use sensors energy-efficiently [4, 5]. They frequently conduct sensing operations,

which incur high energy cost, but do not effectively use the obtained sensory data to bring users observable

benefits. Such problems are known as “sensory data underutilization energy bugs” [5]. For example, many

poorly-implemented apps only use sensory data to update invisible GUI elements when they are switched

to background. Such usage of sensors clearly wastes precious battery power and is thus undesired.

Developers are suggested to deactivate sensors in such problematic scenarios.

To help developers diagnose energy bugs caused by sensory data underutilization, Liu et al. proposed

an automated technique named GreenDroid [5]. GreenDroid tracks the transformation, propagation and

consumption of sensory data, and analyzes whether the data are cost-effectively utilized by an Android

app at different app states. However, we observed two limitations from GreenDroid. First, it generates

mock sensory data in a random manner and feeds them to a running app for sensory data utilization

analysis. Such randomness can prevent GreenDroid from reaching certain app states (e.g., those that

are only reachable by specific sensory data inputs) during analysis (see later Section 2 for an example).

Second, GreenDroid considers that an app transfers to a new state after it finishes handling an event

(e.g., a button click), regardless of which program path is executed during this event handling. However,

different execution paths can lead to different app states, which are not distinguished or controlled in

GreenDroid. These limitations can negatively affect the stability and effectiveness of GreenDroid’s energy

inefficiency diagnosis.

To facilitate effective energy inefficiency diagnosis, we in this article extend GreenDroid, aiming to

address the aforementioned limitations. Regarding the first limitation, we propose a novel and efficient

approach to systematically generating sensory data. Our sensory data generation is based on the white-

box sampling [6], which was proposed to address the uncertainty of input data for traditional programs.

This technique cannot be directly applied to sampling sensory data since it focuses on program inputs

with a single dimension, while sensory data are typically multidimensional (e.g., a location datum contains

latitude, longitude, altitude three parts, and an app can even use several types of sensory data). Therefore,

we adapt the traditional white-box sampling to support program data with arbitrary dimensions. As

such, our approach can systematically generate sensory data to reach different app states and search

problematic ones. Regarding the second limitation, we refine the concept of app state in GreenDroid

to a finer-grained level. Specifically, when handling multiple sensory events (e.g., sensory data update

events), if an app executes different paths of a handler, we would consider that the app goes to different

states rather than the same one, which is GreenDroid’s treatment, after it finishes the event handling.

By addressing the two GreenDroid’s limitations, we aim to enhance its stability and effectiveness in

energy inefficiency diagnosis for smartphone apps. In summary, this article makes the following contri-

butions:

1. We adapted the traditional white-box sampling technique to handle multidimensional program data

and applied it to analyze sensory data utilization for smartphone apps.

2. We refined the app state concept in smartphone app analysis, and this refinement is necessary for

improving the stability and effectiveness to an approach’s energy inefficiency diagnosis.

3. We implemented our approach as a prototype tool named CyanDroid for the Android platform.

We evaluated it with four popular Android apps and their 522 energy issue related mutants. Our

results confirmed CyanDroid’s stability, effectiveness and efficiency in energy inefficiency diagnosis.

We also conducted a case study and found two critical energy bugs in the original apps.

The rest of this article is organized as follows. Section II gives a motivating example. Sections III and

IV present our energy inefficiency diagnosis approach. Section V evaluates our approach and discusses

its experimental results. Section VI reviews related work, and finally Section VII concludes this article.
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1 public void onLocationChanged(Location loc) {

2 double dis = calDistance(loc, goalLoc);

3 if (dis < NEAR_DISTANCE)

4 doLightWork();

5 else if (dis < NOT_FAR_DISTANCE)

6 doHeavyWork();

7 else

8 ; //do nothing

9 }

Figure 1 Simplified motivating example

2 Motivation

Figure 1 gives a simplified motivating example of energy inefficiency caused by sensory data under-

utilization. The concerned app listens to GPS updates and defines a handler onLocationChanged to

handle location changes. Every time when there is a location change, the onLocationChanged handler

will calculate the distance between the new location and a target location. Based on this calculated

distance, the handler then conducts different tasks. If the distance is less than NEAR DISTANCE, which

means that the new location is close to the target location, the handler will conduct some light-weight

processing of the data (processing detail is simplified). If the distance is larger than NEAR DISTANCE

but less than NOT FAR DISTANCE, which means that the new location is not far away from the target

location, the handler will conduct heavy-weight processing instead. Finally, if the distance is larger than

NOT FAR DISTANCE, which means that the new location is far away from the target location, the handler

will do nothing. This simplified example is adapted from real apps and represents their common sensory

data processing flows (e.g., GeoPointer [7]).

From this example, we observe that whether a specific location is close to the target location will

decide how the concerned location datum is processed, and this then affects whether the datum can

be well utilized and bring desirable benefits to users. For this example, all location data that indicate

locations far away from the target location will always be discarded and not bring any perceptible benefit.

If an app frequently encounters such cases and keeps obtaining and discarding location data (e.g., when

its user cannot get close to the target location in short time), the location data utilization would be very

low compared to location data that are close to the target location, causing significant energy waste. The

users can regard this as an energy inefficiency bug. To address this inefficiency, developers should reduce

the frequency to acquire location data when its user is far way from the target location.

To diagnose such energy inefficiency bugs, developers have to carefully design and systematically gener-

ate various location data to cover all data usage scenarios. This can be non-trivial for human developers.

To address this challenge, Liu et al. proposed an automated testing technique, GreenDroid, to assist

developers to diagnose sensory data underutilization problems [4], [5]. The technique generates mock

sensory data, feeds them into a running app, and tracks the propagation of the data to analyze whether

they are effectively utilized. However, we observe that GreenDroid’s sensory data generation is essentially

random, and due to this randomness, it might only be able to cover few sensory data usage scenarios when

analyzing apps such as our motivating example. This would lead to unstable analysis results (e.g., when

randomly executing different program paths in different runs) and cause GreenDroid to miss potential

energy inefficiency bugs, reducing its energy diagnosis effectiveness.

Therefore, this example motivates us to propose a new approach to addressing GreenDroid’s limitation

in terms of replacing random sensory data generation by guided sensory data generation. Actually, our

approach generates sensory data with multidimensional white-box sampling to cover as many scenarios as

possible. Our analysis in Section 3.3 shows that it can quickly cover scenarios in the motivating example

using very few sensory data points.
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Figure 2 Example app
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Figure 3 State space illustration.

3 Methodology

We in this section elaborate on our energy inefficiency diagnosis approach. We first introduce how we

refine the state concept in GreenDroid, and then discuss how we systematically generate different sensory

data to cover different execution paths in an Android app.

3.1 State Space

While our energy inefficiency diagnosis approach generally applies to smartphone apps, we in this article

restrict our discussions to Android apps for specific treatment of code and GUI styles. Android apps are

event-driven. An app’s program logic is mainly defined by a set of loosely-coupled handlers. At runtime,

they are invoked by the Android OS to handle various events. For example, if a user clicks a button,

the Android OS will invoke the button’s corresponding handler to handle this button click event. For

testing/analysis purposes, an Android app’s behavior can be modelled as a state machine [8]. When an

event occurs, an app’s state will transit to a new one after the app handles the event (since this also

changes the app’s internal data). In order to detect bugs, which often only manifest at certain application

states, automated testing/analysis techniques would have to generate a large number of event sequences

to exercise an Android app to explore its different states.

Similar to GreenDroid, our approach analyzes an Android app to learn its registered handlers and

generates event sequences to exercise the app for energy inefficiency diagnosis. One major difference

between our approach and GreenDroid is the granularity of application states analyzed. GreenDroid

considers that an app transits to a new state after invoking a certain handler to handle a sensory event.

This state is associated with this handler, no matter what sensory data the event contains and how the

event is handled. This is fine for efficiency consideration, and some energy inefficiency bugs that do not

rely on specific sensory data can indeed be well detected. However, when fed with different sensory data,

an event handler may follow different execution paths, thus changing the app’s state in different ways. If

one does not distinguish such different cases, it may potentially miss those energy inefficiency bugs that

can manifest only with specific sensory data. Therefore, we need to refine the state concept in GreenDroid

to a finer-grained level to overcome this limitation. Specifically, if an app executes on different paths in

a handler, our approach would consider it going to different new states.

Figure 2 gives a simple example to illustrate the app state concept in our approach and its difference

from that in GreenDroid. The example app contains two different screen GUIs: Main activity and
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Record activity. After launch, the app’s initial GUI is set to the Main activity, which contains two

buttons: Record and Exit. If its user clicks the Exit button, the app terminates immediately. If the user

clicks the Record button, the app registers a GPS event listener to handle location changes and switches

to the Record activity. When handling location changes, the app checks whether new location data

satisfy certain precision requirements. If yes, the app stores them to a database. Otherwise, the data are

discarded. There is a Stop button on the Record activity’s GUI for stopping listening to GPS updates

and returning to the Main activity. Figure 3(a) gives the app’s state transition graph in GreenDroid,

and Figure 3(b) gives the counterpart in our approach. The difference lies in state S1, where the Record

activity handles location data. In Figure 3(a), the app transits from state S1 to S4 independent of what

location data are handled. Nevertheless, in our approach the app transits from S1 to S4 only if it handles

precise location data (storing them to a database), and to S5 when the app encounters imprecise location

data (discarding them). We observe that if a user stays in an environment with bad GPS signal, the app

would often reach state S5. We understand that continuously discarding sensed GPS data can be a great

waste of batter power. As such, an effective energy inefficiency diagnosis technique should be able to

distinguish state S5 from S4 and identify it in a systematic way. Unfortunately, GreenDroid cannot do so

since its explored state S4 might not be problematic if its randomly generated sensory data happen to be

precise. This explains why we need to refine its state concept for effective energy inefficiency diagnosis.

3.2 White-box Sampling

Algorithm 1 White-box sampling

Input: (min,max): data range;

1: stack ← ϕ;

2: hmin = Execute(min);

3: hmax = Execute(max);

4: stack.push(min, hmin,max, hmax);

5: while !stack.isEmpty() do

6: (a, ha, b, hb) = stack.pop();

7: if (ha == hb and |b − a| > Threshold L)

or (ha ̸= hb and |b− a| > Threshold S) then

8: hm = Execute((a+ b)/2);

9: stack.push(a, ha, (a+ b)/2, hm);

10: stack.push((a+ b)/2, hm, b, hb);

11: end if

12: end while

To diagnose energy inefficiency effectively, one needs to generate various sensory data to cover different

data usage scenarios in a systematic way. One way is to apply dynamic symbolic execution [9]. However,

it may not be practical since real-world Android apps can contain many non-linear path constraints that

cannot be effectively solved by existing SMT solvers. Therefore, we aim to address this issue by adapting

the white-box sampling idea [6], which was originally proposed to address the uncertainty of input data

for conventional programs.

White-box sampling samples continuous data ranges and selects representative data points as inputs

to test a program. Its goal is to cover different execution paths of a program and approximate its

functionality at a low cost. The technique considers critical instructions of a program as hash indexes,

such as branching and type conversion instructions, because their execution results largely decide which

path to proceed next or which functionality to select at runtime. Specifically, given an input x, its hash

index hx is a series of critical instructions that are visited in this input’s induced program execution. The

technique follows Algorithm 1 to select new data points from past executions. We explain its idea below.

The algorithm first feeds min and max to the program under test to obtain their hash indexes hmin

and hmax by calling function Execute (Lines 2–3). Then it pushes (min, hmin,max, hmax) into stack as

the first pair of sampled data points (Line 4), and enters a loop (Lines 5–12). At each iteration of the



6 Li Q W, et al. Sci China Inf Sci

loop, it pops out a record (a, ha, b, hb) from stack (Line 6). If the two hash indexes ha and hb are identical

but |b−a| is larger than a threshold Threshold L (meaning that although they seem to behave the same,

their range can still be further split), or ha and hb are not identical and |b − a| is larger than another

threshold Threshold S (meaning that they behave differently and their range is still large enough for

further splitting), the algorithm would split the data range from a to b. This is done by calculating the

middle data point m between a and b, and obtaining its corresponding hash index hm. After that, the

generated two pairs of data points, (a, ha,m, hm) and (m,hm, b, hb), are pushed into stack as new sampled

data points (Lines 7–10). The loop will continue until stack becomes empty (Line 5). Threshold L is

used to ensure that one can sample enough data points for a large range, and Threshold S is used to

avoid sampling data points in a too small range.

White-box sampling requires the data being sampled to be continuous. Sensory data for Android

apps happen to follow this requirement. However, applying white-box sampling to our problem still

has challenges. Traditional white-box sampling can only handle program data with one dimension, but

sensory data can be multidimensional. Actually, traditional white-box sampling technique supports

multidimensional data by mapping multiple parameters to a single one with a hash function. It then

applies its one-dimensional white-box sampling for later processing. The effectiveness of doing so would

depend on how the hash function is designed. Therefore, we adapted the traditional white-box sampling

to support multidimensional data directly instead of using a hash function. We explain in the following

how to address it for systematic generation of sensory data.

3.3 Multidimensional White-box Sampling

For an Android app, its processed sensory data often have multiple dimensions (e.g., GPS data have

three dimensions: latitude, longitude and altitude). Therefore, we consider multidimensional white-box

sampling for handling them.

3.3.1 Input space of sensory data

We first define a structure, Space, to represent the value space of sensory data. Space consists of multiple

variables, labeled with their value ranges. For example, Space {(lat: −180, 180), (lon: −90, 90)} consists

of two variables, lat and lon, for sampling of their possible values (lat can take any value from [−180, 180],

and lon can from [−90, 90]).

We introduce a new function, ExecuteAll, for feeding sampled data points to an Android app for

execution. These sampled data points are vertexes of a Space and represent minimal or maximal

values of respective variables in this Space. Each n-dimensional Space has 2n such vertexes, i.e.,

{(a1/b1), . . . , (an/bn)}, where ai/bi represents the minimal/maximal value for the i-th dimension. For ex-

ample, the earlier Space {(lat: −180, 180), (lon: −90, 90)} consists of four vertexes {(−180,−90), (−180,

90), (180,−90), (180, 90)}. Function ExecuteAll feeds such a set of vertexes to an Android app as its input

sensory data in a way the app accepts. When an event handler processes the sensory data, ExecuteAll

collects their corresponding hash indexes from executions, similar to what traditional white-box sampling

does.

We can split a Space into two sub-spaces with respect to a variable x in this space. Generally, for a

Space {(xi: ai, bi), i ∈ [1, n]} with n variables, if we split it according to the variable xj , whose value can

range from aj to bj , the resulting two sub-spaces are Space {xi: ai, bi), i ∈ [1, j)∨ i ∈ (j, n]∪ (xj : aj ,mj)}
and {(xi: ai, bi), i ∈ [1, j)∨i ∈ (j, n]∪(xj :mj , bj)}, wheremj is (aj+bj)/2. When we split a n-dimensional

Space, we get 2n−1 new vertexes. For our previous example, if we select variable lat to split Space, we

obtain two sub-spaces {(lat: −180, 0), (lon: −90, 90)} and {(lat: 0, 180), (lon: −90, 90)}, and the newly

generated vertexes are {(0, 90), (0,−90)}.
We enable each Space with two methods named cap and equal. Method cap calculates the capacity of

Space, i.e.,
∏

i∈(1,n) |bi − ai|, which is the product of all variables’ value ranges. The capacity represents

the length for a one-dimensional Space, area for a two-dimensional Space, volume for a three-dimensional

Space, and so on. Method equal checks whether the hash indexes of all vertexes in Space are identical.
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If yes, it returns TRUE, and otherwise, FALSE. We allow function ExecuteAll to run with a set of vertexes,

and collect corresponding hash indexes and store them for later reference.

3.3.2 Sampling algorithm

Algorithm 2 describes how our multidimensional white-box sampling works. First, the algorithm executes

an app with all vertexes of its app’s initial space, which represents all possible sensory data, as the input

sensory data (Lines 2–3). Then it pushes this initial space into stack (Lines 4) and enters a loop for space

splitting (Lines 5–14). In each iteration of the loop, it pops out a Space and assigns it to a local variable

now (Line 6). It then invokes now’s two methods, equal and cap. If now.equal() returns TRUE (meaning

that all vertexes’ hash indexes are identical) but now’s capacity is still larger than Threshold L (meaning

that the space is still very large), or now.equal() returns FALSE (meaning that all vertexes’ has indexes

are not identical) and now’s capacity is still larger than Threshold S (meaning that the space is large

enough for further splitting), the algorithm continues to split the current space now (Line 7). It chooses

variable d that has the maximal value range among all variables in Space now (Line 8), and splits now

into two sub-spaces with respect to variable d (Line 9). After that, it generates new sample data newV

from the two sub-spaces (Line 10), and feeds them to the app for execution as well as obtaining their

corresponding hash indexes (Lines 11). Finally, the algorithm pushes the two sub-spaces into stack to

continue its iterations (Line 12). Parameters Threshold L and Threshold S are the same as in traditional

white-box sampling. If one expects more complete analysis, they can be set smaller.

Algorithm 2 Multidimensional white-box sampling

Input: space: data range

1: stack = ϕ;

2: initV = space.allV ertexes();

3: ExecuteAll(initV );

4: stack.push(space);

5: while !stack.isEmpty() do

6: now = stack.pop();

7: if (now.equal() and now.cap()>Threshold L)

or (!now.equal() and now.cap()>Threshold S) then

8: d = now.getV arWithMaxV alueRange();

9: childSpaces = now.splitBy(d);

10: newV = GetNewV ertexes(childSpaces);

11: ExecuteAll(newV );

12: stack.pushAll(childSpaces);

13: end if

14: end while

We apply the algorithm to our earlier motivating example. Let Threshold L and Threshold S be 1/4

and 1/32 of the initial input space’s capacity, respectively. Then the multidimensional white-box sampling

can generate 27 pieces of different location data. We show the sampled location data in Figure 4. The half-

filled dot in circles represents the target location and the other dots represent the sampled data points.

We observe that these sampled location data are representative: some are close to the target location in

Figure 1 (i.e., those in the small circle, whose radius is NEAR DISTANCE), some are not far away from the

target location (i.e., those in the ring area between the small and large circles), and the others are far

away from the target location (i.e., those outside the large circle, whose radius is NOT FAR DISTANCE). By

feeding such location data to our motivating example, our energy inefficiency diagnosis can effectively

cover and analyze all three different location data usage scenarios. As a comparison, if one uses random

sampling, the chance of covering the three scenarios with a small number of sampled points (say 27) is

very low.



8 Li Q W, et al. Sci China Inf Sci

2016/8/19 1

Figure 4 Sampled data points for the motivating example

3.4 Execution Model

In order to apply multidimensional white-box sampling to analyzing smartphone apps, we define starting

and ending points to calculate hash indexes. As mentioned earlier, we model a smartphone app as a state

machine. When an app at state S1 receives a sensory event E1 it is listening to, the app will invoke its

corresponding handler to handle the event. As such, the app is always waiting for inputs and handling

them, and states like S1 are similar to initial states of a traditional non-event driven program. Therefore,

we consider entries of sensory event handlers in Android apps as starting points.

After an app finishes handling a sensory event, it transits to a new state. We consider the program

points where an app finishes its handling of sensory events as ending points. There are two cases of ending

points. First, if a sensory event handler does not create any new worker thread, the exit point of this

handler is considered as its ending point. Second, if a handler creates a new worker thread to handle its

received sensory event, the program point where the worker thread terminates is considered as its ending

point. In practice, a worker thread may be long-running or even never terminate. Therefore, we can set

a timeout limit for each sensory event handler. If it cannot finish handling its sensory event within the

limit, we consider the program point where the timeout occurs as its ending point. With thus defined

starting and ending points, one can calculate and record the hash index for each handler execution, which

is a series of visited critical instructions, including branching and type conversion instructions. A detailed

explanation of hash index can be found in related work [6].

4 Sensory Data Utilization Analysis

As we discussed earlier, sensory data, which are obtained with high energy cost, should be well utilized by

an app to bring users benefits. However, in many real-world Android apps, sensory data are ineffectively

utilized or even discarded at certain app states, resulting in energy waste. In order to diagnose such energy

inefficiency, we need to track how an app processes and utilizes its received sensory data at different app

states. In this section, we elaborate on how to conduct the diagnosis. We made a slight modification of

the method of GreedDroid and readers please refer to related work [4, 5] for a full treatment.

4.1 Tracking Sensory Data Usage

After a sensory datum enters an app, it can be transformed into different forms and utilized by different

app components. Therefore, the first step of energy inefficiency diagnosis is to track the transformation

of the sensory datum, which can be done by the existing dynamic information flow tracking idea [10].

Specifically, after multidimensional white-box sampling generates a sensory datum, the datum object is

associated with a unique taint mark and fed to the app under diagnosis. While the app transforms the

sensory datum into other forms, the taint mark will be propagated to those new program data that are

derived from the original sensory datum. Then when the app finishes handling its sensory datum, we

can pinpoint all such tainted program data and record how they are used by the app (e.g., passed as an

argument to an API call).
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Figure 5 System architecture of CyanDroid

4.2 Analyzing Sensory Data Utilization

When exploring an app’s state space, we should record how sensory data are utilized for a sensor event.

For the state transition from S1 to S2 due to handling sensory data, we calculate a metric, relative sensory

Data Utilization Coefficient (DUC), which is defined as follow:

duc(T ) =
usage(T )

max
T ′

{usage(T ′)}
(1)

For the state transition T due to handling sensory datum D at state S, DUC is defined as the ratio

of the datum’s usage against the maximal usage of any state transition T ′ due to handling any sensory

datum D′ at state S′, which means that we compare all transitions based on their sensory data usage

numbers and select the maximal one as T ′. usage(T ) is the number of valuable instructions, which

produce observable benefits to users (e.g., GUI changes at forefront) and are executed when handling

sensory datum D at state S, and a higher usage(T ) value means more practical benefits. A low DUC

value means poor sensory data utilization of sensory datum D at state S, as compared to others, which

also implies that sensory datum D does not bring satisfactory benefits to users.

Finally, we rank all state transitions based on their DUC values, and present results to app develop-

ers. The result reports also contain event sequences for energy inefficiency scenario replay, and include

information about how specific handlers use sensory data and what operations they have invoked. For

low DUC values and their associated transitions, developers can carefully think about whether they are

reasonable and necessary. If not, developers should consider how to optimize and improve concerned

apps’ design. Since our app state concept differs from GreenDroid, we calculate sensory data utilization

coefficient with respect to transitions instead of states.

5 Evaluation

In this section, we experimentally evaluate our CyanDroid and compare it with GreenDroid.

5.1 Experimental Setup and Design

We implemented our approach as a prototype tool named CyanDroid on top of Java PathFinder (JPF) [11].

Figure 5 overviews our CyanDroid’s system architecture. CyanDroid takes an Android app as input and

conducts automated energy inefficiency diagnosis. It reports all detected energy inefficiency bugs after its

app state exploration. Conceptually, CyanDroid consists of three major components: (1) Android app

executor (AAE), which systematically generates event sequences to exercise an Android app; (2) Data

generator (DG), which generates sensory data using multidimensional white-box sampling to explore

different app states; (3) Data utilization analyzer (DUA), which tracks how the app transforms

and utilizes sensory data at different states to identify those problematic states where sensory data are

underutilized.

AAE parses all GUI elements of activities of an app and generates corresponding events. Besides, AAE

simulates pressing button “Home” button and “Back”. The mocked sensor events are also produced by
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Table 1 The Basic Information of Experimental Subjects

Apps Rev no. LOC Source Code Availability

GPSLogger R-15 659 Google Code

Omnidroid R-863 12, 427 Google Code

Osmdroid R-750 18, 091 GitHub

GeohashDroid V-0.8.1-pre2 6, 682 Google Code

AAE and fed to handlers. DG is implemented to collect hash index for each execution of a handler and

generate new sample data delivered to AAE when necessary. We followed the GreenDroid’s way to monitor

whether a handler is processing any sensor event. If it is, DUA further records valuable instructions which

are related to sensory data to calculate sensory data usages of state transitions. Finally, AAE sorts and

reports sensory data utilization coefficient for each state transition with corresponding triggering event.

To evaluate CyanDroid, we selected four open-source Android apps from GitHub and Google Code.

We give their basic information in Table 1 [12–15]. They all heavily use sensors. Our evaluation is

based on mutant testing [16]. Specifically, we randomly mutated our subjects to inject sensory data

underutilization energy bugs into them. Such mutants have been proven to be valid substitutes for

real bugs in software testing [17]. We explain how to automatically generate such mutants later. Our

evaluation aims to answer the following three research questions:

• RQ1: Is GreenDroid’s energy inefficiency diagnosis stable (always returning the same results)?

• RQ2: Can CyanDroid detect energy bugs (real or injected)? How does it compare to GreenDroid?

• RQ3: How does CyanDroid compare to GreenDroid in efficiency?

Besides the above research questions, we also conducted a case study of real apps to evaluate Cyan-

Droid’s bug detection capability. Our experiments were conducted on a machine with Intel Core i5 CPU

@2.83GHz and 4GB RAM. The machine was installed with MS Windows 7 Professional.

5.2 Mutants Generation

We mutated selected Android apps to obtain more experimental subjects. Unlike traditional mutation,

we need to simulate energy bugs related to sensory data underutilization. Specifically, we mutated

assignment and branching statements related to sensory data usage with creation, transformation and

removal operations to change an app’s sensory data processing flow. Details are as follows.

First, we retrieved methods that take sensor event objects as parameters (e.g., onSensorChanged

and onLoctionChanged) from an app’s source code. These methods are sensory event handlers. Then,

we identified sensory data variables in these handlers’ owner classes (e.g., longitude, latitude and

accuracy for a typical location event handler). Next, we randomly generated arithmetic and conditional

expressions of these sensory data variables, and mutated assignment and branching statements concerning

sensory data in the retrieved methods. We deleted or replaced part of an assignment statement. For

a branching statement, we performed one of the three operations randomly: (1) removing its condition

predicate (becoming a tautology), (2) replacing its condition predicate with a new one, and (3) adding a

new branch. For (2) and (3), their required code snippets were randomly selected from the app’s program.

We generated 287, 82, 135 and 255 mutants for the four apps, respectively. Totally, 522 of them passed

compilation and became our experimental subjects.

5.3 Instability of GreenDroid

Research question RQ1 concerns GreenDroid’s instability in its analysis. We ran GreenDroid 10 times

for each mutant and Figure 6 gives the distribution of mutants based on the number of different analysis

results. The x-coordinate is the number of different results and the y-coordinate presents the correspond-

ing number of mutants. For a mutant, a larger number of different results means more instable analysis.

Figure 6 shows that that only 69 (13.2%) mutants have one constant result, while around 55.2% mutants

have at least four kinds of different results.
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Table 2 Effectiveness Comparisons between CyanDroid and GreenDroid

App Comparison

Bug transition

DUC ⩽ 0.3

Hotspot transition

0.3 < DUC ⩽ 0.7

Norm transition

0.7 < DUC

Perc More Perc More Perc More

GPSLogger

Positive 35.2% 100.0% 12.3% 100.0% 10.6% 100.0%

Neutral 64.8% - 86.0% - 89.4% -

Negative 0.0% - 1.7% −50.0% 0.0% -

Omnidroid

Positive 14.1% 130.0% 12.7% 92.6% 12.7% 92.6%

Neutral 83.1% - 85.9% - 85.9% -

Negative 2.8% −41.7% 1.4% −50.0% 1.4% −50.0%

Osmdroid

Positive 38.9% 95.7% 82.2% 58.2% 24.4% 81.8%

Neutral 60.0% - 16.7% - 75.6% -

Negative 1.1% −100.0% 1.1% −33.3% 0.0% -

Geohash

Droid

Positive 3.3% 100.0% 6.0% 100.0% 3.3% 100.0%

Neutral 96.2% - 94.0% - 96.7% -

Negative 0.5% −100.0% 0.0% - 0.0% -

Additionally, we calculated the percentage difference of transitions with DUC less than 0.5 for each

mutant. The percentage difference is defined as follows:

difference = max
1⩽i⩽10

|Perc− Perci| (2)

where Perci is the percentage of transitions whose DUC are less than 0.5 for i-th analysis and Perc is

the average percentage for 10 times analysis. Therefore, a percentage difference of 0.0 implies a perfect

stable analysis result, while the larger the difference is, the more instable the analysis result is. Our

calculation discloses that the maximal percentage difference is 0.82, 0.37, 0.77 and 0.73, for the four

subjects, respectively, while their averaged percentage differences are 0.48, 0.08, 0.47 and 0.02.

Both of the number of different results and the percentage difference suggest the instability of Green-

Droid in terms of analyzing one subject as well as analyzing across different subjects. We also observe that

GreenDroid missed problematic states where sensory data were underutilized (when reporting different

analysis results), thus missing potential bug reports. GreenDroid’s instability might confuse developers

by returning different results each time. Our CyanDroid does not have this problem since its sensory

data generation is deterministic and systematic, and its analysis result is combined from all possible

executions.

5.4 Effectiveness of CyanDroid

A CyanDroid’s analysis report contains analyzed state transitions and their DUC values, which indicate

their sensory data utilization levels. Since many state transitions share the same DUC values, they
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are grouped together rather than being listed separately. For an analysis report, a larger number of

such groups (representing different DUC values) is considered to be a more thorough analysis. For

example, a GreenDroid’s analysis report can contain three different DUC values for an app subject, while

a CyanDroid’s analysis report may contain five different DUC values for this subject, representing that

CyanDroid has explored more use scenarios than GreenDroid.

To answer research question RQ2, we compared the analysis results of CyanDroid and of GreenDroid.

For each mutant, we applied GreenDroid to analyze it for 10 times and chose its best analysis result result

for comparison with Cyndroid. Here, “best” means that the analysis report contains the most number of

different DUC values among 10 candidate reports, and in the following we call this best analysis result

GreenDroid’s analysis result for simplicity. Table 2 gives the detailed comparison.

For ease of presentation, we name a state transition (i.e., handler execution) whose DUC value is no

more than 0.3 as bug transition (whose sensory data utilization is significantly low), transition (0.3 <

DUC ⩽ 0.7) hotspot transition (whose sensory data utilization is somewhat low), and transition (DUC >

0.7) norm transition (whose sensory data utilization is just fine). For each app, a row named “Positive”

indicates that CyanDroid has an improved analysis report as compared to GreenDroid. Here, “improved”

means that CyanDroid has an analysis report containing more different DUC values than GreenDroid.

Similarly, “Negative” and “Neutral” means that CyanDroid’s analysis report is worse than and the same

as GreenDroid’s report in quality (i.e., number of different DUC values), respectively. Note that we

compare CyanDroid’s and GreenDroid’s analysis reports three times, with respect to three different

types of state transitions (bug, hotspot and norm transitions), respectively. For example, a block fenced

by “Bug transition” and “Positive” in Table 2 means the measurement of how many mutants have an

analysis report that have more different DUC values within the range of [0, 0.3] reported by CyanDroid

as against GreenDroid. The measurement contains “Perc” and “More” two parts. The former reports the

percentage of mutants meeting this measurement’s goal against the total number of mutants. The latter

reports the average increased percentage of different DUC values (CyanDroid vs. GreenDroid) among

such mutants. Note that for “Negative” cases, this value is negative (as it was actually decreased) or “-”

(i.e., not applicable when there is no such case).

Bug and hotspot transitions are our main concerns since they relate to very low sensory data utilization.

We observe from Table 2 (“Perc” column for “Bug transition”) that “Positive” cells contain much larger

values than “Negative” cells in most cases. For GeohashDroid, their difference is not large (only 2.8%),

but for this case, “Neutral” cells contain significantly large values (over 96%). This shows that CyanDroid

can detect serious energy bugs in a much more effective way than GreenDroid by exposing much more

use scenarios where sensory data are significantly underutilized (DUC ⩽ 0.3). For hotspot transitions

(“Perc” column), “Positive” cells all contain much larger values than “Negative” cells, and their differences

vary from 6.0% to 81.1%. Besides, for the “More” column (all three transition types), we observe that

“Positive” cells almost all contain much larger values than “Negative” cells. These results suggest that

CyanDroid can detect more energy bugs than GreenDroid in most cases, although there are few cases

where GreenDroid performs better than CyanDroid, whose chance is, however, very low (0-2.8%).

We owe CyanDroid’s more effective energy bug analysis to its more thorough exploration of an app

subject’s execution paths. To confirm it, we compared CyanDroid’s analyzed paths for each mutant’s

sensory event handler against GreenDroid. Note that we did not use path coverage here for comparison

since it can be infinite when an analyzed sensory event handler contains any loop. For comparison, we

recorded different paths in a sensory event handler that were executed in analysis by the code dynamic

monitoring functionality from JPF. We did not instrument any code into the apps under analysis, which

may disturb the diagnosis of CyanDroid. Instead, we added listeners to JPF when implementing Cyan-

Droid on top of JPF to record executed instructions for inferring concrete execution paths. We present

comparison results in Table 3. Still, for GreenDroid, we ran it 10 times for each mutant and averaged

their results.

Column “Positive” means that CyanDroid covered more paths than GreenDroid. Columns “Negative”

and “Neutral” indicate that CyanDroid covered fewer than and the same number of paths as GreenDroid,

respectively. Similar to previous comparisons, the three “Perc” columns measure the percentage of
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Table 3 Path Comparisons between CyanDroid and GreenDroid

App
Positive Neutral Negative

Perc More Perc Perc More

GPSLogger 88.3% 67.8% 10.1% 1.7% −17.8%

Omnidroid 28.2% 152.3% 69.0% 2.8% −32.1%

Osmdroid 57.8% 62.3% 42.2% 0.0% -

GeohashDroid 99.5% 121.7% 0.5% 0.0% -

Table 4 Average analysis overhead comparisons

App
Number of states Time (s) Memory (MB)

GreenDroid CyanDroid GreenDroid CyanDroid GreedDroid CyanDroid

GPSLogger 1, 332 91, 694 39 891 21 24

Omnidroid 2, 191 7, 394 754 1, 223 44 60

Osmdroid 4, 297 125, 161 57 967 36 43

GeohashDroid 910 160, 472 19 2, 424 26 32

mutants for “Positive”, “Negative” and “Neutral” three cases, respectively. The two “More” columns

measure how many more program paths CyanDroid covered than GreenDroid in percentage, averaged

over mutants for “Positive” and “Negative” two cases, respectively. As we explained earlier, “More” may

have negative values (for “Negative” cases, where CyanDroid covered less paths by definition). As we can

observe from the Table 3, “Positive” mutants are the majority and their “Perc” values range from 28.2%

to 99.5% with an average of 68.45%, which is significant, while the largest “Perc” value for “Negative”

mutants is only 2.8%. Besides, the “More” values of “Positive” mutants are clearly much larger than

those of “Negative” mutants, and their and their average values are 101.3% and −12.5%, respectively.

These results strongly suggest that CyanDroid can indeed explore much more program paths in app

analysis than GreenDroid.

Overall, CyanDroid not only covered more program paths during analysis, but also traversed more app

states. Nevertheless, there are still few subjects and cases where CyanDroid might report slightly worse

results than GreenDroid. The reason is that the random strategy in GreenDroid might generate lucky

sensory data that happen to exercise paths that cannot be covered by CyanDroid, but such chances are

low as we observe from experiments. In general, these comparison results confirm the effectiveness of our

CyanDroid in detecting energy inefficiency bugs caused by sensory data underutilization.

5.5 Efficiency of CyanDroid

We then consider research question RQ3 that concerns CyanDroid’s efficiency. We measured CyanDroid’s

analysis overhead and compared it to that of GreenDroid (averaged over 10 runs) in Table 4. CyanDroid

aims to examine more execution paths for each event handler. Thus it typically explores more application

states than GreenDroid. As shown in Table 4, CyanDroid explored 3.3−176.3x application states as

many as GreenDroid on our experimental subjects. However, the time overhead of CyanDroid did not

increase that significantly. We observe that GreenDroid’s analysis time ranges from 39 seconds to 754

seconds, while CyanDroid’s ranges from 891 seconds to 2, 424 seconds, which are larger. The ratios of

the analysis time between CyanDroid and GreenDroid are 22.8, 1.6, 17.0 and 127.6, respectively, for the

four experimental subjects. Although CyanDroid worked slower than GreenDroid for these app subjects,

CyanDroid obtained stable analysis results after only one run, while GreenDroid did not obtain stable

analysis results even after 10 runs. In fact, these 10 runs may take more time than CyanDroid (i.e., even

slower and even worse results). Therefore, we consider that CyanDroid is still competitive as compared

to GreenDroid in the analysis efficiency. Besides, CyanDroid incurred slightly more memory cost than

GreenDroid, since it explored and analyzed much more program paths.
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(b) Omnidroid’s analysis report by CyanDroid

Figure 7 Analysis results of case study

5.6 Case Study

Previously, we evaluated our CyanDroid’s effectiveness and efficiency in analyzing sensory data under-

utilization issues for Android apps using their mutants. In the following, we report our analysis results

for two real-world Android apps using their original programs.

5.6.1 GPSLogger

GPSLogger is an Android app that helps users label their photos with GPS locations and record their

daily routes [14]. Figure 7(a) gives CyanDroid’s analysis result of GPSLogger, which shows that almost

half of its analyzed state transitions are problematic with 0.0, 0.25 or 0.5 such low DUC values. By looking

into GPSLogger’s source code, we found that GPSLogger discards sensed location data directly if the data

do not meet certain precision requirements. If users stay in some places with bad GPS signals, the app

may keep discarding the obtained data. Then it is meaningless to use the app for location recording and

much battery energy will be wasted. So in order to optimize for the app’s energy efficiency, developers

should considering reducing the location sensing frequency or temporarily disabling the sensing when the

app keeps receiving imprecise location data for some long time.

5.6.2 Omnidroid

The app Omnidroid helps users automatically perform some tasks in certain contexts with predefined

rules [13]. For example, if a user receives a phone call when she/he is having a meeting, Omnidroid

can help automatically reply a message with the content like “I am busy”. From the analysis result

in Figure 7(b), we can observe that there are quite many state transitions with a DUC value of zero,

which undoubtedly indicates its serious energy. Besides, there are also many cases where DUC values are

clearly low and range in a large scope (0.0090 - 0.8018). We replayed these problematic cases, studied

the corresponding code and realized the responsible problem. If there are rules concerning location data,

Omnidroid will listen to location update events. Every time when there is an update, it will construct

an OmniArea object with the received location data. However, the longitude and latitude fields of the

object are mistakenly switched as shown in Figure 8. Therefore, if longitude is greater than 90 or less

than -90, the constructor of OmniArea will throw an exception (the range of latitude is -90 to 90) and just

returns. This exception will be caught but ignored, and therefore the location data will not be utilized.

If users stay in the area where the longitude is greater than 90 or less than -90, the app Omnidroid

may repeat this useless process for many times if it continuously listens to location updates. This can

cause Omnidroid to waste a large amount of battery energy. This problem is found by CyanDroid and

previously unknown. We have reported it to OmniDroid’s developers [18].
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1 public void onLocationChanged(Location location) {

2 OmniArea newLocation;

3 try {

4 // BUG: the longitude and latitude are mistakenly switched

5 newLocation = new OmniArea(null, location.getLatitude(),

6 location.getLongitude(), location.getAccuracy());

7 } catch (DataTypeValidationException e) {

8 newLocation = null;

9 }

10 //follow-up processing

11 }

(a) LocationManager.java

1 public OmniArea(String userInput, double longitude, double latitude,

2 double proximityDistance) throws DataTypeValidationException {

3 if (latitude < MIN_LATITUDE || latitude > MAX_LATITUDE)

4 throw new DataTypeValidationException("Latitude must be between "

5 + MIN_LATITUDE + " and " + MAX_LATITUDE);

6 if (longitude < MIN_LONGITUDE || longitude > MAX_LONGITUDE)

7 throw new DataTypeValidationException("Longitude must be between "

8 + MIN_LONGITUDE + " and " + MAX_LONGITUDE);

9 if (proximityDistance < 0)

10 throw new DataTypeValidationException("Distance cannot be negative");

11 //follow-up processing

12 }

(b) OmniArea.java

Figure 8 Omnidroid’s code snippets

5.7 Discussions

Our CyanDroid is effective in analyzing sensory data underutilization issues, but it may suffer from

the state space explosion problem. The reason is that CyanDroid splits a state space always in the

middle for each dimension, which imposes a logarithmic complexity in a dimension, and stops search

immediately after it reaches the threshold associated with that dimension. This treatment can introduce

more states explored than in GreenDroid, thus leading to increased time and memory cost. However, the

time overhead of CyanDroid does not increase that significantly. Besides, CyanDroid only needs to run

once, while GreenDroid may have to run many times to make its users feel sure about which results are

stable. We plan to alleviate this problem by exploiting existing pruning techniques to reduce redundant

states [19]. We also plan to further study this problem for the case where there are many dimensions of

sensory data in future.

Besides, the current CyanDroid implementation would generate random strings when an Android

app needs text inputs. As such, CyanDroid cannot simulate complicated user events, such as screen

unlock event, valid user name and password. This simplifies the implementation but may cause some

app states not reachable. Therefore, CyanDroid needs extension to incorporate other program analysis

techniques [20] to better explore an app’s state space. This requires our further effort.

In the experiments, we concerned only location-aware Android apps because they are popular nowadays

(most Android apps use or rely on location data directly or indirectly). Our CyanDroid approach does

not make any assumption on the types of sensory data for analysis. In terms of tool implementation,

currently our CyanDroid supports multidimensional location data. We are also extending it to support

more types of sensory data and the extension does not change our sensory data analysis.

Finally, our evaluation involves large-scale experiments with mutants but relatively small-scale case

studies with real-world Android apps. A major reason is that CyanDroid needs quite extension to handle

implementation issues with every specific app’s customized exceptions as well as native API calls. We
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plan to work along this line to test more Android apps in future.

6 Related Work

Due to the popularity of smartphone uses with ordinary people, researchers have spent great efforts on

assuring both functional and non-functional quality properties for smartphone apps. Some work focuses on

quality assurance via functional testing. For example, Dynodroid generated relevant inputs for automated

Android app testing [21]. EvoDroid proposed a segmented evolutionary technique for testing Android

apps in a more effective way [22]. UGA leveraged human insights for semi-automated testing of Android

apps, and proved to be more effective than pure random testing techniques or strategies [20]. For non-

functional testing, one good example is the static analysis tool PerfChecker that detects performance

bugs in Android apps by summarized patterns, e.g., view holder pattern [23]. In this article, we mainly

concern energy inefficiency bugs for smartphone apps.

Researchers have proposed various techniques to detect energy inefficiency bugs in smartphone apps.

For example, Pathak et al. characterized no-sleep energy bugs in Android apps and then used reaching-

definition data-flow analysis to detect their occurrences [24]. However, this work cannot detect energy

inefficiency bugs related to low sensory data utilization as we studied in this article. Besides, it requires

information about all calling sequences among handlers, which cannot be easily available in practice.

Liu et al. proposed GreenDroid to automatically execute Android apps and search problematic states

with low sensory data utilization by dynamic tainting, as our focus in this article [4, 5]. However, as we

discussed earlier, they may miss critical states that are reachable only by specific sensory data inputs

and thus diagnose apps in an incomplete and unstable way. Banerjee et al. presented an automated

test generation framework that diagnoses energy bugs/hotspots in Android apps, but the work required

hardware support for real measurement [25].

There is also existing work concerning energy consumption estimation. Singh et al. used hardware

instrumentation to estimate actual power usage for each computing task at an OS level [26]. Pathak et

al. implemented Eprof to help measure energy consumption of an Android apps from collected event

sequences [27]. Hao et al. [28] and Li et al. [29] proposed calculating fine-grained energy consumption

information at a source-line level. This is done by combining hardware-based power estimation and

statistical modeling. These pieces of work all require concrete hardware platforms for app execution,

which our work in this article does not need.

Some other pieces of work concerns empirical studies or experiments about energy consumption for

smartphone apps. Sahin et al. conducted an empirical study to investigate the impact of code obfuscation

on energy usage for Android apps [30]. They found that the impact can be marginal to app users. Li et

al. presented an empirical investigation to analyze energy consumption of real-world Android apps at a

source-code level [31]. They found that the idle state can drain most of energy while a few certain APIs

including network ones dominate non-idle energy consumption. Linares-Vasquez et al. presented their

large quantitative and qualitative empirical study into the categories of API calls and usage patterns

that can exhibit particularly high energy consumption profiles [32]. These pieces of work focus on finding

out characteristics of smartphone app energy inefficiency, and our work detects such issues concretely.

Some observations echo with each other, and we believe that more observations can be incorporated for

diagnosis of more energy inefficiency bugs in future.

Additionally, some work also helps developers fix energy inefficiency bugs. Ma et al. proposed a practi-

cal tool eDoctor that helps developers diagnose abnormal battery drain issues in apps and also presented

some feasible solutions for fixing them [33]. Li et al. instrumented apps that have energy inefficiency

bugs to automatically fix sensor data underutilization issues, and their app-specific energy-aware sensing

policies can be integrated with the apps without any modification to the underlying operating systems

or the apps themselves [34].

Finally, white-box sampling is similar to Non-uniform sampling in signal processing, which accurately

selects some points to reconstruct the signal in the receiving end as soon as possible [35]. Non-uniform
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sampling needs to sample more data points in a place where energy changes rapidly, which is like the case

that white-box sampling generates more data points at discrete-decision points in paths. However, the

main difference is that white-box sampling generates sampled data for an interval based on hash indexes

of historical executions while non-uniform sampling works under predefined non-uniform sample interval,

which is also only one dimension, with statistical and pseudo-random methods.

7 Conclusion

In this article, we studied the energy inefficiency diagnosis problem for smartphone apps. We focused on

its stability and effectiveness aspects, as motivated by limitations of a recent state-of-the-art technique,

GreedDroid. We proposed the fine-granularity state concept and multidimensional white-box sampling

technique to fulfill the goal of systematic exploration of an app’s state space and relate it to different

usage scenarios of sensory data. Our approach can explore an app’s state space automatically, and as the

evaluation shows, its tool implementation, CyanDroid, exhibited its stability, effectiveness and efficiency

in smartphone app energy inefficiency diagnosis. Our CyanDroid also reported real bugs in real-world

apps. In future, we plan to validate our idea in more real-world apps, and study dynamic adaptation of

input space splitting thresholds to automatically balance time cost and diagnosis effectiveness.
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