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Abstract

As production code evolves, test code can quickly become outdated.
When test code is outdated, it may fail to capture errors in the
programs under test and can lead to serious software bugs that
result in significant losses for both developers and users. To en-
sure high software quality, it is crucial to promptly update the test
code after making changes to the production code. This practice
ensures that the test code and production code evolve together, re-
ducing the likelihood of errors and ensuring the software remains
reliable. However, maintaining test code can be challenging and
time-consuming. To automate the identification of outdated test
code, recent research has proposed SITAR, a machine learning-based
method. Despite SITAR’s usefulness, it has major limitations, in-
cluding its coarse prediction granularity (at class level), reliance on
naming conventions to discover test code, and dependence on man-
ually summarized features to construct machine learning models.
In this paper, we address the limitations of SITAR and propose
a new machine learning-based approach DRIFT. DRIFT predicts
outdated test cases at the method level. It leverages method-calling
relationships to accurately infer the links between production and
test code, and automatically learns features via code analysis. We
evaluate DRIFT using 40 open-source Java projects in both within-
project and cross-project scenarios, and find that DRIFT can achieve
satisfactory prediction performances in both scenarios. We also
compare DRIFT with existing methods for outdated test code pre-
diction and find that DRIFT can significantly outperform them. For
example, compared with SITAR, the accuracy of DRIFT is increased
by about 8.5%, the F1-score is increased by about 8.3%, and more

“Yepang Liu is the corresponding author. He is affiliated with both the Department
of Computer Science and Engineering and the Research Institute of Trustworthy
Autonomous Systems at Southern University of Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Internetware 2023, August 4—6, 2023, Hangzhou, China

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0894-7/23/08....$15.00
https://doi.org/10.1145/3609437.3609449

Shenzhen, China
11910338(@mail.sustech.edu.cn

importantly, the number of test cases that developers need to check
is reduced by about 75%. Therefore, our method, DRIFT, can predict
outdated test cases more accurately at a fine-grained level, and thus
better facilitate the co-evolution of production and test code.
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1 Introduction

The purpose of software testing is to examine software artifacts
and behaviors to identify flaws, such as programming errors and
usability issues. Effective testing can help developers avoid serious
logic problems during software development, and enable product
managers to expand or revise requirements, ultimately improving
the user experience. In practice, building testing infrastructure and
writing test code, such as unit test cases, are essential activities
in the software development process. While software testing in-
frastructure is typically stable, test code is rarely static. With the
continual updates of production code, existing test code may be-
come outdated or inadequate, failing to cover new functionalities or
leading to spurious failures due to inappropriate assertions. There-
fore, test code should be updated simultaneously with production
code, a process known as the co-evolution of production code and
test code, or production-test co-evolution for short [21].

While production-test co-evolution is critical, keeping test code
up-to-date can be challenging in practice. The main reason is that
test maintenance tasks are typically performed manually, and it is
non-trivial to identify specific locations of test code that require
updates as production code evolves. Moreover, updating test code
by adding new test cases or removing or revising inapplicable test
cases is a time-consuming process. Due to these reasons, existing
research [22] has found that in real-world projects, test code evolu-
tion often lags behind the evolution of production code, resulting
in the prevalence of obsolete and inapplicable test code. To address
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this issue, researchers have been exploring automated techniques
for supporting test code updates [4, 5, 8, 11, 12, 15].

Updating test code in response to production code changes es-
sentially involves two steps: (1) determining whether the test code
should be updated along with the production code and (2) identi-
fying which new test cases should be added and which existing
test cases should be revised or removed if the answer to the first
step is yes. It is challenging to automate this task for two major
reasons. First, the traceability links between production code and
test code are rarely explicitly maintained in real-world projects [18].
Without precise knowledge of the correspondence between test
code and production code, it is hard to do further analysis and
reasoning. Second, whether to update a piece of test code can be
determined by various factors and requires an understanding of the
purpose of production code changes. Adopting pre-defined heuris-
tic rules based on simple factors (e.g., when a production method’s
body changes, the corresponding test code should be updated) is
generally ineffective for predicting necessary test changes.

The most recent work, SITAR [19], addresses the aforementioned
challenges in the following manner. To associate test code with
production code, SITAR leverages the file naming convention of
Java projects [1] to map Java classes with their corresponding test
classes. For example, the class TestFoo is likely a test class for the
production class Foo. For predicting necessary test updates, SITAR
employs machine learning algorithms to train a model based on
the historical commits of a project. The trained model takes into
account multiple factors, such as the changed program constructs
in the production code and the complexity of the code changes, to
infer whether there is a need to update a test class when the class
under test is changed.

Despite its potential benefits, SITAR has several limitations. First,
while it is possible to infer the relationship between test code and
production code via analyzing file or method names, developers
may not strictly follow conventions or suggested practices to name
a file or a method. As a result, the recovered links between produc-
tion code and test code are often incomplete, with some links being
missed. Second, SITAR relies on a small set of manually determined
features (e.g., whether the parameter list of a method is changed
or whether there are changes in the conditions of if statements)
to train its machine learning model. Such features, selected based
on experience, may not be comprehensive. Third, SITAR can only
perform coarse-grained prediction at the class level. Given a set of
changes in a production class, SITAR only predicts whether the cor-
responding test class needs to be updated without providing more
fine-grained results. As a test class may contain a large number of
test cases, users of SITAR must still expend much effort to locate the
specific test cases that need to be updated, which limits SITAR’s prac-
tical adoption. In Section 2, we will provide a motivating example
to further illustrate these limitations.

To address the limitations of existing works, we first conducted a
large-scale empirical study based on 731 popular, well-maintained,
and diversified open-source Java projects. Through statistical data
analysis, we found that refining the prediction granularity of out-
dated test code to the method level can generally reduce the effort
required for test case updates. Additionally, we observed that not all
changes to production methods will necessitate test case updates,
and whether updates are required may be related to the internal
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characteristics of the changed production methods. Regarding the
association of production methods and test cases, we found that
the existing naming convention method, which is used to establish
traceability links between production files (classes) and test files
(classes), is not suitable for finding the relationship between test
cases and production methods at the method level. Instead, a more
effective approach is to identify the multi-layer call relationship of
the test case and then determine the traceability link relationship
between the test case and the corresponding production method. In
addition to the above findings, we also identified 48 method-level
code features that may be related to test case updates, providing an
accurate representation of the changed production code.

Based on the findings of our empirical research, we designed a
fine-grained method to automatically predict outdated test cases,
which we named DRIFT (fine-graineD pRedIction oF co-evoluTion).
DrirT effectively addresses the challenges of automatic prediction
of outdated test cases and improves upon the limitations of existing
techniques. The method is divided into three parts: data preprocess-
ing, method-granularity feature extraction and classifier training,
and accurate judgment and identification of the test cases that
need to be updated. We also conducted experiments to evaluate
DRriIFT. Firstly, we evaluated DRIFT’s prediction performance in
both within-project and cross-project scenarios. The experiments
revealed that DRIFT can achieve good prediction results in both
within-project and cross-project scenarios, indicating that it can
learn co-evolution laws from different projects and apply them to
new projects to predict outdated test cases. Next, we compared the
performance of DRIFT with two existing prediction methods: a rule-
based prediction method [10] and S1TAR [19]. Through experiments
on 40 open-source Java projects, we found that DRIFT outperforms
the two methods significantly. Compared to SITAR, the average
prediction accuracy of DRIFT is increased by about 8.5%, the F1-
score is increased by about 8.3%, and the number of test cases that
developers need to check is reduced by about 75%. These results
show that DRIFT can predict outdated test cases in a more accurate
and fine-grained manner, reduce the workload of code maintainers,
and promote the co-evolution of production code and test code.

In summary, our work makes the following contributions:

e We conducted an empirical study to investigate the co-evolution
between production and test cases in 731 open-source Java projects.
Through quantitative analyses, we proved that outdated test case
prediction in method granularity is necessary, as well as types of
production method changes that are likely to trigger updates to
test cases.

e We propose a fine-grained machine learning-based approach,
DRrIFT, for detecting outdated test cases. DRIFT learns from his-
torical production-test co-evolution by extracting method-level
characteristics, and utilizes a more accurate traceability method
to identify the test cases that require updates.

e We implemented our approach as a tool and evaluated it using
40 real-world Java projects. Compared to the state of the art, our
approach achieved better performance (e.g., a 8.5% improvement
in accuracy). The results confirm the effectiveness and potential
usefulness of our approach.

The remainder of this paper is organized as follows. Section 2
provides an example to explain why it is necessary to predict test
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createTestTopic() //overloading
createTestlopic()  //overloading
testCreateTopics()

createTopics() testC TopicsWithConfigs()

1 line added, 1 line deleted testCreateTopicsWithValidateOnlyFlag()
testInvalidCreateTopicsWithValidateOnlyFlag()

testGlobal TopicAndPartitionMetrics()
testDeleteTopics()

testTopicNameCollision()

validateNewTopicNames() 18 lines added

13 lines added, 1 line deleted
testValidateNewTopicNames()
1 line added, 1 line deleted

Figure 1: Production and test code change in Kafka.

updates at the method level. Section 3 presents our empirical study.
Section 4 describes our fine-grained machine learning approach
for test update prediction. Section 5 presents the evaluation of our
approach, followed by a discussion of threats to validity and future
work in Section 6. We describe related studies in Section 7 and
conclude our work in Section 8.

2 Motivating Example

In the open-source project Apache Kafka [6], a distributed event

streaming platform used by thousands of companies, there is a com-
mit (87aa825) made by the developer dengziming on April 14, 2022.
The changes to the production code include modifications to the

createTopics method and the validateNewTopicNames method.
As shown in Fig. 1, in the test code, the validateNewTopicNames

method has two related test methods, and the createTopics method
has eight related test methods. We observed that when the produc-
tion code changed, only two test methods that test validateNew

TopicNames production method were updated simultaneously, while
the eight test methods related to the createTopics production

method did not co-evolve.

Observation 1. From the example, we can see that when the
production code changes, only a few test methods in the test class
need to be updated accordingly. If we predict outdated test code at
the class level (i.e., suggesting that the entire test class needs to be
updated), developers still need to spend a lot of effort to identify
which test methods or test cases need modification. Such coarse-
grained predictions can lead to inefficient test maintenance and
hinder the practical adoption of the technique.

Observation 2. In addition, we can observe from Fig. 1 that
among the eight test methods realted to the createTopics method,
only the testCreateTopics test method adheres to the naming
convention. Similarly, for the two test methods that test the validate
NewTopicNames method, only testValidateNewTopicNames con-
forms to the naming convention. The testTopicNamesCollision
test method is named in consideration of the specific purpose of
the test case. Thus, it is clear that the associations between produc-
tion and test methods cannot be effectively and reliably established
solely by using the naming convention.

Motivated by the above two observations, we propose a new
method DRIFT to predict outdated test cases. In contrast to existing
approaches that make predictions at the class level, DRIrT makes
finer-grained predictions at the method level. Rather than relying
solely on naming conventions to establish traceability links between
production code and test code, DRIFT takes a holistic approach, con-
sidering both improved naming conventions and multi-layer calling
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relationships between methods, to accurately associate production
methods with their related test cases.

3 Empirical Study

As previously mentioned, existing techniques rely on manually
identified features and make coarse-grained predictions of out-
dated test code at the class level. In this section, we perform an
empirical study on a large number of open-source Java projects to
demonstrate that with class-level predictions, developers still need
to expend much effort to identify outdated test methods. Addition-
ally, we aim to automatically identify code-level features to achieve
more accurate predictions of outdated test code.

3.1 Data Collection

In order to ensure the validity and generalizability of our empirical
findings, it is crucial to collect large-scale, popular, well-maintained,
and diversified open-source Java projects to form a dataset for later
analysis. To achieve this, we collected projects from GitHub, the
world’s largest open-source project hosting platform.

Our collection process consists of the following steps. First, we
used GitHub’s API to collect the URL list of open-source projects.
We set the programming language of the project to Java and the
number of stars and forks to be greater than 2,000 and 500, respec-
tively, to search for suitable projects. The number of stars and forks
represents the popularity of the project. The higher the number of
stars and forks, the more popular the project is. With the search, we
obtained 1,201 Java projects. Second, we discard projects with no
more than 200 commits as such projects are often small-scale. Third,
because we focus on the unit testing scenario in this research, we
search for @Test annotations in the projects to filter out projects
without unit tests. Next, we classified projects into the following
nine categories according to the main usage of Java in real world:
embedded field, big data technology, software tools, web applica-
tions, Android system and applications, games, third-party trading
systems, server applications in financial industry, and scientific
applications. To balance the size of each category, for four cate-
gories! with an extremely small number of projects, we searched
on GitHub again without setting constraints on the number of stars
and forks and added the top Java projects (ranked according to the
number of stars) with unit tests to supplement them.

Following the above steps, we constructed a dataset consisting of
751 projects that are not only popular, but also well-maintained and
diversified. All projects in the dataset have accompanying unit test
cases, which makes promoting the co-evolution of production and
test code highly necessary. For subsequent experimental evaluations
of our prediction tool, we randomly selected 20 projects (the projects
will be listed in Section 5) from the dataset. The remaining 731
projects were reserved for our empirical study.

3.2 Research Questions
Our empirical study investigates two research questions:

e RQ1: Is it necessary to refine the granularity of outdated test
code prediction to the method level?

!They are server applications in financial industry, third-party trading systems, em-
bedded field, and scientific applications.
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o RQ2: What kinds of code changes in production methods would
likely cause corresponding test cases to be updated?

3.3 Methodology and Results

To answer the above research questions, we analyzed the historical
commits of the 731 open-source Java projects in our dataset. First,
we define positive and negative samples for the co-evolution of
production code and test code. A positive sample refers to the
case where after the production code (class or method) is changed,
the corresponding test code (class or test case) is updated within
48 hours. A negative sample refers to the case where after the
production code (file or method) is changed, the corresponding test
code (class or test case) is not updated within 480 hours.

Associating production and test code. One important step in
identifying positive and negative examples is to associate the test
code with the corresponding production code. In the following, we
present our approach to finding such associations.

A common method to find the traceability link relationship be-
tween production file and test file is to use the naming conven-
tion [17, 19] (e.g., developers are suggested to add “test” before
or after the name of the production file to form the name of the
corresponding test file). Through the analysis of 731 open-source
projects, we found that the naming convention-based method has
two limitations. First, if we use simple rules, we will miss many
test files (e.g., some developers add “testCase” to a production file’s
name to make up the test file’s name). In addition, if the two Java
files are in different folders, the file names may be the same, which
will lead to confusion about traceability link relationships that are
found using the naming convention. To address the above limita-
tions, we make improvements when using the naming convention
to find corresponding relationships. For files with the same name,
we detect modules imported in test files to find corresponding pro-
duction files. Moreover, when using the naming convention, we
check whether the production file’s name plus “test”, “testCase” or
“tests” exists to find the corresponding test file.

When looking for the traceability link relationships between
the production methods and test cases, we look for the multi-layer
call relationship at the method granularity according to the pars-
ing results of antlr4 grammar parser [13]. The search details of the
multi-layer call relationship are as follows. First, we create an empty
list for each test case. Then we find the production methods and
the other test cases called in each test case and save the called pro-
duction methods’ paths to the empty list. For the called production
methods, we continue to search for the other production methods
called in them, and save the production methods’ paths called. For
the called test cases, we repeat to find the call relationships, and
further we search for the call relationships of the called production
methods and called test cases, respectively. We conduct the above
search until the call relationship exceeds the scope of five layers.
Finally, we obtain a list of production methods called by each test
case in multiple layers, from which we can get the corresponding
relationships between production methods and test cases.

3.3.1 RQ1 To investigate RQ1, we find the traceability link rela-
tionships between production files and test files in 731 projects.
Then we obtain positive and negative samples of file granularity
by comparing the change times of the two files. We counted the
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total number of test cases contained in each positive sample’s test
file and the number of test cases that were updated in the test file.
Fig. 2 gives the distribution of the results for the 731 Java projects.
We can see that the number of test cases in the test files is primarily
concentrated in the range of 1-35, and the proportion in the interval
of 10-15 is the highest, indicating that it is most common that the
test files in the positive samples contain 10-15 test cases.

Next, We divided the number of updated test cases in each test
file by the total number of test cases in the test file to obtain the
proportion of updated test cases. Fig. 3 shows the distribution of
such calculated proportions among all positive examples. It can be
seen that it is most common that the updated test cases in the test
file account for 20% to 30% of the total number of test cases, and it
is rare that all test cases in a test file get updated.

In addition, for each test file in positive examples, we counted
the number of test cases that test the changed production methods
and how many of these test cases were updated along with the
production methods. If the former number is not 0 but the latter
number is 0 (i.e., none of the test cases for the changed production
methods are updated), we classify this situation as “not change”.
If the former number is not 0 and the latter number is also not 0
(i.e., test cases for the changed production methods are updated),
we classify this situation as “should change”. For each test file, we
calculate the proportion of changed production methods for which
the test cases are not updated. Fig. 4 shows the distribution of such
proportions among all positive samples. It can be seen from the
figure that for many positive samples, at least 30% to 40% of the
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Table 1: AST node types defined in Java documentation

AST node types

Wildcard LambdaExpression TypeParameter Unary

Throw MethodInvocation Return AnnotatedType
Try CompoundAssignment  Continue Binary

Break Erroneous Block MemberSelect
DoWhileLoop ArrayAccess VariableDeclaration ~ TypeCast
‘WhileLoop ConditionalExpression ~ ForLoop Parenthesized
Switch Annotation Synchronized NewArray
EnhancedForLoop InstanceOf LabeledStatement C ompilationUnit*
Assert Identifier If NewClass
ExpressionStatement ~ Assignment Catch Literal
ArrayType IntersectionType UnionType PrimitiveType
Modifiers MethodDeclaration ParameterizedType EmptyStatemem*
Case ClassDeclaration” MemberReference Importk

production method changes do not trigger test case changes. If a
class-level predictor points out that the test class should be updated,
developers will still have a hard time identifying which test cases
to update.

Finding 1: When a test class is updated due to production
code changes, many of its constituent test cases do not need
to be updated, even though the corresponding production
methods are changed. Refining the prediction granularity of
outdated test code to the method level can significantly reduce
the effort of identifying outdated test cases in test files.

3.3.2 RQ2 In order to find out what kinds of code changes in
production methods would likely cause test cases to be updated,
we compared the ASTs (Abstract Syntax Trees) before and after
production method updates and performed further analysis. We
first extracted all 52 AST node types from the Java Development
Kit’s Tree. java file, as shown in Table 1, and these AST node types
will be used to describe code changes.

We simply screen the above AST node types using the basic
VarianceThreshold method [3], which will delete features whose
variance does not meet a certain threshold. The specific variance
calculation formula is:

Var[X] =p(1-p)

X represents the node type we are screening, and p represents
the proportion of samples containing this node type in all samples
of the above dataset.
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Since the greater the variance of a variable, the larger its contri-
bution and effect to the model will be, the node type with a large
variance should be retained, and the other meaningless variables
should be eliminated. We set the screening threshold to 0. The pur-
pose of this setting is to roughly screen out node types that exist or
do not exist in both positive and negative samples of the method
granularity. After screening, we extracted 48 AST node types (those
not annotated with “*” in Table 1) as production code change types
that may be related to co-evolution. These node types will be consid-
ered as features in designing our machine learning-based technique
for predicting outdated test cases.

Finding 2: 48 production code change types in Table 1 would
likely cause the corresponding test code to be updated.

4 The DRrIFT Approach

The high-level workflow of DRIFT is presented in Fig. 5. The method
is divided into three parts: (1) data preprocessing, (2) method-
granularity feature extraction, and (3) classifier training. The specifics
of each part are described in the following sections.

4.1 Data Preprocessing

The goal of data preprocessing is to identify positive and negative
samples of method granularity from historical commits of software
projects. In the case of an open-source Java project, the following
data preprocessing operations are performed: First, we extract all
changed production file names from historical commits and collect
all file names that have existed in the project. Second, we look
for the traceability link relationship between the changed produc-
tion file and test file. Third, we identify all production methods
that have changed in the production file and find the traceability
link relationship between the changed production methods and
test cases. For each production method change, we check if the
corresponding test cases in the historical commits have been up-
dated. If the corresponding test cases have never been updated, we
store the production method change and the corresponding test
cases’ locations together as a negative sample, labeled as NC (not
changed). If the corresponding test cases have been updated, we
find the test case update closest to the production method change
and calculate the interval time between the two changes. If the
shortest interval time is less than 48 hours, and between the two
changes, the production method has not changed again, we store
the production method change and the corresponding test case up-
dates together as a positive sample, label it as SC (should change). If
the shortest interval time is greater than 480 hours, the production
method change and the locations of the corresponding test cases
will also be stored as a negative sample. The specific flow chart for
the data preprocessing is presented in Fig. 6. When looking for the
traceability link relationship between the changed production file
and test file, as well as the traceability link relationship between
the production method and test cases, we follow the process in
Section 3.3.

4.2 Method-Granularity Feature Extraction

After the positive and negative samples of co-evolution of method
granularity are obtained through data preprocessing, we extract
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Figure 5: High-level workflow of DRIFT
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Find traceability links between changed production files and test files

A
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A
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All test case names
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Changed production methods |
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Save traceability link relationships associated with changed production methods
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Test cases has changed?
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Find historical changes to the above test cases

Y

Minimum interval time = time of the most recent corresponding test case change
- time of production method change

Figure 6: Detailed steps of data preprocessing

the features of method granularity for the positive and negative
samples, and represent them by eigenvectors. The features used in
this step are from the 48 production code change types (AST node
types) listed in Table 1 that may result in test case updates (each
AST node type represents a structure in the source code). The 48
features that might lead to coevolution have been initially screened

to exclude node types that are completely unrelated to coevolution.

Since each production code change type in the Java file can
correspond to an interval, we parse the changed production code
to identify the specific line number range of each production code
change type (listed in Table 1) in the code. Then we judge whether
the changed code lines in each production method are within the
range of production code change types by code line unit. Since
there are two types of operations for code lines, namely, adding
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and deleting, each feature is represented by two dimensions of the
feature vector, one representing the number of lines added by the
feature in the sample, and the other representing the number of
lines deleted by the feature in the sample.

4.3 Classifier Training

After extracting eigenvectors of positive and negative samples at
method granularity, we use a machine learning classifier to learn
the rules contained in the eigenvectors and train the classifier to
predict the correct label of the input. It’s important to consider the
balance of positive and negative samples during classifier training.
If the difference in the number of positive and negative samples
is too large, it can lead to overfitting of the classifier and poor
generalization ability of the trained model. To address this, we
undersample the class with too many samples to balance.

During classifier training, we input the eigenvectors extracted
from the samples into the classifier. The output of the classifier is
the category (label) of the samples (NC or SC). The classifier learns
how to map the input data (eigenvectors) to the correct category
(label) during the training process. This enables the classifier to
predict whether test cases need to be updated for a certain pro-
duction method change, ultimately saving time and resources for
the organization. We compare the classification performance of
six commonly used machine learning algorithms: Support Vector
Machines, Random Forests, Naive Bayes, K-Nearest Neighbor, Gra-
dient Boosting, and Logistic Regression. Our aim is to determine
the best classifier algorithm for DRIFT.

To collect positive and negative samples from 40 projects, we
refer to the data preprocessing of DRIFTin Section 4.1. We use
standard classifiers from the scikit-learn library and set default
classifier hyperparameters. We train six classifier models and use
the ten-fold cross-validation method to obtain average precision
and recall, then draw the PR curve (Precision-Recall curve).

5 Evaluation

As the choice of classifier in the DRIFT method can significantly
affect the prediction performance of outdated test cases, it is impor-
tant to compare the performance of various commonly used classi-
fiers to identify the most suitable algorithm for the DRIFT method.
Then we evaluate the prediction performance of DRIFT in within-
project and cross-project scenarios, and compare it with the rule-
based outdated test case prediction method [10] and the Srtar [19].
The within-project scenario involves learning the co-evolution pat-
terns from the historical commits of a given project and predicting
the outdated test cases of that same project. The cross-project sce-
nario, on the other hand, involves learning the co-evolution patterns
from historical commits of other projects and predicting the out-
dated test cases of a new project. So we evaluate DRIFT based on
the following four research questions:

o RQ3: What kind of classifier works best in the scenario of out-
dated test case prediction?

e RQ4: What is the performance of DRIFT in within-project and
cross-project scenarios?

e RQ5: How does DRIFT compare to rule-based baselines in terms
of prediction performance?
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Table 2: List of projects for evaluation

Projects #stars  #forks  # commits LoC
macrozheng/mall 64.3k 26.4k 937 181,063
elastic/elasticsearch 63.1k 22.9k 67,937 4301,233
ReactiveX/RxJava 46.9k 7.7k 6,028 485,496
Blankj/AndroidUtilCode 32k 10.6k 1,430 136,580
zxing/zxing 30.8k 9.3k 3,684 219,738
alibaba/fastjson 25.2k 6.5k 3,980 278,505
libgdx/libgdx 21.3k 6.4k 15,205 1075,483
jenkinsci/jenkins 20.5k 8k 33,472 736,128
perwendel/spark 9.5k 1.6k 1,067 22,224
hs-web/hsweb-framework 8k 3k 2,798 45,905
apache/hbase 4.8k 3.2k 19,642 1477,258
pardom-zz/ActiveAndroid 4.7k 1.1k 284 6,380
MovingBlocks/Terasology 3.5k 1.3k 11,916 386,859
kiegroup/optaplanner 3k 902 8,808  4803,616
apache/opennlp 1.2k 420 2,030 211,422
ahmetaa/zemberek-nlp 1k 204 1,358 598,048
OpenGamma/Strata 734 258 4,645 860,971
DSpace/DSpace 718 1.2k 16,570 630,721
jnode/jnode 313 116 6,169 23,907
bitpay/java-bitpay-client 34 59 383 168,734
apache/activeMQ 2.1k 1.4k 11,365 1019,335
apache/cloudStack 1.4k 989 35,756 1925,030
apache/commons-math 490 340 7,127 311,381
apache/flink 20.9k 11.8k 33,052 3298,122
apache/geode 2.2k 680 11,248 2287,249
apache/james-project 683 422 14,443 1206,402
apache/logging-log4j2 3k 1.5k 12,659 464,672
apache/storm 6.4k 4.1k 10,537 749,335
apache/usergrid 995 435 10,954 1005,374
apache/zeppelin 6k 2.7k 5,228 490,960
SERG-Delft/jpacman-framework 113 249 374 7,185
google/gson 22k 4.2k 1,803 50,073
pmd/pmd 4.2k 1.4k 25,875 583,204
biojava/biojava 523 362 6,707 1703,379
izpack/izpack 300 263 5,713 255,498
JodaOrg/joda-time 4.9k 953 2,263 160,848
dnsjava/dnsjava 769 208 2,084 90,836
FasterXML/jackson-databind 3.2k 1.3k 6,902 284,947
jruby/jruby 3.7k 925 52,230  1141,798
jhy/jsoup 10k 2.1k 1,785 39,590

e RQ6: How does DRIFT compare to the state-of-the-art approach
SITAR in terms of prediction performance?

We randomly selected 20 projects from the dataset collected in
Section 3.1 for evaluation. In addition, we added the 20 projects
used to evaluate SITAR’s in the exsiting work [19] to form a dataset
containing 40 open-source Java projects. Table 2 lists the projects.

5.1 RQ3: Comparison of Classifiers

5.1.1 Experimental Setup We compare the classification perfor-
mance of six commonly used machine learning classifier algorithms,
including support vector machines, random forest, naive Bayes, K-
nearest neighbor, gradient boosting, and logistic regression, then
find out the best classifier algorithm in this scenario. First,we collect
the positive and negative samples of method granularity from the
historical submission records of each project. For specific collec-
tion steps, please refer to the data preprocessing part of DRIFT in
Section 4.1. The classifiers we use are all standard classifiers in the
scikit-learn library, and we use the default classifier hyperpa-
rameters from the scikit-learn library. Refering to the method-
granularity feature extraction and classifier training of DRIFT in
Section 4, we perform feature extraction on the positive and nega-
tive samples of method granularity, and train six classifier models.
We use the ten-fold cross-validation method to obtain the average
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Figure 7: PR curves for six machine learning classifiers

precision and average recall, and draw the PR curve (Precision-
Recall curve).

5.1.2  Results In the figure shown (Fig. 7), it is evident that when
predicting unit test case updates for changed production methods
using DRIFT, the PR curve of the gradient boosting surpasses that of
the other five commonly used classifier algorithms. Compared to the
other algorithms, gradient boosting consistently achieves higher
precision at fixed recall. While K-nearest neighbor and random
forest are slightly inferior to gradient boosting, naive Bayes shows
a significant decline in performance when the recall rate exceeds
0.1. For support vector machines and logistic regression, when the
recall approaches 0, the PR curves exhibit a sharp decline due to
many false positives of outdated test cases. In conclusion, we have
chosen gradient boosting as the classifier algorithm in DRIFT.

5.2 RQ4: Performance of DRIFT

5.2.1 Experimental Setup In the within-project scenario, as de-
scribed in Section 4, we searched for positive and negative samples
of method granularity in the 40 projects listed in Table 2, and then
we performed feature extraction and trained a gradient boosting
classifier model using the ten-fold cross-validation method. We
averaged the prediction results from ten runs to obtain the aver-
age accuracy, precision, and recall. In the cross-project scenario,
we obtained 731 open-source Java projects from Section 3.1, and
searched for positive and negative samples of method granularity
using the process outlined in Section 4.1. After feature extraction,
we finally trained a gradient boosting classifier model. Then we
tested the trained classifier using the samples extracted from the 40
projects listed in Table 2. We ran the test ten times independently
and calculated the average values as the final result.

5.2.2 Results Table 3 shows the prediction performance of 40
projects using DRIFT for outdated test case prediction in within-
project and cross-project scenarios. In order to save space, we sim-
plify the projects’ names. In within-project scenario, the accuracy
is between 67.8% and 95.9%, with an average of 81.6%. The F1 is
between 64.7% and 92.7%, and the average F1 is 80.6%. Although
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Table 3: Performance of DRIFT

within-project cross-project

Projects Acc. Pre. Rec. F1 Acc. Pre. Rec. F1
mall 78.9 82.0 77.6 79.7 71.7 70.8 70.1 70.4
elasticsearch 77.1 76.1 75.2 75.6 68.1 69.8 66.2 68.0
RxJava 76.7 76.2 73.9 75.0 63.2 65.9 62.1 63.9
AndroidUtilCode 72.3 74.5 70.1 72.2 67.8 69.1 63.5 66.2
zxing 71.8 80.4 72.9 76.5 71.4 71.6 65.2 68.3
fastjson 76.5 78.2 71.5 74.7 68.2 70.5 62.3 66.1
libgdx 87.2 87.9 83.0 85.4 72.6 73.0 71.9 72.4
jenkins 70.1 71.6 69.5 70.5 67.2 67.5 65.8 66.6
spark 78.5 71.6 70.1 73.7 71.6 61.5 71.3 66.0
hsweb 81.2 83.9 76.0 79.8 72.2 73.6 70.1 71.8
hbase 77.0 79.4 75.0 77.1 60.4 64.7 62.5 63.6
ActiveAndroid 72.4 76.8 67.8 72.0 69.2 72.8 59.8 65.7
Terasology 73.5 75.4 70.8 73.0 71.4 73.8 66.7 70.1
optaplanner 82.3 85.6 78.1 81.7 74.6 73.1 71.6 72.3
opennlp 74.2 78.1 71.3 74.5 55.1 56.3 52.8 54.5
zemberek-nlp 67.8 68.4 61.4 64.7 60.4 67.2 60.5 63.7
Strata 76.9 79.5 73.1 76.2 67.5 73.1 61.3 66.7
DSpace 73.2 72.9 62.0 67.0 52.9 72.0 76.5 74.2
jnode 75.8 71.0 69.7 73.2 62.0 61.7 67.5 64.5
bitpay 72.1 72.6 70.4 71.5 64.8 71.8 71.6 71.7
activeMQ 85.2 83.9 81.3 82.6 70.5 74.7 68.1 71.2
cloudStack 91.1 93.2 82.5 87.5 82.5 80.1 71.8 75.7
math 84.5 85.2 83.6 84.4 69.7 71.2 66.9 69.0
flink 90.1 91.2 85.8 88.4 79.2 80.1 78.4 79.2
geode 90.3 92.6 85.1 88.7 71.8 71.4 71.2 71.3
james 83.9 88.5 83.1 85.7 78.5 79.2 76.5 71.8
logging-log4j2 84.8 89.7 814 85.3 69.2 71.6 69.0 70.3
storm 95.9 96.3 89.4 92.7 70.1 70.2 69.5 69.8
usergrid 95.1 94.8 89.5 92.1 82.5 82.6 81.5 82.0
zeppelin 85.5 88.2 85.9 87.0 64.5 65.2 64.6 64.9
jpacman 91.6 96.7 88.0 92.1 81.0 85.4 80.0 82.6
gson 83.7 85.2 84.1 84.6 72.4 73.2 70.8 72.0
pmd 84.6 87.5 78.9 83.0 72.5 76.4 71.8 74.0
biojava 91.8 92.4 85.2 88.7 62.3 63.6 61.0 62.3
izpack 82.2 83.4 81.1 82.2 60.2 63.1 65.3 64.2
joda-time 84.3 85.7 80.3 82.9 75.8 77.4 69.9 73.5
dnsjava 93.5 94.2 86.5 90.2 65.4 67.5 63.1 65.2
jackson 83.5 85.2 79.6 823 71.2 73.9 69.0 71.4
jruby 80.6 82.3 80.9 81.6 61.8 69.0 61.7 65.1
jsoup 87.0 89.2 87.8 88.5 65.0 67.8 60.5 63.9
Avg. 81.6 83.4 71.9 80.6 68.9 71.2 67.9 69.5

the above metrics fluctuate with different projects, they gener-
ally perform well. In the apache/storm project, the accuracy can
even reach 95.9%, and the F1 is 92.7%. This shows that in real-
world Java projects, DRIFT can effectively identify outdated test
cases. In the cross-project scenario, the accuracy of DRIFT ranges
from 55.1% to 82.5%, with an average of 68.9%. The range of F1
is 54.5% to 82.6%, with an average of 69.5%. Although the above
metrics are lower than those in within-project scenarios, they per-
form well in some projects. For example, in apache/usergrid and
SERG-Delft/jpacman-framework, all values are greater than 80%.
It shows that DRIFT can also have satisfactory performance in the
scenario of cross-project, and the co-evolution laws learned from
731 open-source projects can guide the prediction of outdated test
cases in new projects.

5.3 RQ5: Comparison with Rule-based Baselines

5.3.1 Experimental Setup The three co-evolution patterns mined
by ChangeDistiller [10] are: Creation/deletion of a production class
results in creation/deletion of a corresponding test class (R1); Cre-
ation/modification of a production method causes corresponding
test cases to be updated (R2); Changes in conditional statements in
production code result in updated test cases (R3). Since R1 focuses
on the class level, we transform R1 into: when creating/deleting a
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production method, if other methods in the production class are
all created/deleted, the test cases corresponding to the production
method should be created/deleted.

We use the above three patterns for outdated test case prediction
respectively. The data for our experiment comes from 40 projects in
Table 2. We use the samples of method granularity in each project
to test the prediction performance of each co-evolution pattern. In
addition, we combine three patterns for outdated test case predic-
tion. We independently test ten times and obtain the average value
of the results to represent the final performance.

5.3.2  Results The prediction performance of outdated test cases
based on three co-evolution patterns is shown in Table 4. To save
space, we simplify the projects’ names. R1 stipulates that when
a production class is created or deleted, the corresponding test
class is also created or deleted. However, this situation does not
occur frequently, so the average recall is only 30.1% when R1 is
used for outdated test case prediction, and the average F1 is 44.8%.
In R2, the creation/modification of production methods appears
more frequently, so the average recall reaches 86.2%, but because
the co-evolution pattern described by R2 is not in line with reality,
the precision is only 52.8%. The precision and recall of R3 are rela-
tively balanced, but compared with DRIFT, the performance is not
outstanding. When combining R1, R2 and R3, the performance is
still poor compared to DRIFT, indicating that the combination of
the above three co-evolution patterns cannot effectively describe
the co-evolution situation. Therefore, DRIFT predicts outdated test
cases better than rule-based outdated test case prediction methods.

5.4 RQ6: Comparison with S1TAR

5.4.1 Experimental Setup Due to the different prediction granular-
ity of DRIFT and SITAR, it is difficult to use the same set of samples
to compare their prediction performance, so we deal with the ex-
perimental data and results as follows. First, we use the improved
naming convention in Section 3.3 to determine the traceability link
relationship at file level in 40 open-source projects, and find all
samples at file level based on the change times of files. Then we
experiment with SITAR using the ten-fold cross-validation method
to get the average prediction performance. When experimenting
with DRIFT, we use the ten-fold cross-validation method to divide
all positive and negative samples at the file level into ten, and collect
the samples at the method level contained in each piece of data. The
collection steps of samples at the method level refer to Section 4.1.
We put the samples at the method level in any nine pieces of data
into the classifier to train DRIFT, and use the remaining one piece
of data to test the trained classifier. Then we merge the prediction
results of samples if the test cases of samples are in the same test
file. If the prediction results of each sample are not changed, the
corresponding test file is predicted not to change. If there are sam-
ples that are predicted to update, we predict that the corresponding
test file should change. We conduct experiments using ten-fold
cross-validation and obtain the average prediction performance.

5.4.2  Results The prediction performance of SITAR and DRIFT is
shown in Table 5. Although the results of DRIFT are simplified and
combined, it still have a higher prediction accuracy than Sitar. On
average, DRIFT has an accuracy of 81.8%, compared to the 73.3%
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Table 4: Performance of rule-based prediction methods

. R1 R2 R3 R1 & R2 & R3
Projects
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

mall 97.6 246 393 537 788 639 554 395 46.1 52.0 86.8 65.0
elasticsearch 90.1 142 245 516 967 673 703 642 67.1 51.6 979 67.6
RxJava 99.6 30.2 463 556 89.7 68.6 722 429 538 545 922 685
AndroidUtilCode 98.2 24.8 39.6 519 87.1 650 742 484 586 413 89.1 564
zxing 983 199 33.1 559 884 685 651 44.6 529 543 915 682
fastjson 952 389 552 526 90.7 66.6 738 704 721 515 925 66.2
libgdx 96.7 422 588 49.7 76.1 60.1 682 530 59.6 551 829 66.2
jenkins 98.9 159 274 511 944 663 693 488 573 50.8 963 66.5
spark 90.7 432 585 597 76.1 669 682 531 597 50.5 829 62.8
hsweb 959 159 273 51.1 934 66.1 693 488 573 348 943 50.8
hbase 983 199 331 559 884 685 651 44.6 529 543 915 68.2
ActiveAndroid 99.7 389 56.0 52.6 90.7 66.6 738 704 721 51.5 925 66.2
Terasology 96.7 42.2 588 49.7 761 60.1 682 53.6 600 505 829 62.8
optaplanner 97.4 345 51.0 420 77.7 545 542 480 509 552 794 65.1
opennlp 98.5 389 558 526 90.7 66.6 738 704 721 515 922 66.1
zemberek-nlp 91.8 423 579 579 776 663 682 545 606 51.3 829 634
Strata 99.7 39.7 56.8 56.1 932 70.0 723 699 711 50.1 90.6 64.5
DSpace 96.7 42.2 588 49.7 76.1 60.1 682 534 599 505 824 62.6
jnode 98.5 294 453 457 809 584 574 402 473 49.6 871 63.2
bitpay 92.1 142 246 516 96.7 673 703 642 671 51.6 979 67.6
activeMQ 98.6 30.2 46.2 556 89.7 68.6 722 429 538 545 922 685
cloudStack 99.2 248 39.7 52.0 87.1 651 742 484 586 51.2 89.1 65.0
math 983 199 33.1 559 884 685 651 44.6 529 543 915 68.2
flink 96.7 399 56.5 53.6 887 668 748 715 731 526 918 66.9
geode 943 412 573 527 759 622 693 514 590 522 829 64.1
james 98.9 159 274 511 944 663 693 488 573 508 963 66.5
logging-log4j2 914 398 555 601 753 668 707 529 60.5 484 828 61.1
storm 90.7 432 585 597 76.1 669 682 531 597 50.5 824 62.6
usergrid 959 159 273 51.1 934 66.1 693 488 573 348 943 50.8
zeppelin 983 199 331 559 884 685 651 44.6 529 543 91.0 68.0
jpacman 99.7 389 560 526 90.7 66.6 738 704 721 515 928 66.2
gson 97.8 431 59.8 519 748 613 701 494 580 482 846 614
pmd 98.9 159 274 511 944 663 693 488 573 50.8 963 66.5
biojava 945 382 544 498 805 61.5 629 542 582 499 863 63.2
izpack 99.5 338 50.5 51.6 86.0 645 773 552 644 51.9 89.7 658
joda-time 959 159 273 511 934 661 693 488 573 348 943 50.8
dnsjava 983 199 33.1 559 884 685 651 44.6 529 543 893 675
jackson 99.7 389 56.0 52.6 90.7 66.6 738 704 721 515 91.6 659
jruby 96.7 413 57.9 49.7 792 61.1 687 575 626 50.5 817 624
jsoup 959 159 273 51.1 934 66.1 693 488 573 348 946 50.9
Avg. 96.7 30.1 448 528 86.2 653 689 535 599 499 895 63.8

average prediction accuracy of SITAR. Additionally, the average
precision and recall of DRIFT are also higher than those of SiTAR.
The average F1 score of DRIFT is 8.3% higher than that of SrTar. For
apache/storm and SERG-Delft/jpacman-framework, the predic-
tion results of SITAR are good, but DRIFT can have better prediction
performance on them, which shows that compared with SITAR,
DRIFT can better learn the co-evolution laws of production code
and test code in the historical commits, and DRIFT has a better
prediction performance on outdated test cases.

In addition, since SITAR predicts outdated test code at file gran-
ularity while DRIFT predicts at method granularity, DRIFT can ac-
curately locate the test cases that need to be updated. From Fig. 3,
it can be seen that the most common case is that the number of
test cases changed in the test file accounts for 20% to 30% of the
total number of test cases in the test file. Therefore, if we assume
that S1TAR and DRIFT can both accurately predict test files (or test
cases in the test files) that need to be updated, DRIFT can reduce
testers’ workload of checking test cases by about 75% compared to
SITAR. So DRIFT can better facilitate the maintenance of test cases,
promoting the co-evolution of test code and production code.

6 Discussions

Threats to Validity. Due to the limited number of projects in em-
pirical research, the laws discovered by empirical research may not
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Table 5: Performance of S1TAR and DRIFT in file level

Projects SITAR DRIFT
Acc. Pre. Rec. F1 Acc. Pre. Rec. F1

mall 70.5 71.7 70.8 71.2 79.3 81.9 78.1 80.0
elasticsearch 72.5 73.1 72.8 72.9 76.5 75.2 75.8 75.5
RxJava 69.7 71.2 70.9 71.0 76.8 76.1 74.2 75.1
AndroidUtilCode 61.2 61.5 61.1 61.3 72.5 73.9 70.4 72.1
zxing 70.8 72.4 65.2 68.6 77.9 79.8 73.7 76.6
fastjson 71.4 73.3 70.2 71.7 76.8 77.1 72.4 74.7
1libgdx 74.6 76.9 723 74.5 87.1 87.6 85.4 86.5
jenkins 65.3 69.2 62.5 65.7 70.2 71.5 70.8 71.1
spark 70.1 713 66.9 69.0 78.2 77.2 70.6 73.8
hsweb 76.5 78.2 74.6 76.4 81.5 83.2 78.6 80.8
hbase 68.4 69.2 70.8 70.0 77.4 78.9 76.8 77.8
ActiveAndroid 63.0 64.4 50.0 56.3 72.1 76.4 69.7 72.9
Terasology 69.8 71.1 69.7 70.4 73.2 74.5 71.4 72.9
optaplanner 70.2 70.9 69.3 70.1 82.6 85.1 80.5 82.7
opennlp 68.2 72.1 71.8 71.9 74.7 77.9 72.4 75.0
zemberek-nlp 59.8 61.4 55.2 58.1 67.6 68.3 62.8 65.4
Strata 70.9 71.5 68.1 69.8 77.5 79.1 78.0 78.5
DSpace 60.2 65.9 58.6 62.0 73.1 72.3 65.9 69.0
jnode 69.8 72.5 71.7 72.1 75.2 76.1 71.8 73.9
bitpay 55.2 59.6 52.4 55.8 73.2 72.5 70.9 71.7
activeMQ 74.3 76.2 71.4 73.7 85.2 83.1 82.2 82.6
cloudStack 85.3 86.7 80.1 83.3 91.5 92.3 89.4 90.8
math 74.6 73.2 71.4 72.3 84.3 83.6 85.2 84.4
flink 84.9 85.1 85.3 85.2 89.5 88.1 87.5 87.8
geode 82.7 84.9 80.7 82.7 90.8 90.2 89.7 89.9
james 75.5 76.6 72.9 74.7 83.6 87.0 85.3 86.1
logging-log4j2 775 802 735 767 842 894 8.1 872
storm 91.0 94.4 90.0 92.1 95.4 97.6 91.3 94.3
usergrid 87.4 89.2 83.0 86.0 95.8 94.9 92.8 93.8
zeppelin 72.5 73.4 71.8 72.6 85.6 87.0 86.1 86.5
jpacman 88.3 94.6 82.8 88.3 91.0 96.4 91.8 94.0
gson 71.9 73.1 71.1 72.1 84.6 84.5 84.6 84.5
pmd 75.8 75.4 74.3 74.8 84.9 86.4 85.7 86.0
biojava 86.9 87.5 81.4 84.3 92.1 92.5 87.6 90.0
izpack 72.2 72.9 73.2 73.0 81.5 81.6 82.2 81.9
joda-time 71.8 72.1 72.0 72.0 82.3 82.5 82.7 82.6
dnsjava 85.0 82.8 89.7 86.1 93.7 93.9 95.2 94.5
jackson 70.5 70.5 77.8 74.0 84.3 84.7 88.3 86.5
jruby 74.9 75.2 72.1 73.6 80.9 81.4 81.1 81.2
jsoup 71.6 71.3 73.1 72.2 87.6 87.5 88.9 88.2
Avg. 73.3 74.8 71.8 73.2 81.8 82.7 80.0 81.5

generally guide the co-evolution of codes. In order to enhance the
universality of the rules found in the empirical research, we screen
the open-source Java projects with high popularity, then classify
and expand the data set according to the usage of Java projects.
Since the popularity of projects means the projects are widely used,
and a sufficient number of projects with different usages can ensure
a more comprehensive data set, the threat is mitigated to some
extent. In order to eliminate the deviation of the prediction perfor-
mance of the classifier and evaluate the generalization ability of the
classifier, we use the ten-fold cross-validation method to average
the experimental results of the classifier to ensure the performance
and effect of the classifier in practical applications.

Future Work. In the future, we will improve the performance of
DRIFT in cross-project scenario to help DRIFT achieve good perfor-
mance on poorly maintained projects. In addition, we will extend
DRIFT to other programming languages to expand the application
of DRIFT, so that it can be more widely used in the software product
development process in the real world.

7 Related Work

The co-evolution of production code and test code is crucial for
ensuring the quality of production code. Many researchers have
focused on mining the laws of co-evolution to guide the update
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of test cases. Zaidman et al. [21] explored the co-evolution law of
test code through change history, growth history, and test quality
evolution view but did not clearly summarize the co-evolution of
production code and test code. Pinto et al. [14] categorized the
reasons behind the addition, removal, and modification of test code,
while Marsavina et al. [9] studied the co-evolution between produc-
tion code and test code by constructing the Covric framework and
found some behavioral rules of co-evolution between production
code and test code. Levin et al. [7] focused on the co-evolution of
semantic changes in 61 popular open-source projects and found
co-evolution caused by specific maintenance activities. Wang et al.
proposed SITAR [19], which learned the importance of features for
co-evolution through a machine learning model and used a classifier
to predict outdated test cases. Shimmi et al. [16] proposed the TSE
method, which leverages the co-evolution laws of production code
and test code to generate and recommend test cases or supplement
incomplete test suites with missing test cases.

The most widely used strategy for finding traceability links in
existing work [16, 17, 19] is the naming convention (i.e., adding
"test" to the name of the unit under test to form the name of the test
code). However, White et al. [20] showed that naming conventions
can have high accuracy and recall when finding link relationships
at the file level, but they are not effective at the method level. In
actual project development, using the naming convention to find
the link relationship may miss the link relationship between the
production code and the test code. In addition, StaticCallGraph [2]
and LCBA (Last Call Before Assert) [18] also introduce a lot of noise
into the results due to their wide search range.

8 Conclusion

In this work, we conducted a large-scale empirical study based on
731 open-source Java software projects to study the co-evolution of
production and test code. We found that when predicting outdated
test code, refining the prediction granularity to the method level
can generally reduce the workload of test case maintenance. We
also observed 48 types of production code changes that may be
related to test cases updates.

Based our empirical findings, we propose the DrIFT method
for fine-grained prediction of outdated test cases. We evaluated
DRIFT on 40 open-source Java projects, and found that DRIFT can
have good prediction results in both within-project and cross-
project scenarios, which shows that it can learn the co-evolution
rules in different projects and use the rules to predict outdated
test cases. In addition, the performance of DRIFT is significantly
improved compared to the existing rule-based methods. Compared
with the state-of-the-art approach SITAR, the average accuracy of
DrIFT has increased by about 8.5%, the F1-score has increased by
about 8.3%, and the number of test cases that testers need to check
has decreased by about 75%. These results confirm that DRIFT can
predict outdated test cases in a better and finer-grained manner,
thus better promoting the co-evolution of production and test code.
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