
Understanding and Detecting Wake Lock Misuses

for Android Applications

Yepang Liu, Chang Xu, Shing-Chi Cheung, and Valerio Terragni

Code Analysis, Testing and Learning Research Group (CASTLE)

Artifact Evaluated

Wake Lock: Android’s Power Control Mechanism

• To save battery power, Android devices quickly fall asleep after a short

period of user inactivity

• Wake locks can be used to keep certain hardware (e.g., CPU, Screen) on

for long-running and critical computation (e.g., uninterruptable tasks)

2

R

Wake lock
releasing

A

Wake lock
acquisition

Critical computation

FSE 2016, Seattle

Motivation

• Wake locks can help provide functionalities in a reliable manner

• 27.2% apps on Google Play store use wake locks

• However, programming wake locks is non-trivial

• Various lock types, configuration parameters (e.g., flags)

• Impact on hardware status and energy consumption

3FSE 2016, Seattle

various lock types

multiple flags: ACQUIRE_CAUSES_WAKEUP, ON_AFTER_RELEASE // flags can be combined

Motivation

Inappropriate use of wake
locks is common

• 61.3% of our investigated

open-source apps suffered

from various wake lock bugs

that can cause app crash,

energy waste etc.

4FSE 2016, Seattle

wake lock
misuses

Resource errors:
- Unnecessary acquisition
- Leakage
- Permission

- Well capture wake lock
misuses?

- Effectively detect them?
- Limitations?
- Automated detection?

Research Goals

• Understand the common practices of wake lock usage

• Uncover the common misuses of wake locks

• Design techniques to detect wake lock misuses

5FSE 2016, Seattle

Empirical Study: Research Questions

6

• Critical computation: What computational tasks

are often protected by wake locks?

• Wake lock misuses: Are there common causes of

wake lock misuses? What consequences can they

cause?

Note: More RQs in our paper and technical report

FSE 2016, Seattle

1. Binaries (APK files) of 44,736 free Android apps that use wake locks

• Comprehensive: covering all 26 app categories, each category has thousands of apps

• Popularity: each app received 200K+ downloads on average

• Diverse sizes: ranging from a few KB to hundreds of MB, average size 7.7 MB

Two Datasets

7FSE 2016, Seattle

Study Methodology (Dataset 1)

8

Decompilation
(Dex2jar)

Program analysis
(Soot, BCEL)

Statistical analysis

• Retargeting APK files to Java bytecode

• Locating analysis entry points (event handlers)

• Analyzing app API usage, lock type, acquisition/releasing
points

• Correlating API calls with wake lock uses

• Analyzing common lock types and acquiring/releasing
points

FSE 2016, Seattle

1. Binaries (APK files) of 44,736 free Android apps that use wake locks

• Comprehensive: covering all 26 app categories, each category has thousands of apps

• Popularity: each app received 200K+ downloads on average

• Diverse sizes: ranging from a few KB to hundreds of MB, average size 7.7 MB

2. Code repositories of 31 most popular F-Droid indexed open-source Android

apps that use wake locks

• Popularity: each app received 39+ millions of downloads on average

• Well-maintained: thousands of code revisions, hundreds of bug reports

• Large-scale: each app has 40.3K lines of code on average

Two Datasets

9FSE 2016, Seattle

Study Methodology (Dataset 2)

• Processing code repositories: search-assisted manual analysis

• Search keywords: wake, wakelock, power, powermanager

10

• Bug reports

• Revision commit logs

• Revision code diffs
Code

Repos

31 Android apps Keyword search

• 1,157 bug reports

• 1,558 code revisions

Manual validation

Wake lock
misuses

56

real and fixed

issues

FSE 2016, Seattle

Key Empirical Findings (Dataset 1)
• The use of wake locks are strongly correlated with the invocations to APIs that

perform 13 types of computational tasks

• Many tasks require permissions to run and can bring users perceptible benefits

11

Computational task API example

Networking & communications java.net.DatagramSocket.connect()

Data management & sharing android.database.sqlite.SQLiteDatabase.query()

System-level operations android.os.Process.killProcess()

Media & audio android.media.AudioTrack.write()

Sensing operations android.location.LocationManager.requestLocationUpdates()

… …

FSE 2016, Seattle

Key Empirical Findings (Dataset 2)

• 8 types of wake lock misuses commonly cause functional/nonfunctional issues

12

Root cause # issues # affected apps Example Consequence

Unnecessary wakeup 11 7 Tomahawk Rev. 883d210 Energy waste

Wake lock leakage 10 7 MyTracks Rev. 1349 Energy waste

Premature lock releasing 9 7 ConnectBot Issue 37 Crash

Multiple lock acquisition 8 3 CSipSimple Issue 152 Crash

Inappropriate lock type 8 3 Osmand Issue 582 Energy waste

Problematic timeout setting 3 2 K9Mail Issue 170 Instability

Inappropriate flags 2 2 FBReader Rev. f289863 Energy waste

Permission errors 2 2 Firefox Issue 703661 Crash

Total 53 18 Note: More findings in our paper and technical report

Studied by existing work Not studied by existing work

FSE 2016, Seattle

Unnecessary Wakeup

13

Critical computation

RA

Acquire too early or release too late

A Wake lock acquisition R Wake lock releasing

Wake lock eventually released after acquisition/use

TomaHawk Player bug:

Wake lock is not released until users left the player UI, should be released

immediately after music stops playing.

Energy waste

FSE 2016, Seattle

Wake Lock Leakage

14

Wake lock never release after use

A

Energy waste

FSE 2016, Seattle

A Wake lock acquisition R Wake lock releasing

Premature Lock Releasing

15

AR

Wake lock released before acquisition

App crash

FSE 2016, Seattle

A Wake lock acquisition R Wake lock releasing

Detecting Wake Lock Misuses

• ELITE: A static wake lock necessity analyzer

• Current version detects (1) unnecessary wakeup and (2) wake lock
leakage

16

Android app Static analyzer Wake lock misuses

FSE 2016, Seattle

Component-Based Static Analysis

• ELITE analyzes app components one by one. It generates and analyzes “top level

method” call sequences for issue detection when analyzing each component.

• Top level methods: (1) callback methods and (2) non-callback methods exposed for

other components to invoke

• Execution model: top level methods (tm) are invoked by system or other components

and they may invoke various other methods (om)

17

tm1 tm2 tm3 tm4

om1 om2 om3 om4

Top level methods

Other methods

Execution order

Call relationship

FSE 2016, Seattle

Challenge: Generating Valid Method Call Sequences

• Example 1: Component lifecycle callbacks’ execution follows prescribed

orders

– ELITE encodes the ordering as temporal constraints and enforce them during

method call sequence generation

18

Running

Stopped

Launch
activity

Paused

Destroyed

onStop()

1.onCreate()
2.onStart()
3.onResume()1.onRestart()

2.onStart()
3.onResume()

onPause()

onResume()

onDestroy()

<<kill>><<kill>>

FSE 2016, Seattle

Challenge: Generating Valid Method Call Sequences

• Example 2: GUI and system event callbacks can only be invoked when

the corresponding event listeners are registered

– ELITE infers each event listener’s registering and unregistering methods (via

static analysis) and enforce the proper order during sequence generation

19

public class MyActivity extends Activity {

protected void onStart() {

Button button = (Button) findViewById(R.id.button_id);

button.setOnClickListener(new View.OnClickListener() {

public void onClick(View v) {

// Perform action on click

}

});}}

Dynamic
registration

onClick() onStart()

onStart() onClick()

FSE 2016, Seattle

Summarizing Top Level Methods

• ELITE encodes potential runtime behaviors of each top level method tm

by means of four sets of dataflow facts inferred via forward inter-

procedural dataflow analysis (performed before sequence generation)

1. ACQ: The wake lock instances that may have been acquired after executing tm

2. REL: The wake lock instances that may have been released after executing tm

3. START: The asynchronous computational tasks that may have been started

after executing tm

4. STOP: The asynchronous computational tasks that may have been

stopped/paused after executing tm
20FSE 2016, Seattle

Wake Lock Necessity Analysis

21

onCreate() playPause() onDestroy()

A top level method call sequence for the app TomaHawk:

ACQ = {partial lock}

START = {media player}

START = {media player}

STOP = {media player}

REL = {partial lock}

STOP = {media player}

Checkpoint: the app may stay quiescent at such state-transitioning time point

indefinitely for a long time when there are no events to handle

Checkpoint 1 Checkpoint 2 Checkpoint 3

End

FSE 2016, Seattle

Wake Lock Necessity Analysis (A Running Example)

• Intuition: at each checkpoint, wake locks should be held only if the app is

performing long running (asynchronous) computation

22

Checkpoint

onCreate() playPause() onDestroy()

ACQ = {partial lock}

START = {media player}

START = {media player}

STOP = {media player}

REL = {partial lock}

STOP = {media player}

End

• Check 1: Is it possible after executing playPause() the acquired wake lock would be released?

• Check 2: Is it possible after executing playPause(), all started asynchronous computational

tasks would be stopped?

No

Yes Since no useful tasks are running, why the wake lock is held?

FSE 2016, Seattle

Experimental Setup

23

• Subjects: 12 versions of five large-scale and popular open-source Android

apps

• Six versions contain real wake lock misuses and the other six versions are

corresponding issue-fixing versions

• Techniques under comparison

• Relda: a resource leak detection technique for Android apps (Guo et al. ASE’13)

• Verifier: a verification technique for detecting no-sleep bugs (Vekris et al.

HotPower’12)

FSE 2016, Seattle

Experimental Result

App Bug type Version #Wakelock
issues

Result: #TP / #reported warnings

ELITE Relda Verifier

TomaHawk Unnecessary
wakeup

Buggy 1 1/1 0/1 0/2

Clean 0 0/0 0/0 0/0

Open-
GPSTracker

Unnecessary
wakeup

Buggy 1 1/1 0/0 0/1

Clean 0 0/0 0/0 0/1

MyTracks Unnecessary
wakeup

Buggy 2 2/2 0/1 0/2

Clean 0 0/0 0/1 0/0

FBReader Leakage
Buggy 1 1/1 0/0 0/0

Clean 0 0/0 0/0 0/0

MyTracks Leakage
Buggy 1 1/1 0/1 0/0

Clean 0 0/0 0/1 0/0

CallMeter Leakage
Buggy 1 0/0 0/0 1/1

Clean 0 0/0 0/0 0/1

Precision 100% 0% 12.5%

Recall 85.7% 0% 14.3%

24

False
alarm

FSE 2016, Seattle

Our tool

Experimental Result Analysis
• Relda and Verifier: high rate of false positives/negatives

• Rely on pre-defined wake lock releasing points (e.g., Activity.onPause() handler)

for leakage detection, oblivious to app semantics and runtime behaviors

25

Releasing point Percentage of apps

onPause() 35.4%

onDestroy() 15.8%

onResume() 13.0%

onWindowFocusChanged() 11.2%

onCreate() 10.2%

Other 389 callbacks 14.4%

Wake lock releasing points in activities (results of analyzing 44,736 apps)

FSE 2016, Seattle

Experimental Result Analysis
• Relda and Verifier: high rate of false positives/negatives

• Rely on pre-defined wake lock releasing points (e.g., Activity.onPause() handler)

for leakage detection, oblivious to app semantics and runtime behaviors

• Do not locate all defined program callbacks and properly handle the execution

order among them (ELITE systematically locates all callbacks with a fix-point

iterative algorithm and infer temporal constraints to model callback execution

orders)

• Lack of full path sensitivity in program analysis (also the reason for ELITE’s false

negative when analyzing CallMeter)

26FSE 2016, Seattle

Conclusion

27

• The first large-scale empirical study of wake lock usage in practice

• Eight common patterns of wake lock misuses

• ELITE: a static analysis technique for wake lock misuse detection

• A preliminary evaluation shows that ELITE outperforms existing techniques

Our datasets and tool are available at:

http://sccpu2.cse.ust.hk/elite/

FSE 2016, Seattle

Artifact Evaluated

http://sccpu2.cse.ust.hk/elite/

