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Abstract—Mobile devices are gradually taking over traditional
computers’ dominance in human lives. With the ever-increasing
shipment of mobile apps running on these devices, their quality
issues become a severe challenge. Although automated testing
techniques are being widely studied, they mostly fall short
of handling mobile apps’ complex interactions, e.g., a finger
swipe or device shaking gesture, leading to inadequate testing.
In this paper, we present a novel User Guided Automation
(UGA) technique to address testing challenges incurred by such
complex interactions. UGA exploits user insights to complement
automated testing techniques by recording user-guided app exe-
cutions, replaying apps to certain stop points, and systematically
exploring state space from these stop points. We implemented
our work as a prototype UGA tool on Android platform and
evaluated it on seven real-world Android apps. Evaluation results
show that UGA achieved 1.59–21.78× improvement in terms of
method coverage over state-of-the-art automated techniques in
testing mobile apps.

Index Terms—Android apps; Testing; Semi-automated; User
trace.

I. INTRODUCTION

Mobile devices such as smartphones and tablets have be-
come the de facto computers in our daily lives [1]. One major
reason behind their market success is that apps running on
these devices can assist their users in many daily activities
(e.g., work and entertainment) and provide rich interactive
experiences [2]. Such benefits, on the other hand, have also
challenged traditional testing practice because testing apps
with complex user interactions is always labor-intensive [3].
Moreover, competitive app markets force developers to quickly
release their apps. Hence, developers rarely have adequate time
for thorough app testing [4]. Due to these reasons, automated
testing or testing assistance techniques are highly desirable.

In recent years, researchers have proposed various auto-
mated testing techniques [5]–[11]. However, such automation
still remains at a methodology level. Although it is theoret-
ically sound to treat complex interactions as transitions in
a GUI model, whether such abstraction can be automated
(e.g., whether a sensor-involving interaction can be realized
in testing easily) is still an open question. Therefore, when
existing tools are applied to real-world apps, they often require
complex manual interactions (e.g., conducting a finger swipe
or device shaking gesture, or typing in user credentials)
to reach certain GUI entries. This significantly reduces the
attractiveness of these existing test automation techniques.
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Complex interactions thus hinder test automation, but per-
forming them is instead not difficult for human beings. To
alleviate the above limitation of existing automated testing
techniques, we in this paper present a novel user guided
test automation technique (named UGA), which integrates
user interactions into automated testing. UGA takes advantage
of automated testing to systematically traverse different app
states. At the same time, it also exploits the insight that users
can easily understand an app’s intentions and interact with an
app effectively to cover code regions or app states that can
hardly be reached by pure automated techniques.

Our UGA technique works in two phases. First, UGA
records an app’s execution trace when its user executes this
app, and we name it a user trace. This record phase saves log
that can be used later for reproducing this user trace as well
as extending it to other potential traces. Second, UGA replays
a partial trace of a previously logged execution to a stop
point (i.e., an app state where its user spends much time on
inspecting GUI, or can switch to another new GUI). Starting
from this stop point, UGA performs automated testing (e.g.,
random or depth-first exploration) to systematically explore the
app states around this stop point. In this way, by leveraging
user traces to reach certain stop points, which cannot easily be
reached without complex user interactions, and by performing
systematic testing from those stop points, one can have a
higher chance of visiting more states than simply applying
a pure automated testing technique.

To validate our idea, we implemented our UGA in Java
for the popular Android platform. To support UGA, we also
integrated it with RERAN [12] to collect user traces, and with
standard random testing RND [8], [9], [13] and model-based
depth-first systematic testing DFS [6], [11] such that UGA can
leverage these two strategies for testing in its second phase.
We evaluated our tool (also named UGA for convenience)
experimentally on seven real-world popular Android apps. The
experimental results consistently showed that UGA can sig-
nificantly improve method coverage in testing (1.62–14.51×
improvement on RND and 1.59–21.78× improvement on
DFS). These results suggest that guiding automated testing by
exploiting easily-obtained user traces is a promising direction
towards cost-effective testing for mobile apps.

In summary, our contributions in this paper are two-fold.
First, we propose to exploit user traces to complement auto-
mated testing techniques for testing mobile apps that require
complex interactions. Second, we implemented our technique



Figure 1: First two screens (s1 and s2) in Alipay Wallet

and evaluated its effectiveness through real-world apps. The
results confirm that the effectiveness of existing automated
testing techniques can be greatly enhanced by leveraging a
small amount of user traces, which can be collected with
negligible cost.

The rest of this paper is organized as follows. Section II
overviews our UGA idea with a concrete example. Section
III elaborates on our UGA technique and Section IV explains
its implementation. Section V evaluates our UGA technique
experimentally with real-world apps. Section VI discusses
related work and explores our future work, and finally, Section
VII concludes this paper.

II. OVERVIEW

In this section, we present a motivating example. We use this
example to discuss limitations of existing automated testing
techniques for mobile apps. We then explain how our UGA
technique can address such limitations in a user-guided way.

A. A Motivating Example

We use Alipay Wallet [14], a popular online payment app
in China, as our motivating example. Figure 1 shows the first
two screens after Alipay Wallet starts. We denote them as s1,
s2, respectively. Since the app involves financial transactions,
for safety concerns, it requires user authentication by drawing
an unlock pattern on the screen (s1). Only correct patterns can
lead to the app’s main screen (s2).

To test such an app, existing automated testing techniques
would require a GUI model that describes how users can in-
teract with this app at each of its possible states. Such a model
may be derived by analyzing an app’s GUI layout at runtime
(e.g., by tools Robotium [15] and Hierarchy Viewer [16]),
or by analyzing the app’s source code [11]. Based on thus
obtained GUI models, existing techniques can then explore the
app’s state space by feeding necessary input actions. Although
this sounds straightforward and many simple input actions
(e.g., button click) can indeed be simulated, such testing tech-
niques do not work effectively for many real-world apps. The
reason is that many apps require complex interactions, e.g.,
typing in a valid account/password combination or performing
a particular drawing gesture as in Alipay Wallet. As a result,

the underlying code for handling such complex interactions
becomes a dead zone for such automated techniques. In fact,
we did observe that none of existing automated testing tech-
niques for mobile apps can reach screen s2 in our motivating
example. While it is possible for professional developers to
write specific test drivers to bypass such interactions, this
treatment contradicts our expectation of test automation.

B. Our User-guided Technique

Our UGA technique exploits a simple yet effective obser-
vation that developers often run their apps to see whether
the apps’ major functionalities work or not before applying
sophisticated testing tools. These initial runs typically contain
critical information about complex interactions, and can well
cover major functionalities of an app. Based on this observa-
tion, our UGA first records user traces during such initial runs,
and use them to guide its automated testing later. Specifically,
in its automated testing phase, UGA replays its recorded user
traces to certain stop points where users (e.g., testers) stop for
choosing next actions. When reaching any of such stop points,
UGA’s replay engine would hand over the execution control to
its automated testing engine for a systematic state exploration.

To ease understanding, let us revisit our motivating example.
We invite several users to play with Alipay Wallet and our
UGA can record user traces accordingly. The users would draw
correct unlock patterns and then start to explore functionalities
provided by Alipay Wallet. Based on these user traces, UGA
can effectively test this app in an automated way. Specifically,
it would first select s2 as a stop point (stop point selection
criteria are discussed later in Section III) and replay recorded
user traces to s2. Then it switches execution to its internal
testing engine for systematic exploration from this stop point.
On the other hand, without such automated record and replay
support, existing testing techniques would be stuck at s1 and
can hardly break through it and test later functionalities in this
app.

III. THE UGA APPROACH

In this section, we elaborate on our UGA technique for
effective testing of mobile apps.

A. High-level Idea

Figure 2 illustrates the high-level idea of our UGA tech-
nique. It is well-known that a real-world app’s state space is
typically huge or even infinite. In practice, due to resource
restrictions, it is often infeasible for human tester to traverse
an app’s entire state space, as illustrated in Figure 2(a). An
automated testing tool can certainly explore part of an app’s
state space, but may also lose its direction when its exploration
falls into part of the state space whose structure is unclear.
Besides, it cannot reach those states that have to be triggered
by complex interactions, resulting in low test coverage, as
shown in Figure 2(b). Nevertheless, things can get changed if
we have user traces at hand. Users can quickly understand how
to interact with an app with very little information (e.g., a hint
on screen saying “please unlock”), and perform corresponding
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Figure 2: Illustration for the UGA technique

interactions to reach those states that cannot easily be reached
by existing automated testing tools. Moreover, users usually
focus on major functionalities when they use an app. Such
behavior can help expose the main structure of an app’s
state space. Guided by such a structure, our UGA can then
choose certain stop points to conduct automated testing, thus
exploring the app’s state space in a systematic way, which
can further investigate those states users do not typically
pay attention to, i.e., those states associated with the app’s
minor functionalities. Such an example is demonstrated in
Figure 2(c).

Specifically, our UGA works in three steps: (1) user trace
recording, (2) stop-point identification, and (3) user-guided
automated testing. We in the following elaborate on these three
steps.

B. User Trace Recording

UGA records detailed logs of a user’s execution (defined
as a user trace) for later replay. For recording purposes, we
adopt the technique described in RERAN [12]. The technique
records all input events during the execution of an app,
covering how a user uses an app, both intentionally (e.g.,
screen touching and tapping events) and unintentionally (e.g.,
sensor reading events). This enables our UGA to faithfully
reproduce all complex interactions by an app’s user (e.g.,
press-release, press-hold, swipe, zoom-pinch and shake of a
device).

We define each log entry as an event e = (t, d, p), meaning
that at time t an input device d creates this event e with
parameters p. By this definition, we can use e.t, e.d and e.p
to represent the event e’s occurring time, its input device
that creates this event and the event’s parameters, respec-
tively. UGA logs a sequence of chronologically ordered events
T = {e1, e2, . . . , en} (i.e., e1.t ≤ e2.t ≤ . . . ≤ en.t) during
its record phase, and this sequence is a user trace for an app.
Later in its replay phase, UGA feeds the app with events
recorded in a user trace according to their timings. Figure 3
gives one example of such user trace, which contains 14 low-
level events, representing two press-release interactions.

Each event e in Figure 3 has five fields in total. The first field
indicates e.t, the duration since the last system restart (i.e., the

1.  [500.821153]  /dev/input/event2:  0003 0039 00000398

2.  [500.821184]  /dev/input/event2:  0003 0035 000003eb

3.  [500.821184]  /dev/input/event2:  0003 0036 00000478

4.  [500.821184]  /dev/input/event2:  0003 003a 00000032

5.  [500.821214]  /dev/input/event2:  0000 0000 00000000

6.  [500.831011]  /dev/input/event2:  0003 0039 ffffffff

7.  [500.831042]  /dev/input/event2:  0000 0000 00000000

8.  [502.778547]  /dev/input/event2:  0003 0039 00000399

9.  [502.778547]  /dev/input/event2:  0003 0035 00000535

10. [502.778577]  /dev/input/event2:  0003 0036 00000489

11. [502.778577]  /dev/input/event2:  0003 003a 00000031

12. [502.778577]  /dev/input/event2:  0000 0000 00000000

13. [502.930844]  /dev/input/event2:  0003 0039 ffffffff

14. [502.930874]  /dev/input/event2:  0000 0000 00000000

15. [504.000002]  

Time Device
Parameters

(type, code and value)

Press

Release

Press

Release

Figure 3: Illustration of an user trace

occurring time of this event). The second field specifies e.d, the
input device that has created this event. The remaining three
fields describes e.p, which is a three-tuple. All these events are
from the touch screen (/dev/input/event2). The three
components of e.p represent the event type, the data type, and
the actual value. For example, e.p = (0003,0035,000003eb)
indicates a touching event’s absolute (0003) X coordinate
(0035) is 000003eb.

Note that in this recording process, users only need to
perform a simple walk-through use of an app. This does
not require professional skills, and users are unaware of this
recording process. Typically, the recording can be done in a
few minutes. This is the only user participation part of our
UGA technique. After that, UGA is fully automated.

C. Stop-point Identification

Now we move to stop-point identification. Suppose that
UGA has recorded a user trace T = {e1, e2, . . . , en}. In
theory, when later UGA replays this user trace, it can stop
for systematic state exploration (i.e., automated testing) after
replaying to any one of these events ek (k ≤ n). However,
in practice, a user trace can contain thousands of logged
events. Stopping at each of thus logged events is not only
impractical, but also unnecessary for an effective testing. Our



Algorithm 1: The RND Algorithm

1 function RND(v, ℓ)
2 begin
3 for i ∈ {1, 2, . . . , ℓ} do
4 A← GetAllEnabledActions(v);
5 if A ̸= ∅ then
6 a← randomChoose(A);
7 execute a, leading to activity v′;
8 v ← v′;

9 else
10 break;

UGA proposes to start automated testing only after replaying
to certain logged events. Such events are named stop points.
Specifically, UGA identifies stop points by the following two
heuristic rules:

1) An event ek ∈ T is selected as a stop point if after
executing event ek, a new screen pops up (i.e., a new
activity is created in Android) or a new GUI container
is dynamically created. The intuition behind this rule is
that automated testing tools are good at systematically
exploring all functionalities integrated in a single GUI
layout [17]. If a user trace can lead to such a screen
with abundant GUI elements, the test coverage can be
significantly and systematically improved by automated
testing (lots of existing work available for this purpose).

2) UGA can also select an event ek ∈ A as a stop point if
ek+1.t− ek.t is large enough (e.g., greater than a given
threshold). The rationale behind this rule is that if there
has been a large interval between two continuous events,
it is very likely that the user creating this trace has spent
much time on checking an app’s GUI to explore next in-
teractions for trying more functionalities. In such cases,
applying automated testing can systematically traverse a
large number of app states, and this task is instead not
effective for a user to complete manually. To identify
such stop points, UGA calculates the interval between
each pair of two consecutive events (i.e., ei+1.t− ei.t).
If the interval is significantly larger than those of other
pairs, ei can be selected as a stop point.

D. User-guided Automated Testing

Given an app’s user trace T = {e1, e2, . . . , en} and an
identified stop point ek (k ≤ n), UGA replays the app until
reaching this stop point (i.e., feeding events e1, e2, . . . , ek
to the app and observing its execution), and then switches
to automated testing. For testing purposes, one may adopt
various existing automated testing techniques, e.g., random
testing, model-based testing, white-box testing, and so on.
In this paper, we choose to adopt two representative testing
techniques: random testing (RND) [8], [9] and model-based
depth-first testing (DFS) [6], [11]. These two techniques are
being widely used in practice. We adapt the RND idea to our

Algorithm 2: The DFS Algorithm
Data: global variable V with initial value ∅

1 function DFS(v)
2 begin
3 V ← V ∪ {v};
4 for each action a ∈ GetAllEnabledActions(v) do
5 execute a, leading to activity v′;
6 if v′ /∈ V then
7 DFS(v′);

8 if v ̸= v′ then
9 back to activity v;
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Figure 4: Overview of our UGA implementation

problem and present it in Algorithm 1. RND would randomly
generate and perform a sequence of interactions by analyzing
the runtime GUI layout of an app under testing. Executing
RND(v, ℓ) yields a ℓ-step random exploration starting from
activity v. DFS, on the other hand, treats an app as a state
transition system (i.e., activities as states, and interactions as
transitions between states), and aims to systematically traverse
all states and cover all transitions. We also adapt the DFS idea
to our problem and present it in Algorithm 2. We keep global
variable V to store the activities being visited. Executing
DFS(v) yields a systematic exploration of app states staring
from activity v.

IV. IMPLEMENTATION

We have implemented our UGA idea as a prototype tool for
Android platform. In this section, we discuss implementation
details about user trace recording, replaying, and built-in
automated testing techniques. Figure 4 gives an overview of
tool implementation. For ease of presentation, we also name
our tool UGA.

Our UGA tool conducts user trace recording, replaying and
automated testing on a real Android device (named guest),
which is controlled by a computer (named host) via Android
Debug Bridge (adb).



To record user traces, we modified RERAN [12], a non-
intrusive record and replay tool for Android. Specifically, when
an app runs on the guest device, the host computer will collect
kernel input events through adb, pulling time-stamped data
from /dev/input/event* device files using a “getevent”
command. To replay user traces, the host computer sends its
logged events to the guest device, and the latter feeds these
events to the app under testing according to their occurring
order until reaching a stop point.

Stop points are determined by the two heuristic rules
discussed earlier in Section III. In order to achieve high test
coverage, our UGA tool gives priority to stop points that are
associated with longer time gaps or more GUI elements. In
other words, UGA would prefer to conduct automated testing
at stop points with higher priorities, if there is only limited
budget on time or other resources.

To conduct automated testing at stop points, we customized
Troyd [18], which is based on the widely-used Robotium [15]
testing framework. Specifically, Troyd is a background service
residing in the guest device, and can respond to the host com-
puter’s requests through a socket connection. Our automated
testing is conducted in a three-step fashion. First, UGA uses
Troyd to obtain the guest device’s dynamic GUI layouts at
runtime, and send their information back to the host computer.
Second, the host computer decides which actions to execute
according to a certain testing technique (e.g., Algorithm 1 or
2). Finally, the host computer sends these actions back to the
guest device for execution, and Troyd will take over these
execution tasks.

V. EVALUATION

In this section, we evaluate the effectiveness of our UGA
technique experimentally with real-world Android apps.

A. Experimental Setup

We conducted our experiments on a PC with Intel Q9550
CPU and 4GB RAM running Ubuntu 13.04, and a Google
Nexus 4 smartphone running Android 4.4.2.

We selected seven real-world Android apps from two pri-
mary app distribution channels: Google Play [19] store and
F-Droid [20]. These apps are being popularly downloaded
from market and cover different application categories. Table I
summarizes basic information about these apps, including their
names, categories, number of downloads, number of activity
components, number of methods, and app sizes in terms of
the number of bytecode instructions.

To evaluate our UGA’s effectiveness, we measured method
coverage for each app when using the UGA implementation
configured to RND and DFS algorithms, respectively, i.e.,
UGA+RND and UGA+DFS. The coverage data were collected
by instrumenting each app’s bytecode using apktool [21].
Higher method coverage implies potentially more thorough
testing [6]. Since we test apps themselves, when measuring
method coverage, we considered only code in the core pack-
age of each app and excluded all external libraries. In the
following, we explain more setup details:

1) RND: UGA repeatedly fed each app with randomly
generated input interactions with length L = 10, until
reaching a time limit of 60 minutes. In our experiments,
we found that further increasing L or time limit only
improve test coverage marginally.

2) DFS: UGA ran the depth-first exploration until its termi-
nation (i.e., all states and transitions in a GUI model are
fully traversed). This process took less than 60 minutes
for all our selected apps.

3) UGA+RND/UGA+DFS : UGA collected a user trace for
each app by inviting a mobile phone user without any
mobile app development experience. The user was asked
to play the app in any way for at most 10 minutes. For
each collected user trace, UGA selected 10 stop points
according to our two heuristic rules discussed earlier in
Section III, and conducted automated testing using RND
or DFS from these stop points.

B. Experimental Results

Table II presents our experimental results and comparisons
between different configurations. Column 3 lists method cover-
age data that were achieved by replaying collected user traces
only. Columns 4, 5, 7 and 8 list method coverage data achieved
by RND only, UGA+RND, DFS only and UGA+DFS, re-
spectively. As we can observe, method coverage is 13.5–
45.8% (median 25.5%) for replaying user traces only, 3.2–
44.5% (median 25.4%) for applying RND only and 3.2–50.8%
(median 25.6%) for applying DFS only. These results are
similar to those reported in existing work [7]. We thus observe
that simply replaying user traces or applying state-of-the-art
automated testing techniques like RND and DFS can only
achieve very limited test coverage for Android apps. This is
because users are not good at systematic exploration of a large
state space, and existing automated testing techniques also
have challenges when facing complex interactions. Neverthe-
less, when one combined them together, i.e., using UGA+RND
or UGA+DFS, both of them achieved significantly improved
test coverage. For example, UGA+RND improved method
coverage by 14.6–43.8% (median 32.5%) against RND only;
UGA+DFS also improved method coverage by 20.2–67.4%
(median 30.8%) against DFS only. These results confirm that
exploiting user traces can indeed boost the effectiveness of an
automated testing tool.

We also observe that DFS performed slightly better than
RND (improvement is in a range of 0–6.3%, with a median of
0.3%). This observation is consistent with findings reported in
related studies. For example, researchers found that DFS can
achieve the same test coverage faster than RND, but finally
the two techniques will converge to similar coverage given
enough time and testing resources [3], [11]. One interesting
finding from our experiments is that UGA improved DFS
much more than it did for RND in terms of test coverage.
For example, even with the same user traces and stop points,
UGA+DFS achieved significantly better coverage improve-
ment than UGA+RND (in a range of 2.8–23.6% with a median
of 6.4%). This finding further validates our intuition that user



Table I: Android apps used in our experiments

Name Category # Downloads2 # Activities # Methods # Instructions
Amazon shopping 5M–10M 3,264 18,431 706,645
Any.do to-do list 5M–10M 1,433 7,326 334,118

Netease News news client 500K–1M 1,609 10,806 507,438
Mileage car manager 500K–1M 221 1,185 51,979

Tippy Tipper tip calculator 50K–100K 56 238 10,138
Alarm Klock alarm clock 500K–1M 160 673 30,027

Bing Dictionary dictionary 10K–50K 581 2,374 137,592

Table II: Evaluation results

Subject #Methods Method Coverage
User trace only RND only UGA+RND ∆ vs. RND DFS only UGA+DFS ∆ vs. DFS

Amazon 18,431 21.9% 25.4% 42.5% 17.1% (1.67×) 25.6% 47.6% 22.0% (1.86×)
Any.do 7,326 13.6% 10.8% 25.4% 14.6% (2.36×) 11.7% 31.8% 20.2% (2.73×)

Netease News 10,806 25.5% 8.7% 49.2% 40.5% (5.65×) 9.0% 53.5% 44.5% (5.94×)
Mileage 1,185 33.4% 27.3% 62.4% 35.1% (2.29×) 27.3% 79.3% 52.1% (2.91×)

Tippy Tipper 238 45.8% 44.5% 72.3% 27.7% (1.62×) 50.8% 80.7% 29.8% (1.59×)
Alarm Klock 673 39.2% 41.2% 73.7% 32.5% (1.79×) 45.8% 76.5% 30.8% (1.67×)

Bing Dictionary 2,374 13.5% 3.2% 47.1% 43.8% (14.51×) 3.2% 70.6% 67.4% (21.78×)

traces can provide a sketch of an app’s state space, and this
enables the remaining state space to be explored by automated
testing techniques.

C. Discussions

We now look into the insights why our UGA technique is
effective in improving test coverage for mobile apps.

There can be many factors that limit the effectiveness of an
automated testing technique. Examples include that: (1) com-
plex interactions can prevent automated testing from reaching
a specific app state; (2) deep functions (those functions that
can only be invoked by a long input sequence) are difficult to
reach by random testing; (3) imprecise model abstraction can
omit part of an app’s state space to be explored. However, user
traces usually contain hints on addressing such challenges. In
the following, we discuss three scenarios encountered in our
experiments, in which existing automated testing techniques
failed to cover apps adequately, while our UGA significantly
improved test coverage with the help of collected user traces.

Scenario 1 (Bing Dictionary). When the Bing Dictionary
app was launched for the first time, it required three swipe
gestures to skip its starting screens and reach its main screen.
Existing automated testing cannot easily generate correspond-
ing complex interactions to achieve this task3. As a compari-
son, our UGA can simply replay collected user traces to pass
the starting screen as well as other difficult-to-pass screens,
and systematically explore remaining GUI elements, resulting
in significantly improved test coverage.

Scenario 2 (Mileage). Mileage is a car managing app. Some
of its functionalities can only be enabled after its user has
customized a vehicle. However, the customization needs a long
sequence of input actions. It is therefore difficult for RND and
DFS to reach and test such functionalities. As a comparison,
users can easily customize their cars themselves when using
this app. Therefore, UGA can replay collected user traces to
easily enable such functionalities for later thorough testing.

Scenario 3 (Netease News). The third example is the
Netease News app. It has a parameter setting screen, which
can only be reached by a certain swipe gesture. All existing
automated testing technique tried in our experiments failed to
reach this screen, because related GUI layout models have no
explicit transition from the app’s main screen to this parameter
setting screen. However, our UGA enhanced GUI layout
models by recorded user traces, and succeeded in reaching
this setting screen as well as exploring more code from this
screen. Besides, this was done in an automated way.

VI. RELATED WORK

Modern software applications mostly contain GUIs. To
automatically test such applications, researchers have proposed
various model-based techniques [22]–[24]. For example, GUI-
TAR [22] is a well-known systematic GUI testing technique.
Given an application, GUITAR extracts a state-machine based
GUI model from this application, and tries to traverse all its
states (i.e., windows) and all transitions between these states
(i.e., clickable widgets on windows) for exposing bugs.

Many mobile apps are also GUI applications. Thus model-
based GUI testing also applies to such apps [5]–[11], [13],
[25]. For example, one can model an app’s states by means of
screens [6] or enabled GUI elements [7], and model transitions
by means of valid actions on these enabled GUI elements.
Such GUI information can be statically derived from an app’s
source code [11], or dynamically obtained at runtime [6],
[7]. With such modeling, one can extract a state-machine
based GUI model for each mobile app. Then different testing

21K=1,000 and 1M=1,000,000. Also, we count only number of downloads
from Google Play store as it is official. Our selected apps are also being
popularly downloaded at other third-party markets.

3It is still possible for automated testing techniques to generate certain
gestures [6], but that would be inefficient. This is because it is generally
unknown how to predict which apps need what gestures as inputs. A tool
would have to generate a large set of common gestures configured with various
parameters (e.g., start and end points of a swipe gesture) for testing, and most
of these gestures would be totally irrelevant.



techniques or strategies can be applied on these extracted GUI
models. Typical examples include depth-first search [6], [11],
heuristic-rule based search [7], [25], random exploration [8],
[9], [13], and symbolic or concolic analysis [5], [10].

Despite many existing automated testing and GUI model
extraction tools (e.g., Monkey [26], Robotium [15] and
Troyd [18]), how to effectively synthesize complex inter-
actions (e.g., drawing an unlock pattern on screen in our
motivating example) still remains to be an open and emergent
question. In practice, these pieces of existing work are still
incapable of automatically generating complex interactions
to effectively test a mobile app. Instead of blindly pursuing
test automation, our UGA technique takes one step back and
addresses this problem by exploiting user trace information
to support effective mobile app testing. Besides, [6] also
proposed a targeted exploration technique to more thoroughly
explore an app’s state space. It works by forcing activity
launches according to the statically generated activity tran-
sition graph. It shares exactly the same key insight with
UGA: leveraging additional information to explore the “hard-
to-reach” states, and we innovatively addressed this issue by
utilizing information contained in the user traces.

On the other hand, there is also existing work on human-
assisted testing for GUI applications. For instance, Amalfitano
et al. [27], [28] proposed to extract GUI models from collected
user traces for testing, and Huang et al. [29] demonstrated
how to manually identify and prioritize transitions in GUI
models for testing. Compared with these pieces of work, our
UGA requires only very limited user traces (e.g., may only
one), which can be easily obtained with negligible manual
effort. Besides, UGA does not require its users to have special
mobile testing skills, and can thus be easily deployed in a
crowdsourcing way.

Finally, from an even broader perspective, researchers have
kept showing that challenging problems for computers (not
only testing) can be alleviated or solved in a human-assisted
way [30]–[32]. For example, Chen et al. [30] demonstrated
that it is possible to decompose complex problems into small
puzzles for humans to solve, and this semi-automated solution
can achieve a significant improvement over a fully automated
approach. Our UGA shares a similar insight with these ap-
proaches, and our evaluation confirmed that it is indeed a
successful attempt towards introducing human assistance to
better support the testing of mobile apps.

VII. CONCLUSION

In this paper, we proposed a novel user-guided testing
technique for mobile apps, targeting at improving test ef-
fectiveness. To the best of our knowledge, this is the first
attempt that integrates user insights into automated testing
techniques in a cost-effective way. Our experiments on seven
real-world Android apps show that our UGA technique can
achieve a significant improvement over existing automated
testing techniques in terms of code coverage. Based on these
promising results, we believe that our research sets a new
direction towards cost-effective testing for mobile apps.

Still, our work is at an initial stage. There are many research
issues that deserve further study. UGA is more a framework
than a single technique. Every different user trace collection
strategy, stop point identification algorithm and automated
testing approach defines an unique UGA implementation:
UGA defines a spectrum of mobile testing techniques, and
more research issues are emerging. It could be argued that our
UGA’s test effectiveness might depend on what user traces are
collected and how stop points are identified. Then how to guide
users to provide useful traces and select quality stop points
need a further study. Also, we observed that UGA achieves
higher coverage improvement for model-based systematic test-
ing (e.g., DFS), as compared with random testing. Theo-
retically, any automated testing techniques can be extended
for such user guidance. Then we wonder: should we guide
users in different ways when different underlying automated
testing techniques are deployed? How such customization can
guarantee more improvement in test effectiveness? We are
working along this line.
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