
Automatic Maturity Rating for Android Apps
Chenyu Zhou

Southern University of Science and Technology
Shenzhen, China

11930634@mail.sustech.edu.cn

Xian Zhan∗
Southern University of Science and Technology, The Hong

Kong Polytechnic University
Shenzhen, China

chichoxian@gmail.com

Linlin Li
Southern University of Science and Technology

Shenzhen, China
lill3@mail.sustech.edu.cn

Yepang Liu∗
Southern University of Science and Technology

Shenzhen, China
liuyp1@sustech.edu.cn

ABSTRACT
Nowadays, various apps greatly facilitate children’s lives and stud-
ies, while some apps also make illegal and inappropriate content
(e.g., gambling, pornography) more accessible to children and ado-
lescents. As the primary source of apps, several app markets adopt
maturity ratings for apps, enabling users to distinguish whether
apps are age-appropriate. However, if an incorrectly-rated app is
acquired by users who are not of the appropriate age, it will bring
severe consequences, especially for children. Giving an accurate
maturity rating to an app can be time-consuming, both for devel-
opers and app market reviewers, while automatic rating tools can
help solve this problem. Existing work on automatic app maturity
ratings only analyzes app metadata obtained from app markets,
but does not systematically consider the features of the apps them-
selves. In this work, we extract app features from both the app
market and the apps themselves. We train machine learning models
on Google Play, the official Android app market which has matu-
rity ratings, and propose a cost-effective feature combination that
achieves 96.98% accuracy, 96.21% precision, and 97.80% recall on
within-market testing, and achieves 88.74% accuracy, 98.75% preci-
sion, and 83.72% recall on cross-market testing. Also, our method
outperforms existing tools on every common metric.

CCS CONCEPTS
• Software and its engineering; • Computing methodologies
→Machine learning;

KEYWORDS
Maturity Rating, Mobile Apps, Android, Machine Learning

∗Xian Zhan and Yepang Liu are corresponding authors. Yepang Liu is also affiliated
with the Research Institute of Trustworthy Autonomous Systems, Southern University
of Science and Technology.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Internetware 2022, June 11-12, 2022, Hohhot, China
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9780-3/22/06. . . $15.00
https://doi.org/10.1145/3545258.3545282

ACM Reference Format:
Chenyu Zhou, Xian Zhan, Linlin Li, and Yepang Liu. 2022. Automatic Ma-
turity Rating for Android Apps. In . ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3545258.3545282

1 INTRODUCTION
With the rapid development of communication techniques, the num-
ber of various smart devices (e.g., tablets and mobile phones) has
been growing rapidly in recent years. According to Statista, the num-
ber of smartphone users worldwide is 6.648 billion in 2022, which
means 83.89% of the world’s population owns a smartphone [19].
Nowadays, smartphone users cover almost all age groups, even in-
cluding adolescents and children. Besides, the ownership of smart-
phones among children is significantly increasing [8]. In 2015, 41%
of 12-year-olds owned a smartphone, while in 2019, that number
jumped to 69%. Different information can be easily spread to kids
through diverse apps. However, not all contents (e.g., pornography,
gambling, and drug use) of apps are suitable for children. Inappropri-
ate content may have an adverse impact on kids’ growth [39, 44, 57].

To prevent inappropriate content from harming kids and teens,
various countries have made efforts. Since 1996, the United States
has passed four related laws, including: Communications Decency
Act (CDA) [7], Child Online Protection Act (COPA) [12], Children’s
Online Privacy Protection Act (COPPA) [2], Children’s Internet
Protection Act (CIPA) [3]. The essence of these laws is to differenti-
ate between children and adults, protecting children from online
content that only adults should be exposed to.

As the main channel for app distribution, app markets should
help prevent children from obtaining inappropriate apps, or help
parents to choose age-appropriate apps for their children. Some
app markets set the maturity rating policy to distinguish the app
contents for different users based on their age level. Without such a
rating policy, children can easily download age-inappropriate apps,
which will cause many problems or risks. For example, if children
can access an in-app purchase function, wrong clicks may lead to
unnecessary financial loss. Some in-app ads and analytic libraries
may collect sensitive data from users and transmit them to interme-
diaries. Based on these data, users’ profiles can be constructed, and
privacy leakage can be caused through some third-party libraries
in apps [25]. Moreover, COPPA has restricted rules about children’s
apps; some in-app purchases and ads are prohibited. As the domi-
nant mobile OS system with the largest number of users, Android
needs to own a sound maturity strategy. The official Android app

16

https://doi.org/10.1145/3545258.3545282
https://doi.org/10.1145/3545258.3545282

Internetware 2022, June 11-12, 2022, Hohhot, China Zhou and Zhan, et al.

market, Google Play [14], requires developers to assign the ma-
turity ratings for their apps and the rating authorities to review
the submitted apps. However, developers need to know enough
about their apps and the maturity rating strategy of the app market
to give an accurate maturity rating. Rating authorities also need
to examine apps to determine incorrect ratings thoroughly. These
processes are time-consuming and potentially error-prone.

To solve this problem, a few studies [28, 38, 42] have proposed
methods on Automatic Maturity Rating for apps. Most of the pre-
vious studies extract text information as features to train the clas-
sification model to distinguish children’s and adults’ apps. Hu et
al. [38] extract the app descriptions as the feature to predict the ma-
turity level by using SVM as a multi-label classifier. Chen et al. [28]
proposed a text-mining-based method to predict the maturity rating
based on the app’s description and reviews. Chen et al. only use
the keyword matching method to examine the maturity and ignore
the semantic meaning of words. Furthermore, most reviews may
not be related to the maturing rating and cannot offer any valuable
keywords, thus will add noises for prediction. In fact, apart from
the text information, apps also include many other useful features
(e.g., images, icons) that can help us predict maturity. For example,
the reviewers of iOS also use the features like UI screenshots, de-
scriptions, icons to judge the maturity. Liu et al. [42] also designed
an automatic maturity rating method by leveraging the machine
learning classifier to identify children’s apps. They choose multiple
types of features as inputs, including the category of apps, the old
maturity rating, title, descriptions, readability score, color distribu-
tion of the icon and screenshots, and frequency of keywords from
screenshots. The authors thought the children’s apps usually have
s brighter color and shorter word length. However, these features
cannot accurately indicate the rating policy, generating some false
positives.

In this work, we aim to identify apps designed for children, which
is an important sub-task of maturity rating. We attempt to conduct
a thorough and systematic analysis of various types of app features,
find the most effective combination of these features, and select the
suitable machine learning model to identify apps for children. The
main contributions of this paper are as follows:

• We thoroughly analyze different features from Android apps
and try to find the most effective combination of these fea-
tures. We replenish the previous research and find more
valuable features in automatic maturity rating.

• Unlike most of the previous work that only focuses on apps’
descriptions, we explore multi-type app features extracted
from different sources. Based on the experimental result, we
found some novel app features that can help better charac-
terize apps.

• We propose a novel method to implement the automatic
maturity rating to identify children’s apps for the official
Android app market. The evaluation results show that our
method can perform better than existing tools.

2 BACKGROUND
This section gives a brief introduction to the app maturity rating
and different maturity rating of different markets.

2.1 App Maturity Rating
Maturity rating has two common sub-tasks, i.e., finding suitable
user and finding target user (the traditional maturity rating refers
to the former one). Maturity rating classifies apps into several age
ranges of users based on a uniform standard. Suitable user depends
on app content, while target user is related to the functional de-
sign. Currently, there are several rating authorities to help app
developers evaluate their apps’ maturity ratings [18], for instance,
American Entertainment Software Rating Board (ESRB) [13], Pan
European Game Information (PEGI) [17] in Europe and the Middle
East, Unterhaltungssoftware Selbstkontrolle (USK) in Germany [20].
For countries and territories without rating authorities, some app
markets suggest developers to choose International Age Rating
Coalition (IARC) [15] to rank their apps’ maturity. The maturity rat-
ing policy mainly has the following usages towards app customers:
1) Helps app users, especially parents, to know potentially harmful
content in an app. 2) Blocks certain content in some territories or
countries to specific users based on local laws. 3) Blocks the acqui-
sition and purchase of inappropriate content for non-supervised
accounts that are not owned by adults.

2.2 Maturity Ratings in Different App Markets
Different app markets may adopt different maturity rating stan-
dards. In this paper, we mainly introduce two rating policies used
by App Store (iOS) and Android Google Play.

•App Store. App Store has a centralized maturity rating system
to manage the submitted apps. It divides the apps into four age
ranges of suitable user: “4+”, “9+”, “12+” and “17+” [5]. App Store
first requires app developers to fill a form with a list of harmful
content and corresponding intensity. Then the system will generate
a maturity rating for an app. Each newly submitted app will be
reviewed by an expert, and the expert will adjust the inappropriate
rating during the review process until the app can be released to
users [4]. Also, App Store labels some children’s apps, and states
the age range of target user in the maturity rating of apps.

• Google Play. Before March 17, 2015, Google Play classified
apps using the following maturity ratings, i.e., Everyone, Low ma-
turity, Medium maturity, and High maturity. However, it has been
reported that many apps were rated incorrectly due to their lax
management of app content [28]. At that time, Google Play just let
developers assign maturity ratings to their apps and lacked a review
process. The ratings mainly depend on developers’ comprehension
of the maturity policy and the functionality of their apps. Now,
Google Play adopts a new maturity policy. Google first requires app
developers to finish a questionnaire and then assigns the maturity
for their apps. Their apps will be sent to the rating authorities based
on the countries and territories. In countries and territories not
represented by a participating rating authority, the apps will be
sent to IARC. The experts will review the maturity ratings for the
submitted apps. If they find an app with an inappropriate maturity
rating, they will contact the developers until adjusting the rating
to a suitable one [6]. Google Play labels children’s apps, and lists
the apps in the Kids category page according to the different age
ranges of target user.

Apart from the app markets mentioned above, to the best of
our knowledge, we just find Huawei AppGallery, Samsung Galaxy

17

Automatic Maturity Rating for Android Apps Internetware 2022, June 11-12, 2022, Hohhot, China

Store, Amazon Appstore, and Blackberry World have the maturity
rating policy to classify age-appropriate apps for different users.
Numerous third-party app markets lack a maturity rating policy to
manage their apps, increasing the risk of exposing inappropriate
content to children.

3 RELATEDWORK
•Automatic appmaturity ratings.Maturity ratings are designed
to determine whether mobile apps include inappropriate content
for kids and adolescents. Nowadays, numerous third-party app mar-
kets still lack maturity strategies. However, there is only a little
research on the automatic maturity ratings for mobile apps. Chen
et al. [28] systematically explored the extent and severity of un-
reliable maturity of apps on Google Play compared to iOS apps
on Apple Store. The authors deem the maturity rating policy of
Apple Store [5] is more reliable than that of Google Play [6]. Ap-
ple Store has a stricter review process for newly published apps,
which requires censors to manually recheck the app ratings until
the new apps become available to users. They collected the iOS
apps and the counterparts of Android versions. They used the iOS
apps and rating policy as the baseline. Also, they proposed a text-
mining-based Automatic Label of Maturity rating (ALM) algorithm
to verify whether the maturity ratings of the corresponding apps
on Google Play are correct. ALM was based on keyword matching,
whose keywords were manually selected from apps’ descriptions
and user reviews. However, their method just uses keyword match-
ing and ignores the semantic analysis. Therefore, its result may
not be accurate and cannot explain why an app has an incorrect
rating. Hu et al. [38] proposed a framework named Automatic App
Maturity Rating (AAMR) that can automatically label app matu-
rity level based on the rating policy from a specific app market.
The framework takes the rating policy and the app descriptions
as classification features. To keep the semantic information of app
descriptions, the authors leverage the deep learning techniques
to extract the word to vector model [46, 47] from app description.
They map the rating issue to be a multi-label classification problem.
They leverage the SVM [1, 31] as a multi-label classifier to catch
label correlations using pearson correlation [9]. Above mentioned
two methods just used the text feature (i.e., the reviews and de-
scription) to rate the maturity of apps. In fact, other information of
an app also can help predict maturity, such as the ad content, UI
screenshots, dynamic running behaviors. In this paper, we try to
identify a combination of most valuable features to help improve
the robustness of the existing framework. Liu et al. [42] designed a
machine learning model to predict whether an app is specifically
designed for children. This model leveraged both text-based and
image-based features extracted from apps as features to identify
the kids’ apps. The authors used their model to find 68,000 apps
for kids from 1 million free Android apps. Besides, the authors also
conducted a preliminary privacy analysis on these apps for kids.
They found that about 10% of these apps need more attention to
potential privacy leakage. The authors choose some features, like
the color distribution and usage, the average length of strings in UI
screenshots. Based on our investigation, these features sometimes
may generate false positives and affect accuracy. The effectiveness
of these features still needs further analysis.

• Inappropriate Content Detection. To provide kids and ado-
lescents with a clean and safe Internet environment, more and more
researchers are committed to detecting inappropriate in-app con-
tent, such as unsuitable videos, audios, text, and advertisements.
To detect whether an app is appropriate for kids, Luo et al. [44] pro-
posed an automatic content inspection framework. It dynamically
tests the app to make it communicate with the server, then captures
packets between them, and finally uses a third-party tool to detect
inappropriate contents in pictures, audios, or videos extracted from
these packets. Some research did not detect inappropriate content
for mobile apps but in-app advertisements. Chen et al. [29] and
Meyer et al. [45] found that in-app advertisements are common in
free children’s apps, of which a large percentage contain inappro-
priate content. The reason is that in-app advertisements are not con-
trolled by the maturity rating policy. Bhoraskar et al. [24] developed
an automation tool called Brahmastra. They leveraged Brahmastra
to test 220 children’s apps and found 175 of them have potential
violations of the Children’s Online Privacy Protection Act (COPPA)
and discovered the advertisements in 36% of kids apps show inap-
propriate content. They also found that 80% of them attempt to
collect personal information. Previous research mainly focused on
inappropriate video detection. Many studies [22, 27, 32, 48, 56] focus
on inappropriate video detection targeting kids on YouTube. Based
on these studies, we can find that these detection technologies
are also constantly improving, from traditional binary classifiers
to more accurate deep learning methods. Besides, another work
studied the technologies of inappropriate content inspection for
texts [23, 26], audios [52], etc.

• App security and privacy analysis. App security and pri-
vacy analysis [25, 30, 34, 35, 37, 40–43, 49, 54] has been a hot re-
search topic in recent years. There are also some studies focusing
on children apps. To understand the children’s apps’ privacy protec-
tion from developers’ perspectives, Ekambaranathan et al. [33] con-
ducted semi-structured surveys with popular Android children’s
app developers. They found that developers largely considered
that children’s privacy should be respected and that data collection
should be minimized. However, they also identified that the primary
barrier to data protection is from in-app third-party libraries and
the lack of design guidelines for age-appropriate libraries. Binns et
al. [25] found that many in-app third-party libraries, especially
those used by Family apps and Games & Entertainment apps, often
collect sensitive data and send these data to brokers for data profil-
ing. Reyes et al. [50, 51] presented a dynamic analysis framework
to evaluate the privacy behaviors of popular free children’s apps.
Results showed that most have potential privacy issues, and 19%
attempt to collect personal information.

4 METHODOLOGY
Figure 1 demonstrates the overview of our work. Overall, it includes
two parts: a) the framework of AutomaticMaturity Rating and b) the
corresponding application. Besides, this framework can be further
divided into five steps, i.e., dataset collection, data pre-processing
and feature extraction, feature selection, model selection, andmodel
ensemble. The following subsections will give detailed description
of each part.

18

Internetware 2022, June 11-12, 2022, Hohhot, China Zhou and Zhan, et al.

Figure 1: Overview of our work

4.1 Dataset Collection
We collect the apps from Google Play as the inputs to train our ma-
chine learning models. As the official Android app market, Google
Play accepts apps from all over the world. Different countries and
territories have different maturity rating authorities to review the
submitted apps. The maturity standards of different authorities
have some differences, which cause divergences on the age range
of different maturity levels [16]. For the regions and countries
without a maturity rating authority, Google Play will require IARC
to rate apps. Considering that maturity rating may contribute a lot
to the performance of the classification [42], we want a stable and
uniformed maturity rating for Google Play’s apps. As IARC is a
widely-adopted maturity rating policy that rates apps for countries
without rating authorities, during data collection, we select apps
with IARC ratings.

We implemented a customized crawler for Google Play to down-
load apps and their corresponding metadata, including app name,
package name, app category, advertising label, maturity rating,
version code, version name, release date, download volume, app
description, parts of user reviews, icon, and screenshots. A naive
crawling strategy is to access all apps through each app category.
However, Google Play only returns a small number of apps when
being accessed to each category. So we utilize the package names
provided by a third-party service AndroZoo [21]. AndroZoo has
kept collecting apps from several sources, including Google Play,
and it records app information like the package name, sha256, ver-
sion code, etc. We first extract the package names of apps derived
from Google Play, then we can directly access the details page of
the corresponding apps in Google Play and crawl the metadata. We
got the metadata of 665,107 apps from Google Play.

Google labels apps for children and further divides them into
“Ages up to 5”, “Ages 6-8” and “Ages 9-12”. After crawling metadata,
we found 1,493 children’s apps out of 665,107 apps. In this work,
we conduct a binary classification task to identify apps designed
for children. If an app is designed for children, we call it a positive
instance, and a negative instance otherwise. As mentioned above,
the proportion of positive and negative instances is unbalanced.
To avoid getting skewed models that are of little practical value,
we should keep the number of apps of the two classes as balanced
as possible. We downloaded all children’s apps and a subset of
general apps. We took the top 30 apps with the largest download

volume in each category to get 1,470 general apps. Thus, for a total
of 2,963 apps, we downloaded their icons and all screenshots from
Google’s database and the corresponding version of the APK files
from AndroZoo.

There are 2,963 apps in our Google Play dataset, including 1,493
positive instances and 1,470 negative instances. We randomly se-
lected 75% of apps as the training set and the rest as the test set. The
training set is used for feature selection and model selection, and
we also applied 10-fold cross-validation when selecting classifiers.
Then we trained the classifiers on 75% of the training data, and eval-
uated the combinations of models on the rest 25% of the training
data. Eventually, we evaluated the effectiveness of our method by
measuring the performance of several top-performing combined
models on the test set.

4.2 Data Pre-Processing and Feature Extraction
After data collection, we obtained metadata, APK file, icon, and
screenshots of each app in our dataset. Some of the raw data needs
pre-processing or feature extraction to be transformed into a format
compatible with machine learning algorithms. Also, APKs and im-
ages are complicated and have rich information. Finding the most
effective features or feature combinations from these information
to identify children’s apps is one of the primary tasks of our work.
Therefore, we first summarize the features used in existing work.
We also consider some commonly-used features that were not used
by previous researchers but could be used by reviewers in maturity
rating decisions. Then, we explain which features we extracted and
how we extracted and processed them. In later sections, we will
verify the effectiveness of all these features, and try to find a proper
combination of them.

Table 1 shows previous studies on maturity rating. We give their
published venue, used features, and how they handle these extracted
features. We can see from Table 1 that all of these studies choose
the description in maturity rating classification, but different trans-
form methods and algorithms will lead to different performances.
Chen et al. [28] extract the keywords from descriptions and reviews
and rate the app maturity by matching keywords. Hu et al. [38]
leverage the deep learning method to keep the semantic informa-
tion of description. Liu et al. [42] extract features from apps and
transform these features into a vector as input for classification-
based method. We can find that the method of Liu et al. [42] just

19

Automatic Maturity Rating for Android Apps Internetware 2022, June 11-12, 2022, Hohhot, China

Table 1: The features used by existing maturity rating work

Previous Studies Venue Features Details

Chen et al. [28] IW3C2, 2013 description Keywords matching.reviews
Hu et al. [38] CIKM, 2015 description Keywords matching, word embedding, and TF-IDF.

Liu et al. [42] Hotmobile, 2016

app category A binary value, whether a category includes more children’s apps or not.

maturity rating
Old content rating in Google Play, i.e., Everyone, Low Maturity, Medium
Maturity, High Maturity, and Unrated. The authors consider that kids
usually belong to ‘Everyone’ and ‘Low maturity’.

title A 5-dimensional vector, representing TF-IDF values of five keywords, i.e.,
‘children’, ‘fun’, ‘game’, ‘kid’, and ‘toddler’.

description A 10-dimensional vector, representing TF-IDF values of 10 keywords that
are typical in children’s apps.

readability of
description A value indicating the readability of the description using Flesch-Kincaid.

picture resources A 3*49-dimensional vector representing the color distribution and usage
of the icon and 2 screenshots.

strings on
screenshots

A 6-dimensional vector, of which the first 5 represent TF-IDF values of
5 keywords of children’s apps, and the last one represents the average
length of strings on the screenshots.

extracted some keywords of description and used limited features
to represent them, while ignoring some helpful information. We can
also find that some selected features may be inaccurate to represent
children’s apps. For example, the color distribution, hue, saturation
and brightness value of screenshots cannot effectively distinguish
the children’s and adults’ apps, leading to false positives or false
negatives. Besides, using the text information alone, such as the
descriptions, sometimes cannot identify whether an app is suitable
for children or not. For example, COPPA requires that children’s
apps cannot contain ads, but app descriptions are usually explain-
ing the main functions of an app and cannot show whether there
are inappropriate in-app ads. Therefore, in this paper, we try to
thoroughly analyze features from apps and use a more effective
transform method for feature representation.

As shown in Table 2, we summarize the features used in previous
work and some commonly-used features in other program analyses.
We extract app features from several sources, including app market
and APK files. We hope to find the most effective combination of
features for identifying children’s apps. The following part will
explain why we select these features and how we transform these
features into appropriate representations.

• App Category. We choose the app category as one of the
features in identifying children’s apps because some categories are
designed for children or usually include more children apps, such
as Education, Comics, Entertainment. Intuitively, these features can
help us to distinguish children’s apps to some extent. There are
32 app categories and 17 game categories in Google Play, so we
convert the app category into a 49-dimensional vector. If an app
belongs to a certain category, we set the corresponding dimension
as 1 and the remaining dimensions as 0.

•Maturity Rating Some app markets provide a maturity rating
for apps to indicate the age range of suitable users. Maturity ratings
often delineate the lower bound of the age range, such as over 3

years old and over 12 years old, while the ground truth we use is
essentially the upper bound of the age range, such as under 5 years
old and under 9 years old. Although these two types of age ranges
are different, they can have overlaps. We believe that apps designed
for children (i.e., 3-12 years old) tend to have a maturity rating of
lower than 12 years old.

•Advertising Label. The app markets mark whether an app in-
cludes any advertisements or not. According to COPPA regulations,
the apps for children with age 3 to age 11 cannot include any adver-
tisements or in-app purchase components. Therefore, we choose
the advertising label as one of the features in the maturity rating.
We use a binary value (i.e., 0 or 1) to show whether an app contains
in-app advertisements and get the label from the app homepage in
the app market.

• Text Resources. The text information usually contains rich
functional information about an app. In this paper, we mainly ana-
lyze three text features, i.e., title (app name), and text in images. We
do not extract features from the user reviews because most reviews
are irrelevant to age-appropriate content. Using such a feature will
introduce many noises in extracted features.

For these text resources, we first collect all app names, descrip-
tions, strings on the screenshots of apps in our dataset to construct
the corpus for each type of text feature. Raw data of text needs
several steps of pre-processing. We split the text into the bag of
words and delete stop words, punctuation, and non-ASCII words.
For English letters, we convert them to lowercase and stem the
words; for Chinese characters, we convert them to simplified; and
for consecutive letters or numbers, we ignore them if the length
is too short. We then use TF-IDF or word embedding to vectorize
them. We use the pre-trained BERT model provided by Google [53]
for word embedding. We will find which transform method is better
in the later section.

20

Internetware 2022, June 11-12, 2022, Hohhot, China Zhou and Zhan, et al.

Table 2: Our selected features for maturity rating

Data Source Selected Features Details

Metadata
information
in app market

App
category

An n-dimensional vector, where n is the number of app categories in the app market. If the
app belongs to a certain category, set the corresponding dimension as 1 and the remaining
dimensions as 0

Maturity
rating

An n-dimensional vector, where n is the number of maturity ratings used in the app market.
For our dataset, n = 5

Advertising
label A binary value, representing whether the app includes advertisements or not

App name An n-dimensional vector, representing TF-IDF values of n keywords selected from all app
names

Description Vectorize by TF-IDF or word-embedding
Icon Image labels: An n-dimensional vector, where n is the number of selected image labels that

have children tendency or adult tendency. Image labels are obtained from selected images of
all apps via third-party image annotation tool.
Text in images: Vectorize by TF-IDF or word-embedding. Text are obtained from selected
images from all apps via third-party OCR tool.
Color usage: A 3-dimensional vector for each selected image, representing the average HSV
values

Screenshots
Unzipped
APK Image files

Manifest file
of unpacked
APK

Permissions An n-dimensional vector, where n is the number of permissions we include

Source code
of decompiled
APK

APIs An n-dimensional vector, where n is the number of APIs we include

Figure 2: Distribution of screenshots count

• Image Resources. For image files, we mainly consider two
types, i.e., icons and screenshots. Image resources also contain rich
information to show an app’s functionality, and market reviewers
also leverage icons and screenshots to identify age-inappropriate
content. We crawl the icons and screenshots from the app markets.
There may be multiple app screenshots in an app, so we did simple
filtering. One intuition is that users may inspect several screenshots
before downloading an app but tend to only skim over the first few
when there are many screenshots. Considering that each app may
have a different number of screenshots, we counted the screenshots
of all apps crawled from Google Play. The distribution is shown in
Figure 2. It can be seen that the number of app screenshots fluctuates
in a wide range (3-28), but apps with 6 screenshots account for the
most significant proportion (11.1%). So we set the number limit of
screenshots to 6.

As a result, after image filtering, we kept one icon and the first 6
screenshots (in the order as they are listed in the app market) for

Table 3: The number of dangerous permissions and related
APIs in each API level

API level #dangerous permissions #dangerous APIs
23 / 6.0 24 71
24 / 7.0 24 108
25 / 7.1 24 110
26 / 8.0 26 146
27 / 8.1 26 152
28 / 9 27 162
29 / 10 29 195
30 / 11 29 218
union 30 246

each app. Then, we use Google VisionAPI [36] for image annotation,
use Tesseract-OCR [10] for text recognition, and calculate the color
usage upon HSV (Hue, Saturation, and Brightness) values of pixels.
After vectorizing all images, the average value of image vectors is
used as app’s feature.

Code features refer to the information extracted from the app
source code. Permissions and the used APIs are essential code
features for Android apps. We also try to verify whether these
features are helpful in identifying children’s apps.

• Permissions. Permissions are commonly used in app security
and privacy analysis. In this paper, we also want to investigate
how such a feature can distinguish the children’ and adults’ apps.
Android apps need to declare all necessary permissions in the An-
droidManifest.xml file. The Android system must make sure that
an app has obtained the corresponding permission before running
a specific API. We use AndroGuard to decompile each app and

21

Automatic Maturity Rating for Android Apps Internetware 2022, June 11-12, 2022, Hohhot, China

extract its required permissions as a feature. Android classifies
permissions into several protection levels: normal permissions do
not bring risks to the privacy of users or devices, while dangerous
permissions usually do, and signature permissions are automati-
cally granted as long as signatures of the app and the permission
match. The Android platform is evolving very quickly, and the
permission set also varies on different Android versions. In order
to ensure that our tool has high adaptability and can handle apps
in different app markets, we choose not only a single version of the
Android permission set, but the union of all dangerous permissions
from Android 6.0 to 11 (namely, API level 23 to 30) [11, 55]. Table 3
shows the number of dangerous permissions in each version and
the size of the union of dangerous permissions for all versions. We
use one-hot representation for the permission feature. If the app
involves a specific permission, we set the corresponding dimension
to 1, and to 0, otherwise. As for which permissions to use, we will
discuss in the later section.

• APIs.We use AndroGuard to decompile each app and analyze
the app source code to obtain all the APIs used by the app. As the
Android version updates quickly, the API set also varies on different
Android versions. To ensure the adaptability of our method, we use
the union of all dangerous APIs from Android 6.0 to 11 (namely, API
level 23 to 30) as shown in Table 3. We will discuss how to select
an efficient API set for our classification task in the later section.

4.3 Feature Selection
Some of the app features we involve in this work have a great
number of possible values, such as text features, code features, and
image features. We need to identify critical sub-features among
them, or set a proper feature size to ensure the efficiency of our
machine learning classifiers.We used the Chi-square test tomeasure
the correlation between features and our ground truth, on the
training set.

• Keywords in Text features. For text features, we can use
the TF-IDF vectorizer to extract features from the corpus, but the
dimension of the vectorizers, or to say, the number of keywords,
needs to be designated. By calculating the Chi-square values, we de-
termine the feature size to 100 for the app name, 120 for description,
and 50 for text in images.

• Image Labels. From the training set apps we collected from
Google Play, the Google Vision API identified a total of 1,720 distinct
image labels. But not all of these labels are related to children’s
apps, such as “orange”, “rectangle”, etc. So we apply Chi-square test
on all detected image labels and selected the top-130-correlated
image labels.

• Permissions. In the training set, we found 1,905 distinct per-
mission names. We use Chi-square test to select the top-240 per-
missions. We inspect several top permissions and analyze why they
are related to children’s apps. Here are the common reasons: it
involves complex functionalities and rarely needs to be used by
children’s apps; or it is easy to bring risks to children and should be
avoided using by children’s apps. Top normal, dangerous, and third-
party permissions are all highly correlated to our classification task,
while signature permissions have relatively low correlation scores,
probably because they are not available to general apps.

•APIs. There are a huge number of APIs involved in an app and
need to be filtered because not all APIs are useful for our purpose.
We consider combining the Term-Frequency and Chi-square, or
dangerous APIs and Chi-square to select an API subset. We will use
the API sets selected by these two methods to train and validate
the classifiers, respectively. Based on the classifiers’ performance,
we will determine the method of feature selection.

4.4 Model Selection
As we consider various types of app features, there is no universally
applicable machine learning algorithm for all of them. We should
determine the most effective one for each type of app feature. In
this work, our task is binary classification of supervised learning.
We considered six classifiers commonly used in this task as candi-
dates: Naive Bayes, Decision Tree, Logistic Regression, Linear SVM,
Random Forest and Multilayer Perceptron. For each feature type,
we train and validate all classifier candidates on the training set
via cross validation. Besides, we also compare the performance of
different encoding methods or feature sets for some feature types.

We use 75% of our collected apps as the training set to do 10-
fold cross validation. And we choose the metric Area Under Curve
(AUC) to evaluate the performance of models. AUC is a commonly
used metric to measure the overall performance of a classifier, and
can be used to rank multiple different classifiers. The results are
shown in Table 4. According to the Table, we can select the opti-
mal classifier for each type of feature. We consider not only the
performance of each classifier on each type of feature, but also the
complexity of those classifiers. For each feature type, we choose
the classifier with the best performance and the shortest training
time. The concrete process of classifier selection is as follows: First,
find one or more classifiers that have the highest AUC values. To
reduce the accidental factors, we set a threshold of 0.5. That is,
when the difference between the AUC value of a classifier and the
highest AUC value is less than 0.5, we consider that the classifier
also reaches the highest AUC. Then, if only one classifier has the
highest AUC value, it can be directly selected; if there are several
classifiers with the highest AUC values, we select the one with the
shortest training time. The results of selection are labeled by the
check marks in the table.

4.5 Model Ensemble
After determining the single model for each type of app feature, we
can integrate them. At present, we have known the performance
of each single-type feature model for identifying children’s apps.
Some of them perform well and some are relatively poor. In this
section, we will explore whether an ensembled model that combines
multiple single-type models can further improve the performance.
Intuitively, there are some complementary relationships between
different types of features. As we increase the number of single
models, the performance of ensemble model should gradually rise
and converge. And we should finally choose one or more cost-
effective model combinations. To achieve this goal, we tried all
possible model combinations and evaluate them. We get trained
models for each feature type using the 75% of the training set. Then
we evaluate their combinations using the rest 25% of the training
set. We use weighted soft voting to combine different models, in

22

Internetware 2022, June 11-12, 2022, Hohhot, China Zhou and Zhan, et al.

Table 4: The best AUC value of single models (%)

Model Feature NB DT LR SVM RF MLP
G Category 93.12 ✓ 93.09 93.19 86.58 93.10 93.12
A Advertising label 58.02 58.02 ✓ 58.02 58.02 58.02 58.07
R Traditional maturity rating 64.47 64.47 ✓ 64.47 64.45 64.47 64.53
N App name - TF-IDF 84.13 ✓ 80.19 84.55 79.44 82.80 83.91
T Description - TF-IDF 87.91 78.40 87.93 86.24 87.53 87.55
T Description - BERT 89.85 73.24 93.20 94.38 ✓ 92.58 93.38
O Text in images - TF-IDF 72.42 66.74 72.29 68.27 71.01 71.07
O Text in images - BERT 73.79 76.07 89.05 90.9 90.78 ✓ 89.06
I Image labels 88.84 76.95 91.83 92.93 ✓ 91.94 88.90
H Average HSV 70.90 59.00 69.35 72.55 ✓ 69.68 69.75
M Permissions 93.30 85.99 94.16 ✓ 93.66 94.02 94.38
D APIs 80.95 85.49 95.81 95.6 96.53 ✓ 96.17
D Dangerous APIs 83.90 88.44 91.18 91.42 92.34 92.56

which the weight of each single model equals to the corresponding
AUC value as shown in Table 4.

Since there are thousands of possible combinations for ten single-
type feature models, we should filter them according to a uniform
rule. We defined effective combination and efficient combinations,
and their explanations are given here. In most cases, the perfor-
mance of the combined model will be between the performances of
its sub-models. But sometimes the performance of the combined
model can be higher than the performances of all its sub-models,
we called this combination an effective combination. We tend to
have higher expectations for combined models, as their training
consumes more computational resources than single-type feature
models. Assuming that a combined model of two features has a
performance equal to that of another single-feature model, it is
evident that the single-feature model is a more efficient one. Thus,
we say that an n+1-type feature model is efficient if its performance
is higher than that of all n-type feature models.

When determining effective or efficient combined models, we
only focus on a single metric, AUC, which can measure the overall
performance of a model. We found 150 effective combinations and
12 efficient combinations in the Google Play training set. We plot
the AUC distribution of all single, effective and efficient models in
Figure 3(a), and the composition of good combinations can be seen
in Figure 3(b).

5 EVALUATION
In this section, we evaluate our approach by answering the follow-
ing four research questions.

• RQ1: (Performance of the ensembled models): How is
the performance of the ensembled models? Which single-
type models can be combined to form good ensembled mod-
els?

• RQ2: (Comparison with the state of the art): How effec-
tive is our tool compared to the existing tools?

• RQ3: (Usefulness of our tool):How does our tool perform
in the cross-market application scenario?

5.1 Experimental Setup
In RQ1, the experiment is conducted on the training dataset of
Google Play. In RQ2, we select several good ensembled models
and compare them with the existing approaches. The machine
learning models are trained on Google Play’s training set apps, and
tested on Google Play’s test set apps. In RQ3, we regard Huawei
AppGallery dataset as the test dataset measuring the models trained
on the Google Play dataset, to evaluate our tool’s performance in
the cross-market application scenario. The three experiments are
conducted on a server with 4 Intel(R) Xeon(R) Gold 6238 CPUs @
2.10GHz and 256 GB RAM.

5.2 Results and Analyses
5.2.1 RQ1: Performance of the Ensembled Models. From Figure 3,
we can see that the performance of the effective combination grad-
ually converges as the number of combined single type features
increases. The efficient models only occur in 2-type combined mod-
els, because the best 2-type model has reached an extremely high
performance and none of subsequent effective models can out-
perform it. However, it may have been overfitted, so we will also
consider several other effective models.

According to Figure 3(b), DT (APIs + description) is the most
effective emsembled model on the training dataset of Google Play.
To avoid overfitting, we also consider the best model among the
combined models at each combination level. As a result, we select
the model DT, DIR, DGAI, MDGNI, MDGAIH, and MDGANIR as
candidates. In the RQ2, we will show their evaluation on the Google
Play test set.

On the other hand, considering that the app category does not
actually belongs to the features of the app itself, but the features
given by the app market that vary across different app markets.
Some app markets require app developers to assign the maturity
rating and app category before submitting the app to the market,
and then there may be a review mechanism. In the app market with
manual review, the maturity rating and app category designated
by the developer should be the object of review, rather than the
established features of the app itself. That is, imagine that if our
tool being used to help app reviewers in app markets to verify that

23

Automatic Maturity Rating for Android Apps Internetware 2022, June 11-12, 2022, Hohhot, China

Figure 3: The AUC distribution of the effective and efficient
ensemble models

Table 5: The comparison with existing work on within-
market testing (%)

Model Accuracy Precision Recall TNR F1 AUC(TPR) score
AAMR 82.85 85.00 79.61 86.07 82.22 82.84
Liu et al. 88.61 87.63 89.81 87.43 88.71 88.62
DT 93.55 91.80 95.59 91.53 93.66 93.56
DIR 96.98 96.21 97.80 96.17 96.99 96.99
DGAI 96.30 96.41 96.14 96.45 96.28 96.30
MDGNI 96.57 95.92 97.25 95.90 96.58 96.57
MDGAIH 96.71 96.19 97.25 96.17 96.71 96.71
MDGANIR 97.12 96.47 97.80 96.45 97.13 97.12

an app is correctly age-rated, the app’s category should not be used
as a feature. Therefore, we hope to find a model whose performance
is not lower than that of the simple category model, but does not
contain category features, to evaluatewhether ourmethod canwork
well on another app market instead of Google Play. We choose the
model DT, DIR, MNTR, MDNIH, and MDANIH as candidates and
will evaluate them in RQ3 for cross-market application scenario.

5.2.2 RQ2: Comparison with the State of the Art. As mentioned
before, we select the best-performing ensembled models of all com-
bination levels, including DT, DIR, DGAI, MDGNI, MDGAIH, and
MDGANIR. In this section, we compare them with two existing
methods: Hu et al.[38] and Liu et al.[42].

In this research question, we conducted experiments based on
the Google Play dataset. Machine learning models are trained on
Google Play’s training set apps, and tested on Google Play’s test
set apps. We compared the candidate models using six metrics: ac-
curacy, precision, recall (also the true positive rate, TPR), TNR (true
negative rate), F1 score, and AUC. As shown in Table 5, our models
are superior to the existing methods on every metric. According
to the performance on test set, the model MDGANIR (permissions
+ APIs + category + ads + name + image labels + maturity rating)
is the best-performing one. Also, we found that the model DIR,
with only three models combined, has a similar performance to the
best-performing model. So we regard DIR (APIs + image labels +
maturity rating) as the most cost-effective model. Except for the
model DIR, as the combined level of the combined model increases,
the performance of the model on the test set also increases. The
result shows that our chosen features and transform methods are
effective, compared to existing work. We can find that AAMR gets
the lowest scores on all six metrics. Also, it has higher TNR than
TPR, which means it has relatively poor accuracy in identifying
children’s apps than identifying non-children’s apps. This is rea-
sonable because this method was initially designed for identifying
apps not suitable for children. It makes decisions mainly based on
the sensitive words in the app description. So after being applied
to identifying apps designed for children, it has the worst perfor-
mance among all candidate models, with higher TNR than TPR.
Meanwhile, Liu et al.’s method and most of our models have higher
TPR than TNR. This is understandable because these models mainly
focused on identifying apps designed for kids. The features they
use mainly focus on those that are typical in children’s apps, but
care less about non-children’s apps.

24

Internetware 2022, June 11-12, 2022, Hohhot, China Zhou and Zhan, et al.

Table 6: The comparisonwith existingworkon cross-market
testing (%)

Model Accuracy Precision Recall TNR F1 AUC(TPR) score
AAMR 83.86 88.46 77.35 90.19 82.53 83.77
Liu et al. 83.77 90.41 75.04 92.25 82.01 82.65
DT 83.77 81.43 86.90 80.72 84.08 83.81
DIR 88.74 92.75 83.72 93.63 88.00 88.67
MNTR 70.24 95.16 41.77 97.93 58.06 69.85
MDNIH 77.23 93.93 57.52 96.37 71.35 76.95
MDANIH 77.49 93.73 58.23 96.21 71.83 77.22

5.2.3 RQ3: Usefulness of Our Tool. We hope that our method can
be used across different app markets, so we use Huawei AppGallery,
a third-party app market with “Children” category, to evaluate the
models’ performance when being adopted across app markets. In
this section, the candidate models are different from those used
in the former section. We need to apply the models to different
app markets, but there’s no one-to-one correspondence between
categories of different app markets. Also, as Huawei AppGallery
classified children’s apps into a separate category, app categories
cannot be used as a feature for Huawei AppGallery’s apps. Under
this premise, we select the best models for every level of the com-
bined model without category feature, as labeled in Figure 3(b).
Besides, we use Google Translate to translate the content of text
features of Huawei’s apps to English. The evaluation results are
shown in Table 6.

Through comparing Table 5 and Table 6, we find that our models
DT and DIR have about 10% performance degradation in the cross-
market application scenario. By contrast, Liu et al.’s model drops by
6%, and AAMR even improves by 1%. In the cross-market applica-
tion scenario, the 2-type model DT and the two baselines result in
a similar performance. Our 3-type model, DIR (APIs + image labels
+ maturity rating), performs the best among all candidate models,
outperforming both baselines on all the six metrics. However, the
performance of the 4-, 5-, and 6-type models degrades greatly due
to the low accuracy in identifying positive instances. We further
analyze why the performances decrease, and the reasons are as
follows: 1) Different ground truth between app markets; 2) Features
are not feasible for cross-market application, or have overfitted
on the training set; 3) Cultural differences between countries; 4)
Translation introduces noise.

6 THREATS TO VALIDITY
Internal Validity. We choose apps from Google Play as the basis
to train our automatic rating models. However, previous work has
reported that Google Play may incorrectly rate apps [28]. Google
Play already improved its rating policy in 2015. To mitigate the
threat, we only collected apps that were released after the rating
policy was updated. Also, we conducted cross-validation of these
selected apps in our experiment to guarantee that the maturity
ratings were as accurate as possible.
Construct Validity. The selected data has a significant impact on
our experiment results. To eliminate the effects of data selection

on model selection and training, the choice of parameters for ma-
chine learning models, three people of us manually inspected apps
in Google Play to constructed the dataset. And for each training
process, we conducted 10-fold cross-validation.

7 LIMITATIONS AND FUTUREWORK
In this paper, we designed a machine learning model for predicting
apps for kids. We just used some static features from apps. In the
future, we can add some dynamic features into ourmodel to improve
robustness, such as the app behaviors and the dynamically loaded ad
content. We just implemented a binary classification. In the future,
we will try to add multi-label classification that can predict multiple
maturity ratings, which is more practical for real-world applications.
We will also try to incorporate different maturity policies into
our framework to enhance the generality and robustness of our
framework.

Nowadays, many functionalities can only be implemented through
third-party libraries [33]. However, in-app advertisements and other
third-party libraries are not controlled by the maturity rating policy.
The app developers may ignore whether the in-app ads violate the
content policy. A promising research direction can focus on the
in-app ad contents detection or identification of the behaviors of
other third-party libraries that violate the maturity policy. Such a
study could be useful, which can help enhance privacy protection.

Another research direction is the automatic maturity rating of
the Android third-party app market. While there are many third-
party app markets for Android, most of them do not include a
maturity rating mechanism. We hope to develop an automatic ma-
turity rating tool that can be widely used in different app markets to
help app markets and app users deal with the chaos in third-party
app markets.

8 CONCLUSION
Maturity rating in app markets can prevent inappropriate content
in apps from negatively impacting minors. Manually performing
the classification (either by developers or by reviewers) is time-
consuming and error-prone, and should be aided by automatic
rating tools. However, existing tools only leverage simple features
obtained from the app markets, while ignoring many useful app
features.

Therefore, we comprehensively explored the performance of
various types of app features on this classification problem, in-
cluding metadata, manifest-based features, code-based features,
and resource-based features. We constructed a dataset based on
the maturity ratings of the official Android app market, Google
Play, and trained machine learning models to identify children’s
apps. According to the experiment results, we finally found a most
cost-effective multi-type feature model, which takes app category,
description, and image annotation of screenshots as features. We
further compared the performance of this model and several ex-
isting tools. For the within-market testing, our model achieved
96.98% accuracy, 96.21% precision, and 97.80% recall, outperforming
existing tools on multiple metrics.

25

Automatic Maturity Rating for Android Apps Internetware 2022, June 11-12, 2022, Hohhot, China

ACKNOWLEDGMENTS
We would like to thank Internetware 2022 reviewers for their com-
ments and suggestions, which helped improve this paper. This work
is partially supported by the Guangdong Basic and Applied Basic
Research Fund (Grant No. 2021A1515011562), Guangdong Provin-
cial Key Laboratory (Grant No. 2020B121201001), and the National
Natural Science Foundation of China (Grant No. 61802164).

REFERENCES
[1] 1995. SVM. https://en.wikipedia.org/wiki/Support-vector_machine.
[2] 1998. Children’s Online Privacy Protection Rule ("COPPA").

https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-
proceedings/childrens-online-privacy-protection-rule.

[3] 2000. Children’s Internet Protection Act. http://ifea.net/cipa.pdf.
[4] 2012. App Store Review Guidelines. https://developer.apple.com/app-store/

review/guidelines/.
[5] 2012. Apple Application Ratings. http://itunes.apple.com/WebObjects/MZStore.

woa/wa/appRatings.
[6] 2012. Google Application Ratings. https://support.google.com/googleplay/

answer/6209544.
[7] 2017. Communications Decency Act of 1996. http://www.cybertelecom.org/cda/

cda.htm.
[8] 2019. The Common Sense Census: Media Use by Tweens and Teens,

2019. https://www.commonsensemedia.org/research/the-common-sense-census-
media-use-by-tweens-and-teens-2019.

[9] 2021. Pearson correlation coefficient. https://en.wikipedia.org/wiki/Pearson_
correlation_coefficient.

[10] 2021. Tesseract OCR. https://github.com/tesseract-ocr/tesseract.
[11] 2022. APER-mapping. https://github.com/sqlab-sustech/APER-mapping.
[12] 2022. Children’s Online Protection Act COPA. https://www.law.cornell.edu/

uscode/text/47/231.
[13] 2022. ESRB. https://www.esrb.org/.
[14] 2022. Google Play. https://play.google.com.
[15] 2022. International Age Rating Coaltion. https://www.globalratings.com/ratings-

guide.aspx.
[16] 2022. Mobile software content rating system. https://en.wikipedia.org/wiki/

Mobile_software_content_rating_system.
[17] 2022. PEGI. https://pegi.info/.
[18] 2022. Rating authorities. https://support.google.com/googleplay/android-

developer/answer/9859655#ratings.
[19] 2022. Statista, smartphone usage. https://www.bankmycell.com/blog/how-many-

phones-are-in-the-world.
[20] 2022. USK. https://usk.de/alle-lexikonbegriffe/iarc/.
[21] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.

AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 468–471. https://doi.org/
10.1145/2901739.2903508

[22] Camila Souza Araújo, Gabriel Magno, Wagner Meira, Virgilio Almeida, Pedro
Hartung, and Danilo Doneda. 2017. Characterizing videos, audience and advertis-
ing in Youtube channels for kids. In International Conference on Social Informatics.
Springer, 341–359.

[23] Gonzalo Molpeceres Barrientos, Rocío Alaiz-Rodríguez, Víctor González-Castro,
and Andrew C Parnell. 2020. Machine Learning Techniques for the Detection
of Inappropriate Erotic Content in Text. International Journal of Computational
Intelligence Systems 13, 1 (2020), 591–603.

[24] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen,
Jaeyeon Jung, Suman Nath, Rui Wang, and David Wetherall. 2014. Brahmastra:
Driving apps to test the security of third-party components. In 23rd {USENIX}
Security Symposium ({USENIX} Security 14). 1021–1036.

[25] Reuben Binns, Ulrik Lyngs, Max Van Kleek, Jun Zhao, Timothy Libert, and Nigel
Shadbolt. 2018. Third Party Tracking in the Mobile Ecosystem. In Proc. WebSci
’18. 23–31. https://doi.org/10.1145/3201064.3201089

[26] Eric Brewer and Yiu-Kai Ng. 2019. Age-Suitability Prediction for Literature Using
a Recurrent Neural Network Model. In 2019 IEEE 31st International Conference on
Tools with Artificial Intelligence (ICTAI). IEEE, 1592–1596.

[27] Marina Buzzi. 2011. Children and YouTube: access to safe content. In Proceedings
of the 9th ACM SIGCHI Italian Chapter International Conference on Computer-
Human Interaction: Facing Complexity. 125–131.

[28] Ying Chen, Heng Xu, Yilu Zhou, and Sencun Zhu. 2013. Is this app safe for chil-
dren? A comparison study of maturity ratings on Android and iOS applications.
In Proceedings of the 22nd international conference on World Wide Web. 201–212.

[29] Ying Chen, Sencun Zhu, Heng Xu, and Yilu Zhou. 2013. Children’s exposure
to mobile in-app advertising: an analysis of content appropriateness. In 2013

International Conference on Social Computing. IEEE, 196–203.
[30] Saksham Chitkara, Nishad Gothoskar, Suhas Harish, Jason I. Hong, and Yuvraj

Agarwal. 2017. Does This App Really Need My Location? Context-Aware Privacy
Management for Smartphones. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 1, 3, Article 42 (sep 2017), 22 pages. https://doi.org/10.1145/3132029

[31] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. 20, 3 (sep
1995), 273–297. https://doi.org/10.1023/A:1022627411411

[32] Carsten Eickhoff and Arjen P. de Vries. 2010. Identifying Suitable YouTube Videos
for Children. In Networked and electronic media summit.

[33] Anirudh Ekambaranathan, Jun Zhao, and Max Van Kleek. 2021. “Money Makes
the World Go Around”: Identifying Barriers to Better Privacy in Children’s Apps
From Developers’ Perspectives. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Article 46,
15 pages. https://doi.org/10.1145/3411764.3445599

[34] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna, and
Erika Chin. 2011. Permission Re-Delegation: Attacks and Defenses.. In USENIX
security symposium, Vol. 30. 88.

[35] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. 2012. Androi-
dleaks: Automatically detecting potential privacy leaks in android applications
on a large scale. In International Conference on Trust and Trustworthy Computing.
Springer, 291–307.

[36] Google. 2021. Vision AI. https://cloud.google.com/vision/.
[37] Michael C. Grace,Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012. Unsafe

Exposure Analysis of Mobile In-App Advertisements. In Proceedings of the Fifth
ACM Conference on Security and Privacy in Wireless and Mobile Networks (Tucson,
Arizona, USA) (WISEC ’12). Association for Computing Machinery, New York,
NY, USA, 101–112. https://doi.org/10.1145/2185448.2185464

[38] Bing Hu, Bin Liu, Neil Zhenqiang Gong, Deguang Kong, and Hongxia Jin. 2015.
Protecting your children from inappropriate content inmobile apps: An automatic
maturity rating framework. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. 1111–1120.

[39] Chang-Hyun Jin. 2013. The effects of individual innovativeness on users’ adoption
of Internet content filtering software and attitudes toward children’s Internet use.
Computers in Human Behavior 29, 5 (2013), 1904–1916. https://www.sciencedirect.
com/science/article/pii/S0747563213000988

[40] Ilias Leontiadis, Christos Efstratiou, Marco Picone, and Cecilia Mascolo. 2012.
Don’t Kill My Ads! Balancing Privacy in an Ad-Supported Mobile Application
Market. In Proc. HotMobile ’12. Article 2, 6 pages.

[41] Jialiu Lin. 2013. Understanding and Capturing People’s Mobile App Privacy Prefer-
ences. Ph. D. Dissertation. Advisor(s) Sadeh, Norman and Hong, Jason I.

[42] Minxing Liu, Haoyu Wang, Yao Guo, and Jason Hong. 2016. Identifying and
analyzing the privacy of apps for kids. In Proceedings of the 17th International
Workshop on Mobile Computing Systems and Applications. 105–110.

[43] Xing Liu, Jiqiang Liu, Sencun Zhu, Wei Wang, and Xiangliang Zhang. 2020.
Privacy Risk Analysis and Mitigation of Analytics Libraries in the Android
Ecosystem. IEEE TMC 19, 5 (2020), 1184–1199.

[44] Qian Luo, Jiajia Liu, Jiadai Wang, Yawen Tan, Yurui Cao, and Nei Kato. 2020.
Automatic content inspection and forensics for children android apps. IEEE
Internet of Things Journal 7, 8 (2020), 7123–7134.

[45] Marisa Meyer, Victoria Adkins, Nalingna Yuan, Heidi M Weeks, Yung-Ju Chang,
and Jenny Radesky. 2019. Advertising in young children’s apps: A content
analysis. Journal of developmental & behavioral pediatrics 40, 1 (2019), 32–39.

[46] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[47] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[48] Kostantinos Papadamou, Antonis Papasavva, Savvas Zannettou, Jeremy Black-
burn, Nicolas Kourtellis, Ilias Leontiadis, Gianluca Stringhini, and Michael Siriv-
ianos. 2020. Disturbed YouTube for kids: Characterizing and detecting inappro-
priate videos targeting young children. In Proceedings of the international AAAI
conference on web and social media, Vol. 14. 522–533.

[49] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Mark Allman, Christian Kreibich, and Phillipa Gill. 2018. Apps,
Trackers, Privacy, and Regulators: A Global Study of the Mobile Tracking Ecosys-
tem. In NDSS.

[50] Irwin Reyes, Primal Wijesekera, Abbas Razaghpanah, Joel Reardon, Narseo
Vallina-Rodriguez, Serge Egelman, Christian Kreibich, et al. 2017. " Is Our Chil-
dren’s Apps Learning?" Automatically Detecting COPPA Violations. InWorkshop
on Technology and Consumer Protection (ConPro 2017), in conjunction with the
38th IEEE Symposium on Security and Privacy (IEEE S&P 2017).

[51] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas Raza-
ghpanah, Narseo Vallina-Rodriguez, and Serge Egelman. 2018. “Won’t somebody
think of the children?” examining COPPA compliance at scale. Proceedings on
Privacy Enhancing Technologies 2018, 3 (2018), 63–83.

[52] Dan Stowell, Dimitrios Giannoulis, Emmanouil Benetos, Mathieu Lagrange, and
Mark D Plumbley. 2015. Detection and classification of acoustic scenes and

26

https://en.wikipedia.org/wiki/Support-vector_machine
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
http://ifea.net/cipa.pdf
 https://developer.apple.com/app-store/review/guidelines/
 https://developer.apple.com/app-store/review/guidelines/
 http://itunes.apple.com/WebObjects/MZStore.woa/wa/appRatings
 http://itunes.apple.com/WebObjects/MZStore.woa/wa/appRatings
https://support.google.com/googleplay/answer/6209544
https://support.google.com/googleplay/answer/6209544
http://www.cybertelecom.org/cda/cda.htm
http://www.cybertelecom.org/cda/cda.htm
https://www.commonsensemedia.org/research/the-common-sense-census-media-use-by-tweens-and-teens-2019
https://www.commonsensemedia.org/research/the-common-sense-census-media-use-by-tweens-and-teens-2019
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://github.com/tesseract-ocr/tesseract
https://github.com/sqlab-sustech/APER-mapping
https://www.law.cornell.edu/uscode/text/47/231
https://www.law.cornell.edu/uscode/text/47/231
https://www.esrb.org/
 https://play.google.com
https://www.globalratings.com/ratings-guide.aspx
https://www.globalratings.com/ratings-guide.aspx
 https://en.wikipedia.org/wiki/Mobile_software_content_rating_system
 https://en.wikipedia.org/wiki/Mobile_software_content_rating_system
https://pegi.info/
https://support.google.com/googleplay/android-developer/answer/9859655#ratings
https://support.google.com/googleplay/android-developer/answer/9859655#ratings
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://usk.de/alle-lexikonbegriffe/iarc/
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/3201064.3201089
https://doi.org/10.1145/3132029
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1145/3411764.3445599
https://cloud.google.com/vision/
https://doi.org/10.1145/2185448.2185464
https://www.sciencedirect.com/science/article/pii/S0747563213000988
https://www.sciencedirect.com/science/article/pii/S0747563213000988

Internetware 2022, June 11-12, 2022, Hohhot, China Zhou and Zhan, et al.

events. IEEE Transactions on Multimedia 17, 10 (2015), 1733–1746.
[53] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Well-

Read Students Learn Better: On the Importance of Pre-training Compact Models.
arXiv preprint arXiv:1908.08962v2 (2019).

[54] Narseo Vallina-Rodriguez, Srikanth Sundaresan, Abbas Razaghpanah, Rishab
Nithyanand, Mark Allman, Christian Kreibich, and Phillipa Gill. 2016. Tracking
the Trackers: Towards Understanding the Mobile Advertising and Tracking
Ecosystem. In arXiv preprint arXiv:1609.07190.

[55] Sinan Wang, Yibo Wang, Xian Zhan, Ying Wang, Yepang Liu, Xiapu Luo, and
Shing-Chi Cheung. 2022. Aper: Evolution-Aware Runtime Permission Misuse
Detection for Android Apps. arXiv:2201.12542 [cs.SE]

[56] Jônatas Wehrmann, Gabriel S Simões, Rodrigo C Barros, and Victor F Cavalcante.
2018. Adult content detection in videos with convolutional and recurrent neural
networks. Neurocomputing 272 (2018), 432–438.

[57] Kan Yang, Qi Han, Hui Li, Kan Zheng, Zhou Su, and Xuemin Shen. 2017. An Effi-
cient and Fine-Grained Big Data Access Control SchemeWith Privacy-Preserving
Policy. IEEE Internet of Things Journal 4, 2 (2017), 563–571.

27

https://arxiv.org/abs/2201.12542

	Abstract
	1 Introduction
	2 Background
	2.1 App Maturity Rating
	2.2 Maturity Ratings in Different App Markets

	3 Related Work
	4 Methodology
	4.1 Dataset Collection
	4.2 Data Pre-Processing and Feature Extraction
	4.3 Feature Selection
	4.4 Model Selection
	4.5 Model Ensemble

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results and Analyses

	6 Threats to Validity
	7 Limitations and Future Work
	8 Conclusion
	Acknowledgments
	References

